首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies of the response of RAW264.7 cells (RAW) to lipopolysaccharide (LPS) were carried out to determine why these cells do not demonstrate the prostaglandin (PG)-dependent autocrine regulation of tumor necrosis factor-alpha (TNF-alpha) secretion observed in primary resident peritoneal macrophages (RPMs). The major cyclooxygenase (COX) product of LPS-stimulated RAW was PGD2, with lesser amounts of PGE2. LPS-treated RAW produced PGs more slowly and reached their maximal PG synthetic rate later than did LPS-treated RPMs, as a result of lower constitutive COX-1 expression and a slower rate of COX-2 induction. Cytosolic phospholipase A2 and levels of free arachidonic acid were similar in RAW and RPMs. In contrast to RPMs, LPS-treated RAW produced high quantities of TNF-alpha, which were not altered in the presence of COX inhibitors. This failure of endogenous PGs to suppress TNF-alpha secretion was explained by the absence of the prostaglandin D2 receptor and the low levels of PGE2 produced during the first 2 h of the LPS response. These studies demonstrate that autocrine regulation of TNF-alpha secretion in response to LPS is greatly facilitated by a COX-1-mediated rapid accumulation of PGs as well by a correspondence between the PGs produced and the receptors expressed by the cells.  相似文献   

2.
3.
IL-10 is a potent anti-inflammatory and immune regulatory cytokine. IL-10(-/-) mice produce exaggerated amounts of inflammatory cytokines when stimulated with LPS, indicating that endogenous IL-10 is a central regulator of inflammatory cytokine production in vivo. PGs are lipid mediators that are also produced in large amounts during the inflammatory response. To study the role of IL-10 in the regulation of PG production during the acute inflammatory response, we evaluated LPS-induced cyclooxygenase (COX) expression and PG production in wild-type (wt) and IL-10(-/-) mice. LPS-induced PGE(2) production from IL-10(-/-) spleen cells was 5.6-fold greater than that from wt spleen cells. LPS stimulation resulted in the induction of COX-2 mRNA and protein in both wt and IL-10(-/-) spleen cells; however, the magnitude of increase in COX-2 mRNA was 5.5-fold greater in IL-10(-/-) mice as compared with wt mice. COX-1 protein levels were not affected by LPS stimulation in either wt or IL-10(-/-) mice. Neutralization of IFN-gamma, TNF-alpha, or IL-12 markedly decreased the induction of COX-2 in IL-10(-/-) spleen cells, suggesting that increased inflammatory cytokine production mediates much of the COX-2 induction in IL-10(-/-) mice. Treatment of IL-10(-/-) mice with low doses of LPS resulted in a marked induction of COX-2 mRNA in the spleen, whereas wt mice had minimal expression of COX-2 mRNA. These findings indicate that, in addition to IL-10's central role in the regulation of inflammatory cytokines, endogenous IL-10 is an important regulator of PG production in the response to LPS.  相似文献   

4.
INTRODUCTION: Prostaglandins (PGs) can act on both hematopoietic and osteoblastic lineages to enhance osteoclast formation. METHODS: We examined PGE2 stimulated osteoclastogenesis in RAW 264.7 cells and the role of endogenous PGE2 in lipopolysaccharide (LPS) stimulated osteoclastogenesis. RESULTS: RANKL (1-100 ng/ml) increased formation of osteoclasts, defined as tartrate resistant acid phosphatase multinucleated cells, with peak effects at 30 ng/ml. Addition of PGE2 (0.01-1.0 microM) to RANKL (30 ng/ml) dose dependently increased osteoclast number 30-150%. Use of NS-398 (0.1 microM) or indomethacin (Indo, 1.0 micro M) to block endogenous PG synthesis had little effect on the response to RANKL alone but significantly decreased the response to PGE2. Addition of LPS (100 ng/ml) to RANKL increased osteoclast number 50%, and this response was significantly decreased by NS-398 and Indo. RANKL and PGE2 produced small, additive increases in COX-2 mRNA levels, while LPS produced a larger increase. PG release into the medium was not increased by RANKL and PGE2 but markedly increased by LPS. CONCLUSION: We conclude that RANKL stimulated osteoclastogenesis can be enhanced by PGE2 and LPS though direct effects on the hematopoietic cell lineage and that these effects may be mediated in part by induction of COX-2 and enhanced intracellular PG production.  相似文献   

