首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It has been proposed that metal cyanide complexes would have acted as effective prebiotic catalysts. Insoluble metal cyanide complexes could have concentrated biomonomers from the dilute prebiotic soup, facilitating certain prebiotic reactions. In the light of the above hypothesis, interaction of four ribonucleotides, namely 5′-AMP, 5′-GMP, 5′-CMP, and 5′-UMP with copper(II)- and cadmium(II) hexacyanocobaltate(III) has been studied. The interaction was found to be maximum at neutral pH. 5′-GMP showed greater interaction with both the metal hexacyanocobaltate(III) while copper(II) hexacyanocobaltate(III) showed greater uptake than cadmium(II) hexacyanocobaltate(III) for all the four ribonucleotides studied. Infrared spectral studies of ribonucleotides, metal hexacyanocobaltate(III) and ribonucleotide – metal hexacyanocobaltate(III) adducts indicated that the nitrogen base and phosphate moiety of ribonucleotides interact with outer divalent metal ion present in the lattice of metal hexacyanocobaltate(III).  相似文献   

2.
Manganese exists in different oxidation states under different environmental conditions with respect to redox potential. Various forms of manganese oxides, namely, Manganosite (MnO), Bixbyite (Mn2O3), Hausmannite (Mn3O4) and Pyrolusite (MnO2) were synthesized and their possible role in chemical evolution studied. Adsorption studies of ribose nucleotides (5′-AMP, 5′-GMP, 5′-CMP and 5′-UMP) on these manganese oxides at neutral pH, revealed a higher binding affinity to manganosite (MnO) compared to the other manganese oxides. That manganese oxides having a lower Mn-O ratio show higher binding affinity for the ribonucleotides indirectly implies that such oxides may have provided a surface onto which biomonomers could have been concentrated through selective adsorption. Purine nucleotides were adsorbed to a greater extent compared to the pyrimidine nucleotides. Adsorption data followed Langmuir adsorption isotherms, and X m and K L values were calculated. The nature of the interaction and mechanism was elucidated by infrared spectral studies conducted on the metal-oxide and ribonucleotide-metal-oxide adducts.  相似文献   

3.
A hypothesis is put forward that the variability of translation machinery is one of the key factors of evolutionary transformations of genetic material. It considers the module principle of the evolution theory based on the concepts of duplication and divergence of genetic material, which is required for origination of new genes and proteins with new functions. The duplication results in the appearance of pseudogenes, functionally inactive, but serving a material for creating new functions. The possible mechanisms changing the translation machinery have been considered, which may lead to sporadic pseudogene activation supplying natural selection with mutational changes accumulated by pseudogenes to assess their adaptive value. This takes into account not only potential possibilities of mutational variability of the translation machinery, but also the possibility of protein prionization: also considered is a prion mechanism of inheritance, which is intensely studied nowadays.  相似文献   

4.
5.
Fe(II)-and Co(II)-Fenton systems (FS) inactivated the lipoamide reductase activity but not the diaphorase activity of pig-heart lipoamide dehydrogenase (LADH). The Co(II) system was the more effective as LADH inhibitor. Phosphate ions enhanced the Fe(II)-FS activity. EDTA, DETAPAC, DL-histidine, DL-cysteine, glutathione, DL-dithiothreitol, DL-lipoamide, DL-thioctic acid, bathophenthroline, trypanothione and ATP, but not ADP or AMP, prevented LADH inactivation. Reduced disulfide compounds were more effective protectors than the parent compounds. Mg ions counteracted ATP protective action. Glutathione and DL-dithiothreitol partially restored the lipoamide dehydrogenase activity of the Fe(II)-FS-inhibited LADH. DL-histidine exerted a similar action on the Co(II)-FS-inhibited enzyme. Ethanol, mannitol and benzoate did not prevent LADH inactivation by the assayed Fenton systems and, accordingly, it is postulated that site-specific generated HO'radicals were responsible for LADH inactivation. With the Co(II)-FS, oxygen reactive species other than HO, might contribute to LADH inactivation.  相似文献   

6.
Interaction of cis-dichlorodiammineplatinum (II) with DNA   总被引:5,自引:0,他引:5  
  相似文献   

7.
The nature of interaction of palladium (II) with calf thymus DNA was studied using viscometry, ultraviolet, visible and infrared spectrophotometry and optical rotatory disperison and circular dichroism measurements. The results indicate that Pd(II) interacts with both the phosphate and bases of DNA. The ORD/CD data indicate that the binding of Pd(II) to DNA brings about considerable conformational changes in DNA.  相似文献   

