首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Whether biological or electronic, man-engineered computation is based on logic circuits assembled with binary gates that are interconnected to perform Boolean operations. We report here the rewiring of the SOS system of Escherichia in a fashion that makes the output of both the recA and lexA promoters to faithfully follow the pattern of a binary composite OR-NOT gate (ORN) in which the inputs are DNA damage (e.g. nalidixic acid addition) and IPTG as an exogenous signal. Unlike other non-natural gates whose implementation requires changes in genes and promoters of the genome of the host cells, this ORN was brought about by the sole addition of wild-type bacteria with a plasmid encoding a module for LacI(q)-dependent expression of lexA. Specifically, we demonstrate that the interplay between native, chromosomally-encoded components of the SOS system and the extra parts engineered in such a plasmid made the desired performance to happen without any modification of the core DNA-damage response network. It is thus possible to artificially interface autonomous cell networks with a predetermined logic by means of Boolean gates built with regulatory elements already functioning in the recipient organism.  相似文献   

2.
3.
4.
5.
Design of elementary molecular logic gates is the key and the fundamental of performing complicated Boolean calculations. Herein, we report a strategy for constructing a DNA-based OR gate by using the mechanism of sequence recognition and the principle of fluorescence resonance energy transfer (FRET). In this system, the gate is entirely composed of a single strand of DNA (A, B and C) and the inputs are the molecular beacon probes (MB1 and MB2). Changes in fluorescence intensity confirm the realization of the OR logic operation and electrophoresis experiments verify these results. Our successful application of DNA to perform the binary operation represents that DNA can serve as an efficient biomaterial for designing molecular logic gates and devices.  相似文献   

6.
7.
Unger R  Moult J 《Proteins》2006,63(1):53-64
Can proteins be used as computational devices to address difficult computational problems? In recent years there has been much interest in biological computing, that is, building a general purpose computer from biological molecules. Most of the current efforts are based on DNA because of its ability to self‐hybridize. The exquisite selectivity and specificity of complex protein‐based networks motivated us to suggest that similar principles can be used to devise biological systems that will be able to directly implement any logical circuit as a parallel asynchronous computation. Such devices, powered by ATP molecules, would be able to perform, for medical applications, digital computation with natural interface to biological input conditions. We discuss how to design protein molecules that would serve as the basic computational element by functioning as a NAND logical gate, utilizing DNA tags for recognition, and phosphorylation and exonuclease reactions for information processing. A solution of these elements could carry out effective computation. Finally, the model and its robustness to errors were tested in a computer simulation. Proteins 2006. © 2006 Wiley‐Liss, Inc.  相似文献   

8.
Computational functions in biochemical reaction networks.   总被引:6,自引:1,他引:5  
In prior work we demonstrated the implementation of logic gates, sequential computers (universal Turing machines), and parallel computers by means of the kinetics of chemical reaction mechanisms. In the present article we develop this subject further by first investigating the computational properties of several enzymatic (single and multiple) reaction mechanisms: we show their steady states are analogous to either Boolean or fuzzy logic gates. Nearly perfect digital function is obtained only in the regime in which the enzymes are saturated with their substrates. With these enzymatic gates, we construct combinational chemical networks that execute a given truth-table. The dynamic range of a network's output is strongly affected by "input/output matching" conditions among the internal gate elements. We find a simple mechanism, similar to the interconversion of fructose-6-phosphate between its two bisphosphate forms (fructose-1,6-bisphosphate and fructose-2,6-bisphosphate), that functions analogously to an AND gate. When the simple model is supplanted with one in which the enzyme rate laws are derived from experimental data, the steady state of the mechanism functions as an asymmetric fuzzy aggregation operator with properties akin to a fuzzy AND gate. The qualitative behavior of the mechanism does not change when situated within a large model of glycolysis/gluconeogenesis and the TCA cycle. The mechanism, in this case, switches the pathway's mode from glycolysis to gluconeogenesis in response to chemical signals of low blood glucose (cAMP) and abundant fuel for the TCA cycle (acetyl coenzyme A).  相似文献   

9.
In this paper, we present a new DNA-based evaluation algorithm for a Boolean circuit that employs standard bio-molecular techniques. The algorithm operates on an unbounded fan-in Boolean circuit consisting of AND and OR gates. The whole simulation of our algorithm is proposed in a single test tube in O(1) time complexity and is much easier to implement in the laboratory than previously described models. Furthermore, the algorithm allows for evaluating any number of Boolean circuits in parallel in a single test tube.  相似文献   