5.
Prostaglandins regulate melanoma-induced cytokine production in macrophages   总被引:2,自引:0,他引:2  
Tumor-secreted products can affect macrophage cytokine expression and in that way alter the immune response. Prostaglandins (PGs) are found in the tumor microenvironment and have been associated with local and regional immunosuppression. We investigated whether tumor-secreted factors could induce PG synthesis in macrophages and whether these PGs could alter macrophage production of immunoregulatory cytokines. In both murine and human models, melanoma conditioned medium (MCM) induced macrophage production of PGE(2), IL-6, and TNF-alpha. PGE(2) production increased over 24 h and was accompanied by an increase in cyclooxygenase-2 (COX-2) expression, while COX-1 expression remained unchanged. In the presence of 10 microM NS398, a selective COX-2 inhibitor, MCM-stimulated PGE(2) synthesis was almost completely suppressed, while production of IL-6 and TNF-alpha proteins and mRNA also was partially abrogated. In the murine model, 200 microM NS398 resulted in more significant inhibition of cytokine protein and mRNA production. Although MCM induced NFkappaB and NF-IL-6 activation, neither dose of NS398 altered this effect. We conclude that melanoma-secreted products stimulate COX-2 expression and PGE(2) synthesis in macrophages and that inhibition of COX-2-derived PG synthesis results in partial abrogation of macrophage cytokine production.  相似文献   

6.
The aim of the present study was to determine the effect of tumor necrosis factor-alpha (TNF-alpha), interleukin-1 beta (IL-1 beta) and interleukin-6 (IL-6) on prostaglandin (PG)F(2 alpha) and PGE(2) secretion as well as cyclooxygenase-2 (COX-2) protein expression in chorioamnion collected on days 25, 30 and 40 of pregnancy in pigs. Fetal membrane slices were incubated for 16 h with TNF-alpha, IL-1 beta, IL-6 (1 or 10 ng/ml of medium) or two combinations of the three cytokines (1 or 10 ng/ml of each cytokine per combination). We demonstrated the stimulatory effect of TNF-alpha, IL-1 beta and/or IL-6 on PGF(2 alpha) and PGE(2) secretion by the porcine fetal membranes. The medium content of these PGs depended on the cytokine type, treatment dose and day of pregnancy. Cytokine stimulation of PGE(2) was more pronounced than that of PGF(2 alpha). In addition, an increase in PGF(2 alpha) and/or PGE(2) secretion was usually associated with an augmentation of COX-2 protein expression. Our results support the notion concerning the possible role of cytokines in modulating production of PGs by fetal membranes during the first trimester of gestation.  相似文献   

7.
Increased production of PGs by gestational membranes is believed to be a principal initiator of term and preterm labor. Intrauterine infection is associated with an inflammatory response in the choriodecidua characterized by elevated production of cytokines and PGs. The precise physiological significance of enhanced choriodecidual cytokine production in the mechanism of preterm labor remains uncertain. These studies were undertaken to dissect the roles and regulation of endogenous cytokines in regulating PG production by human choriodecidua. We used LPS treatment of human choriodecidual explants as our model system. In choriodecidual explant cultures, LPS (5 microg/ml) induced a rapid increase in TNF-alpha production, peaking at 4 h. In contrast, IL-10, IL-1beta, and PGE2 production rates peaked 8, 12, and 24 h, respectively, after LPS stimulation. Immunoneutralization studies indicated that TNF-alpha was a primary regulator of IL-1beta, IL-10, and PGE2 production, while IL-1beta stimulated only PGE2 production. Neutralization of endogenous IL-10 resulted in increased TNF-alpha and PGE2 production. IL-10 treatment markedly decreased TNF-alpha and IL-1beta production, but had no effect on PGE2 production. Taken together, these results demonstrate that the effects of LPS on choriodecidual cytokine and PG production are modulated by both positive and negative feedback loops. In the setting of an infection of the intrauterine, TNF-alpha may be a potential target for treatment intervention; IL-10 could be one such therapeutic.  相似文献   