8.
Allopurinol, a potent inhibitor of xanthine oxidase, is known to effectively protect the heart against damage in patients undergoing cardiac bypass surgery. There is still an ambiguity concerning the presence of xanthine oxidase in the human heart. Thus, the mechanism underlying the protective effect of allopurinol is unclear. Transition metal ions, such as iron and copper, can participate in single-electron reactions and mediate the formation of oxygen-derived free radicals. In this study the interaction between allopurinol and Cu(II) was investigated. Spectrophotometric investigation shows that allopurinol (0-0.8 mM) form a 1:1 complex with Cu(II) ions (0-0.8 mM) with a specific absorbance peak at 364 nm. Also, the rate constant (k) for the copper-catalyzed aerobic oxidation of ascorbate was markedly decreased in the presence of allopurinol (from 0.068 min-1 to 0.014min-1). Allopurinol substantially reduced the copper-mediated and ascorbate-driven DNA breakage. Spectrophotometric measurements did not indicate a specific interaction between iron ions and allopurinol. It is suggested that the beneficial effects of allopurinol during reperfusion of the heart could stem from its chelation of copper, yielding a complex with low redox activity.  相似文献   

9.
The concept of DNA as a simple repository of the gene information has changed in that of a polymorphic macromolecule, which plays a relevant part in the management of the complex biochemical transformations in living matter. As a consequence of the slight stereochemical differences between base pairs, the direction of the DNA double helix axis undergoes deterministic writhing. A useful representation of such sequence-dependent structural distortions is the curvature diagram. Here, it is reported as an evolution simulation obtained by extensive point mutations along a biologically important DNA tract. The curvature changes, consequence of the point mutations. were compared to the related experimental gel electrophoresis mobility. The curvature of most mutants decreases and the mobility increases accordingly, suggesting the curvature of that tract is genetically selected. Moreover, DNA images by scanning force microscopy, show evidence of a sequence-dependent adhesion of curved DNA tracts to inorganic crystal surfaces. In particular, mica shows a large affinity towards the TT-rich dinucleotide sequences. This suggests a possible mechanism of selection of curved DNA regions, characterized by AA.TT dinucleotides in phase with double-helical periodicity, in the very early evolution steps.  相似文献   

10.
11.
Reduction of Cd(II) on a dropping mercury electrode was used to study interaction of β-cyclodextrin with Cd(II) ions. It was found that Cd(II) forms Cdβ-CD(OH)22− hydroxy-complex with the anion of β-cyclodextrin in alkaline solutions (pH>11), the logarithm of stability constant being 10.4±0.1 (20 °C; I=1.0). The calculated value of the diffusion coefficient equal to 1.0×10−6 cm2/s shows a large size Cd(II) complex species formation in alkaline solutions containing β-CD.  相似文献   

12.
Metal complexes of aromatic/heterocyclic sulfonamides act as stronger inhibitors of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1) as compared to the uncomplexed sulfonamides from which they are derived. Here we report the synthesis and inhibition studies against the physiologically relevant isozymes CA I, CA II and CA IV, of a series of metal complexes (Co(II), Ni(II) and Cu(II) derivatives) of a Schiff-base ligand, obtained from sulfanilamide and salicylaldehyde. The best activity was observed for the Cu(II) and Co(II) complexes, against CA II and CA IV, for which inhibition constants in the range of 15-39 and 72-108 nM, respectively, were seen. The enhanced efficacy in inhibiting the enzyme may be due to a dual mechanism of action of the metal complexes, which interact with CA both by means of the sulfonamide moieties as well as the metal ions present in their molecule.  相似文献   

13.
14.
Polarographic and UV-spectrophotometric investigations of Pb(II) complex formation with beta-cyclodextrin have showed that the complexation of Pb(II) ions begins at pH >10. The formation of lead(II) 1:1 complex with the beta-cyclodextrin anion was observed at pH 10-11.5. The logarithm of the stability constant of this complex compound is 15.9+/-0.3 (20 degrees C, ionic strength 1.0), and the molar extinction coefficient value is ca. 5500 (lambda(max)=260 nm). With further increase in solution pH the Pb-beta-cyclodextrin complex decomposes and converts to Pb(OH)(2) or Pb(OH)(3)(-) hydroxy-complexes. This process occurs with a decrease in Pb(II) complexation degree. The latter result could be explained by a decrease in the beta-cyclodextrin anion activity. Neither Pb(OH)(2) nor Pb(OH)(3)(-) encapsulation into beta-CD cavity was observed.  相似文献   

15.
The interaction of antibiotic valinomycin with manganese (II) has been studied using circular dichroism, electron spin resonance and infrared techniques. Results show that Mn(II) forms complexes with valinomycin in both 2:1 (valinomycin-ion-valinomycin sandwich) and 1:1 (equimolar) stoichiometries. The 1:1 type observed here is very different from the well known K+-valinomycin bracelet conformation.  相似文献   