10.
We have developed an array of seven deoxyribozyme-based molecular logic gates that behaves as a full adder in a single solution, with three oligonucleotides as inputs and two independent fluorogenic cleavage reactions as carry and sum outputs. The sum output consisted of four new deoxyribozyme-based logic gates: an ANDAND gate and three ANDNOTANDNOT gates. These gates required the design of a generic three-input deoxyribozyme-based logic gate that can use any three-way combination of activating or inactivating inputs. This generic gate design utilizes an additional inverting element that hybridizes to convert YES logic into NOT logic and vice versa. The system represents the first solution-phase, single test tube, enzymatic full adder and shows the complexity of control over molecular scale events that can be achieved with deoxyribozyme-based logic gates. Similar systems could be applied to control autonomous therapeutic and diagnostic devices.  相似文献   

11.
12.
Klein JP  Leete TH  Rubin H 《Bio Systems》1999,52(1-3):15-23
Energy dissipation associated with logic operations imposes a fundamental physical limit on computation and is generated by the entropic cost of information erasure, which is a consequence of irreversible logic elements. We show how to encode information in DNA and use DNA amplification to implement a logically reversible gate that comprises a complete set of operators capable of universal computation. We also propose a method using this design to connect, or 'wire', these gates together in a biochemical fashion to create a logic network, allowing complex parallel computations to be executed. The architecture of the system permits highly parallel operations and has properties that resemble well known genetic regulatory systems.  相似文献   

13.
14.
Ho MS 《Bio Systems》2005,80(3):233-250
In this paper our main purpose is to give molecular solutions for the subset-product problem. In order to achieve this, we propose three DNA-based algorithms--parallel adder, parallel multiplier and parallel comparator--that formally verify our designed molecular solutions for the subset-product problem. We also show that Boolean circuits are not needed to perform mathematical operations on a molecular computer. Furthermore, this work indicates that the subset-product problem is solved and also presents clear evidence of the ability of molecular computing to perform complicated mathematical operations.  相似文献   

15.
16.
Yurke B  Mills AP  Cheng SL 《Bio Systems》1999,52(1-3):165-174
A DNA representation of Boolean logic for which the input strands are separate from the operator strands is described and used to construct a two-bit DNA adder. The successful operation of the adder for several test inputs demonstrates that digital molecular computation with a complexity of order 30 gates is feasible.  相似文献   

17.
MOTIVATION: Cancer encompasses various diseases associated with loss of cell cycle control, leading to uncontrolled cell proliferation and/or reduced apoptosis. Cancer is usually caused by malfunction(s) in the cellular signaling pathways. Malfunctions occur in different ways and at different locations in a pathway. Consequently, therapy design should first identify the location and type of malfunction to arrive at a suitable drug combination. RESULTS: We consider the growth factor (GF) signaling pathways, widely studied in the context of cancer. Interactions between different pathway components are modeled using Boolean logic gates. All possible single malfunctions in the resulting circuit are enumerated and responses of the different malfunctioning circuits to a 'test' input are used to group the malfunctions into classes. Effects of different drugs, targeting different parts of the Boolean circuit, are taken into account in deciding drug efficacy, thereby mapping each malfunction to an appropriate set of drugs.  相似文献   

18.
We have introduced optically controlled two-stage cascaded surface plasmonic two-mode interference waveguide structure (having silicon core and silver upper and lower cladding) as universal gates. GaAsInP cladding is used in left and right side of core for optical pulse controlled cladding refractive index modulation which controls propagation of excited modes. The universal logic gate operations have been shown with this structure. These universal gates have potential in development of large-scale integrated optical processor due to its compactness and high fabrication tolerance.  相似文献   

19.
We propose a novel hybrid single-electron device for reprogrammable low-power logic operations, the magnetic single-electron transistor (MSET). The device consists of an aluminium single-electron transistor with a GaMnAs magnetic back-gate. Changing between different logic gate functions is realized by reorienting the magnetic moments of the magnetic layer, which induces a voltage shift on the Coulomb blockade oscillations of the MSET. We show that we can arbitrarily reprogram the function of the device from an n-type SET for in-plane magnetization of the GaMnAs layer to p-type SET for out-of-plane magnetization orientation. Moreover, we demonstrate a set of reprogrammable Boolean gates and its logical complement at the single device level. Finally, we propose two sets of reconfigurable binary gates using combinations of two MSETs in a pull-down network.  相似文献   

20.
We report the experimental verification of noise-enhanced logic behaviour in an electronic analog of a synthetic genetic network, composed of two repressors and two constitutive promoters. We observe good agreement between circuit measurements and numerical prediction, with the circuit allowing for robust logic operations in an optimal window of noise. Namely, the input-output characteristics of a logic gate is reproduced faithfully under moderate noise, which is a manifestation of the phenomenon known as Logical Stochastic Resonance. The two dynamical variables in the system yield complementary logic behaviour simultaneously. The system is easily morphed from AND/NAND to OR/NOR logic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号