8.
Although numerous studies have demonstrated the ability of intestinal epithelial cells to produce PGs after infection with wild-type strains of Salmonella, few studies have focused on Salmonella-induced prostanoids in mucosal lymphoid tissues. This is surprising in view of the profound effects PGs can have on the host response. To begin to address PG production at mucosal sites, mice were orally inoculated with Salmonella, and at varying times postinfection cyclooxygenase-2 (COX-2) mRNA expression and PGE(2) synthesis were investigated. COX-2 mRNA expression was highly inducible in the mesenteric lymph nodes, whereas COX-1 mRNA levels were constitutive. PGE(2) production also increased significantly in the mesenteric lymph nodes following exposure to viable Salmonella, but not after exposure to killed bacteria. This increased PGE(2) response could be blocked by treatment of mice with the selective COX-2 inhibitor, celecoxib. Treatment of mice with celecoxib during salmonellosis resulted in increased viable bacteria in the mesenteric lymph nodes by day 3 postinfection. However, celecoxib treatment prolonged the survival of lethally infected animals. In vitro studies demonstrated Salmonella-induced up-regulation of COX-2 mRNA expression and PGE(2) secretion by both macrophages and dendritic cells, which could also be blocked in the presence of celecoxib. Interestingly, exposure of these cultured APCs to viable Salmonella was a much greater stimulus for induction of PGE(2) synthesis than exposure to Salmonella-derived LPS. The present study demonstrates induction of PGE(2) synthesis in mesenteric lymph nodes, macrophages, and dendritic cells after infection with wild-type salmonella.  相似文献   

9.
10.
11.
Past studies of uterine prostaglandin (PGs) and pig reproduction have focused on endometrial rather than myometrial PGs. This study documents the synthesis and secretion of myometrial prostaglandins (PGs) in pigs and the involvement of oxytocin (OT) in these processes. Cyclooxygenase-2 (COX-2) expression was similar in myometrial explants from cyclic and pregnant pigs (days 14-16) and OT (10(-7) M) in vitro significantly increased COX-2 protein regardless of reproductive state. Basal expression of prostaglandin E2 synthase (PGES) was higher during pregnancy than during luteolysis. Conversely, prostaglandin F synthase (PGFS) was highest during luteolysis and lower in myometrium from gravid animals. OT had no influence on the expression of PGES and PGFS. In another tissue culture experiment, myometrial slices produced more PGE2 than PGF2alpha regardless of reproductive state of the female. OT stimulated PGE2 production in myometrium harvested during luteolysis and increased PGF2alpha production in all tissues examined. Progesterone (P4; 10(-5) M) blocked stimulatory effect of OT on myometrial PG release. Myometrial OTr mRNA was higher (P=0.03) during luteolysis than during pregnancy. In conclusion: (1) oxytocin increases myometrial COX-2 expression, but does not influence the expression of terminal enzymes of PGs synthesis (PGES and PGFS); (2) porcine myometrium preferentially produces PGs during early pregnancy and secretes more PGE2 than PGF2alpha; (3) myometrial OT and OTr support secretion of PGs from myometrium during luteolysis.  相似文献   

12.
Prostaglandins (PGs) have proven important during parturition, but inhibition of PG production treating preterm labor (PTL) results in significant maternal and fetal side effects. We hypothesize that specific inhibition of either cyclooxygenase (COX)-1 or -2 may result in separation of therapeutic and toxic effects. We demonstrate that COX-2, but not COX-1, is induced during inflammation-mediated PTL caused by lipopolysaccharide (LPS) administration. A two- to threefold increase in uterine and ovarian PG concentrations coincides with this induction of COX-2. The COX-2-selective inhibitor SC-236 proved effective in stopping preterm delivery and the increases in PGs. The COX-1-selective inhibitor SC-560 also attenuated uterine and ovarian PG production after LPS but did not inhibit PTL as efficiently as SC-236. COX-1-deficient mice, which show delay in the onset of term labor, exhibited no delay in onset of PTL after LPS. These findings suggest that the mechanisms for initiation of inflammation-mediated PTL and term labor differ and that selective COX-2 inhibition may provide a means of stopping inflammation-induced PTL in humans.  相似文献   

13.
Prostaglandins (PG) are well known lipid mediators with important immunoregulatory properties. While exogenous PGE2 has the ability to modulate the function and maturation of antigen presenting cells, such as dendritic cells (DC), it is not clear whether human DC have the capacity to synthesize PGE2 and other prostaglandins themselves. We therefore examined the expression of inducible cyclo-oxygenase (COX-2) by monocyte derived DC and the production of PGE2 and PGD2. Both monocyte derived DC and freshly isolated blood myeloid DC expressed little COX-2 constitutively, though COX-2 expression was rapidly but transiently upregulated in response to lipopolysaccharide stimulation. COX-2 mRNA was detectable within 1 h of LPS exposure, peaked at 4-6 h, and rapidly declined thereafter. COX-2 expression was accompanied by DC synthesis of PGE2, with peak levels present at 6-18 h post-stimulation. In contrast, PGD2 synthesis was not detected at any time point. When DC were activated with LPS in the presence of nimesulide, a COX-2 selective inhibitor, IL-10 synthesis was inhibited, indicating that endogenous prostaglandins regulate DC cytokine production. PGE2 production by DC may therefore modulate DC and T-cell function, thereby shaping the character of the immune response.  相似文献   