16.
The absorption spectra of Ni(II) bound to the core histone tetramer, (H3-H4)2, of chicken erythrocytes in 500 mM NaCl + 100 mM phosphate (pH 7.4) were recorded. A charge transfer band was seen at 317 nm, characteristic of a bond between Ni(II) and the sulfur atom of Cys-110 of histone H3. The conditional affinity constants for Ni(II) binding at pH 7.4 for low and high Ni(II) saturation (log Kc = 4.26 +/- 0.02 and 5.26 +/- 0.11 M-1, respectively) were calculated from spectrophotometric titrations with the use of this band. The binding of Ni(II) to (H3-H4)2 is proposed to involve the Cys-110 and His-113 of different H3 molecules within the tetramer. The competition between histones and low-molecular-weight chelators for Ni(II) in the cell nucleus, histidine and glutathione, is discussed on the basis of the above results, indicating that histone H3 is very likely to bind Ni(II) dissolved intracellularly from phagocytosed particulate nickel compounds.  相似文献   

17.
The interaction between hexacyanoferrate(III) and some copper complexes of different geometry was studied. In solution, and in the presence of coordination unsaturation of copper, 1:1 and 2:1 Cu:Fe adducts formed and were characterized by the absence of any copper electron paramagnetic resonance (EPR) signal. The magnetic susceptibility of the 1:1 adducts is essentially equal to the sum of those due to the parent compounds. Solid state studies confirm the solution data. In the light of the present results the absence of the EPR signal of [Fe(CN)6]3?-treated galactose oxidase is discussed.  相似文献   

18.
Interaction of l-lysine with Co(II) and Cu(II) ions has been studied using 1H- and 13C-NMR and solution absorption spectrometry. In l-lysine-Co2+ solution in D2O (100: 1 in concentration), coordination interaction of the α-amino and carboxyl groups with Co2+ occurs from the neutral to alkaline pD region, whereas no interaction of the ?-amino group was observed throughout the whole pD region. On the other hand, in l-lysine-Cu2+ solution, the ?-amino group also takes part in complexation in the higher pD region (pD≧10). Structural changes in complexation of l-lysine with the divalent cations along with pD variations in aqueous solution are discussed. Dissociation constants of the three functional groups were obtained by 1H-NMR chemical shifts; pKa1 = 2.2, pKa2 = 9.5 and pKa3 = 11.2.  相似文献   

19.
《Inorganica chimica acta》2001,312(1-2):151-162
The reaction of NiCl2·6H2O with 2,3-dihydroxybenzoic acid=L in n-PrOH:H2O=1:1 solution, produced the complex {[Ni5L5(OH)7]K4·13H2O}n. Its structure was investigated using elemental analysis, IR, UV–Vis, NMR and ES MS spectroscopy. The complex is unstable in aqueous solution and its decomposition scheme was proposed on the basis of NMR and ES MS spectra. This may contribute to the understanding of oxidative degradation of catecholic derivatives by Ni(II), as well as to other similar ones.  相似文献   

20.
Abstract

In spite of the significant role of iron ions-nucleotide complexes in living cells, these complexes have been studied only to a limited extent. Therefore, we fully characterized the ATP:Fe(II) complex including stoichiometry, geometry, stability constants, and dependence of Fe(II)-coordination on pH. A 1:1 stoichiometry was established for the ATP:Fe(II) complex based on volumetric titrations, UV and SEM/EDX measurements. The coordination sites of ferrous ions in the complex with ATP, established by 1H-, 31P-, and 15N-NMR, involve the adenine N7 as well as Pα, Pβ, and Pγ. Coordination sites remain the same within the pH range of 3.1–8.3. By applying fluorescence monitored Fe(II)-titration, we established a log K value of 5.13 for the Fe(ATP)2? complex, and 2.31 for the Fe(HATP)? complex. Ferrous complexes of ADP3? and AMP2? were less stable (log K 4.43 and 1.68, respectively). The proposed major structure for the Fe(ATP)2? complex is the ‘open’ structure. In the minor ‘closed’ structure N7 nitrogen is probably coordinated with Fe(II) through a bridging water molecule. The electronic and stereochemical requirements for Fe(II)-coordination with ATP4? were probed using a series of modified-phosphate or modified-adenine ATP analogues. We concluded that: Fe(II) coordinates solely with the phosphate-oxygen atom, and not with sulfur, amine, or borane in the cases of phosphate-modified analogues of ATP; a high electron density on N7 and an anti conformation of the adenine-nucleotide are required for enhanced stability of ATP analogues:Fe(II) complexes as compared to ATP complexes (up to more than 100-fold); there are no stereochemical preferences for Fe(II)-coordination with either Rp or Sp isomers of ATP-α-S or ATP-α-BH3 analogues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号