14.
Cyclooxygenase-2 (COX-2) is an inducible enzyme responsible for high levels of PG production during inflammation and immune responses. Previous studies with pharmacological inhibitors suggested a role for protein kinase C (PKC) in PG production possibly by regulating COX-2 expression. In this study, we addressed the role of PKC-alpha in the modulation of COX-2 expression and PGE2 synthesis by the overexpressing of a dominant-negative (DN) mutant of this isoenzyme in the mouse macrophage cell line RAW 264.7. We investigated the effect of various stimuli on COX-2 expression, namely, LPS, IFN-gamma, and the intracellular parasite Leishmania donovani. Whereas LPS-induced COX-2 mRNA and protein expression were down-regulated in DN PKC-alpha-overexpressing clones, IFN-gamma-induced COX-2 expression was up-regulated in DN PKC-alpha-overexpressing clones with respect to normal RAW 264.7 cells. Measurements of PGE2 levels revealed a strong correlation between PGE2 secretion and IFN-gamma-induced COX-2 mRNA and protein levels in DN PKC-alpha-overexpressing clones. Taken together, these results suggest a role for PKC-alpha in the modulation of LPS- and IFN-gamma-induced COX-2 expression, as well as in IFN-gamma-induced PGE2 secretion.  相似文献   

15.
16.
PGE(2) inhibits mature T cell proliferation and protects T cells from activation-induced cell death (AICD). We have previously demonstrated that human follicular dendritic cells (FDC) strongly express PGI synthase. In this study, the hypothesis that FDC have regulatory roles on germinal center T cells by controlling production of PGE(2) and PGI(2) was tested. Confocal microscopic analyses of human tonsil tissues revealed that FDC indeed expressed PGE synthase in addition to PGIS. To confirm these results, we studied the regulation mechanism of PG production in FDC, using an established human FDC-like cell line, HK. Specifically in response to TNF-alpha, TGF-beta, and LPS, protein expression of cyclooxygenase (COX)-2 and downstream PGE synthase was up-regulated with coordinate kinetics, whereas COX-1 and PGIS were constitutively expressed. The increase of these enzymes was reflected in actual production of PGE(2) and PGI(2). Interestingly, IL-4 almost completely abrogated the stimulatory activity of TNF-alpha, TGF-beta, and LPS in PG production. Furthermore, the up-regulation of PGE(2) and PGI(2) production was markedly down-regulated by indomethacin and a selective COX-2 inhibitor. PGI(2) analog and PGE(2) inhibited proliferation and AICD of T cells in dose- and time-dependent manners. Finally, coculture experiments revealed that HK cells indeed inhibit proliferation and AICD of T cells. Put together, these results show an unrecognized pathway of FDC and T cell interactions and differential mechanisms for PGE(2) and PGI(2) production, suggesting an important implication for development and use of anti-inflammatory drugs.  相似文献   

17.
18.
PG added to cell culture profoundly affect the in vitro maturation and function of monocyte-derived dendritic cells (MDC). Because unstimulated monocytes express cyclooxygenase (COX)-1, and COX-2 when activated, we examined whether MDC express these enzymes and produce prostanoids that autoregulate maturation and IL-12 production. Immature MDC (I-MDC) and mature MDC express COX-1, but, unlike monocytes, both MDC populations constitutively express COX-2. However, COX-2 regulation in both MDC populations differs from monocytes, as IL-4 does not suppress enzyme expression. COX-2 is functional in MDC as a specific inhibitor, NS-398, significantly reduces PGE(2) production. I-MDC undergoing maturation with soluble CD40 ligand (sCD40L) increase PGE(2) synthesis, but prostanoid synthesis is switched to COX-1. However, with IFN-gamma present, sCD40L-stimulated PG metabolism is redirected to COX-2, and PGE(2) synthesis increases severalfold. Endogenous PG production by MDC does not regulate CD40, CD80, CD86, or HLA DR expression; however, it does promote MDC maturation, as NS-398 significantly reduces CD83 expression in I-MDC matured with sCD40L/IFN-gamma. PG produced through COX-2 also autoregulate IL-12, but the effects are dependent on the MDC maturation state. Blocking COX-2 reduces I-MDC secretion of IL-12p40, whereas it increases IL-12p40 and p70 production by maturing MDC. COX-2-mediated PG production impacts MDC function as maturing these cells in the presence of NS-398 yields MDC that stimulate significantly more IFN-gamma in an allogeneic mixed lymphocyte response than MDC matured without this inhibitor. These studies demonstrate that MDC express both COX isoforms constitutively and produce prostanoids, which autoregulate their maturation and function.  相似文献   

19.
Cyclooxygenase (COX)-2 oxygenates arachidonic acid (AA) and 2-arachidonylglycerol (2-AG) to endoperoxides, which are subsequently transformed to prostaglandins (PGs) and glycerylprostaglandins (PG-Gs). PG-G formation has not been demonstrated in intact cells treated with a physiological agonist. Resident peritoneal macrophages, which express COX-1, were pretreated with lipopolysaccharide to induce COX-2. Addition of zymosan caused release of 2-AG and production of the glyceryl esters of PGE2 and PGI2 over 60 min. The total quantity of PG-Gs (16 +/- 6 pmol/10(7) cells) was much lower than that of the corresponding PGs produced from AA (21,000 +/- 7,000 pmol/10(7) cells). The differences in PG-G and PG production were partially explained by differences in the amounts of 2-AG and AA released in response to zymosan. The selective COX-2 inhibitor, SC236, reduced PG-G and PG production by 49 and 17%, respectively, indicating a significant role for COX-1 in PG-G and especially PG synthesis. Time course studies indicated that COX-2-dependent oxygenation rapidly declined 20 min after zymosan addition. When exogenous 2-AG was added to macrophages, a substantial portion was hydrolyzed to AA and converted to PGs; 1 microm 2-AG yielded 820 +/- 200 pmol of PGs/10(7) cells and 78 +/- 41 pmol of PG-Gs/10(7) cells. SC236 reduced PG-G and PG production from exogenous 2-AG by 88 and 76%, respectively, indicating a more significant role for COX-2 in the utilization of exogenous substrate. In conclusion, lipopolysaccharide-pretreated macrophages produce PG-Gs from endogenous 2-AG during zymosan phagocytosis, but PG-G formation is limited by substrate hydrolysis and inactivation of COX-2.  相似文献   

20.
Isolated pancreatic islets of the rat were either prelabeled with [3H]arachidonic acid, or were incubated over the short term with the concomitant addition of radiolabeled arachidonic acid and a stimulatory concentration of glucose (17mM) for prostaglandin (PG) analysis. In prelabeled islets, radiolabel in 6-keto-PGF1 alpha, PGE2, and 15-keto-13,14-dihydro-PGF2 alpha increased in response to a 5 min glucose (17mM) challenge. In islets not prelabeled with arachidonic acid, label incorporation in 6-keto-PGF1 alpha increased, whereas label in PGE2 decreased during a 5 min glucose stimulation; after 30-45 min of glucose stimulation labeled PGE levels increased compared to control (2.8mM glucose) levels. Enhanced labelling of PGF2 alpha was not detected in glucose-stimulated islets prelabeled or not. Isotope dilution with endogenous arachidonic acid probably occurs early in the stimulus response in islets not prelabeled. D-Galactose (17mM) or 2-deoxyglucose (17mM) did not alter PG production. Indomethacin inhibited islet PG turnover and potentiated glucose-stimulated insulin release. Islets also converted the endoperoxide [3H]PGH2 to 6-keto-PGF1 alpha, PGF2 alpha, PGE2 and PGD2, in a time-dependent manner and in proportions similar to arachidonic acid-derived PGs. In dispersed islet cells, the calcium ionophore ionomycin, but not glucose, enhanced the production of labeled PGs from arachidonic acid. Insulin release paralleled PG production in dispersed cells, however, indomethacin did not inhibit ionomycin-stimulated insulin release, suggesting that PG synthesis was not required for secretion. In confirmation of islet PGI2 turnover indicated by 6-keto-PGF1 alpha production, islet cell PGI2-like products inhibited platelet aggregation induced by ADP. These results suggest that biosynthesis of specific PGs early in the glucose secretion response may play a modulatory role in islet hormone secretion, and that different pools of cellular arachidonic acid may contribute to PG biosynthesis in the microenvironment of the islet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号