首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Titration of the specific calcium binding sites of sarcoplasmic reticulum ATPase was carried out by measurements of intrinsic fluorescence in the absence and in the presence of vanadate. The previous finding that vanadate binding to the enzyme inhibits high-affinity calcium binding was confirmed. In addition, taking advantage of the slow kinetics of vanadate association and dissociation from the enzyme, we were able to titrate the fraction of sites remaining in the high affinity state in the presence of non-saturating vanadate. These sites were demonstrated to retain the characteristics displayed by the high-affinity sites in the absence of vanadate, and yielded information consistent with a competitive inhibition between vanadate and calcium. Reversal of the vanadate effect and reconversion of the binding sites to the high-affinity state was demonstrated by adding appropriate calcium concentrations to the enzyme-vanadate complex, and showing the appearance of the intrinsic fluorescence signal which is indicative of calcium occupancy of the sites in the high-affinity state. Partial or total reversal of the vanadate effect was obtained with very slow kinetics following addition of micromolar calcium or, at a somewhat faster rate, following addition of millimolar calcium. The latter experiments yielded titration of the binding sites in the low-affinity state, with a dissociation constant of approx. 2 mM at neutral pH and 10 mM Mg2+. The time course of the fluorescence rise following addition of calcium in the presence of vanadate was more rapid in 'leaky' than in native sarcoplasmic reticulum vesicles, suggesting an intravesicular orientation of the low-affinity calcium sites involved in the reversal of the vanadate effect. Our observations provide experimental support for the postulated mechanism of high- and low-affinity interconversion of the ATPase calcium binding sites, and its dependence on the occupancy of the phosphorylation site by vanadate.  相似文献   

2.
The ability of a sudden increase in pH to initiate a release of calcium from isolated skeletal and cardiac muscle sarcoplasmic reticulum following calcium accumulation in the absence of a precipitating anion (calcium binding) is described. In skeletal sarcoplasmic reticulum a sudden increase in pH caused a rapid release of accumulated calcium. In cardiac sarcoplasmic reticulum a sudden increase in pH before the calcium binding process was complete caused the release of a small amount of calcium at a relatively slow rate. A sudden change in pH after the completion of calcium binding failed to trigger a release of calcium. The effect of pH on oxalate supported calcium uptake and on unidirectional calcium efflux rate by cardiac sarcoplasmic reticulum was also studied. Both the rate of calcium uptake and of unidirectional calcium efflux increased as the pH was raised from 6.4 to 7.2, reflecting an increased permeability of the sarcoplasmic reticulum membrane to calcium. These results indicate that in cardiac muscle a sudden increase in pH is unlikely to be the in vivo signal for calcium release from the sarcoplasmic reticulum. However, the effect of pH on calcium uptake and efflux by cardiac sarcoplasmic reticulum may contribute to the negative inotropic effect of an acidosis on the heart.  相似文献   

3.
Addition of sodium fluoride in the millimolar concentration range to a solution containing the sarcoplasmic reticulum CaATPase undergoing turnover in its vesicular or nonionic detergent-solubilized forms produced a slow (time range of minutes) complete loss of enzymatic activity. In the presence of magnesium and the absence of calcium, similar results were obtained under nonturnover conditions. Time courses were adequately fit by a function corresponding to a monophasic transformation with a pseudo first order rate constant kobs. In the absence of Mg2+ (EDTA present) no inhibition developed; kobs depended hyperbolically on the Mg2+ concentration with the half maximal effect occurring near 4 mM. The fluoride concentration dependence of kobs showed no evidence of approaching saturation (highest [F-] used was 40 mM) and corresponded to a rate law which was approximately second-order with respect to fluoride. A number of ligands known to bind to the CaATPase were found to decrease kobs. Calcium prevented onset of fluoride inhibition with a midpoint in the micromolar range, implying an effect due to binding at the high affinity transport sites. ATP also protected with a midpoint in the micromolar range, consistent with an effect caused by active site binding of the nucleotide; protection was only partial, suggesting the ATPase can bind fluoride and ATP simultaneously. Prevention of fluoride inhibition by Pi occurred with a [Pi]1/2 of 12 mM at pH 6.5, a concentration similar to that which produces active site phosphorylation. Finally, protection by orthovanadate was found to be competitive and have a midpoint of 5 microM. These results point to an effect exerted at or near the phosphorylation site. The value of kobs increased from essentially zero above pH 8 to a plateau below pH 6; the transition had a midpoint near pH 7.2. Inhibition persisted after removal (with EGTA present) of unbound fluoride by dialysis. Reversal of fluoride inhibition was very slow, with a t1/2 of 16 h at 37 degrees C. These results suggest that fluoride behaves like a slow, tight-binding inhibitor of the ATPase and that the resulting complex is a stable transition (or intermediate) state analog. Plausible molecular bases for our results are that fluoride acts at the phosphorylation site as an analog of Pi or of hydroxide, which may be considered a substrate in the normal hydrolysis of the phosphorylated enzyme. A role for aluminum was ruled out after finding that the addition of EGTA to 10 mM or aluminum sulfate to 0.2 mM or deferoxamine to 0.5 mM produced no significant change in kobs.  相似文献   

4.
Nucleotide binding to sarcoplasmic reticulum vesicles was investigated in the absence of calcium using both filtration and fluorescence measurements. Filtration assays of binding of radioactive nucleotides at concentrations up to 0.1 mM gave a stoichiometry of one ATP-binding site/sarcoplasmic reticulum ATPase molecule. When measured in the presence of calcium under otherwise similar conditions, ATPase velocity rose 4-8-fold (depending on pH and magnesium concentration) when the ATP concentration was increased from 1 microM to 0.1 mM. Binding of ATP and ADP enhanced the intrinsic fluorescence of sarcoplasmic reticulum ATPase, but AMP and adenosine did not affect it. Both filtration and fluorescence measurements showed that binding of metal-free ATP is independent of pH (Kd = 20-25 microM) but that the presence of magnesium induces pH dependence of the binding of the Mg.ATP complex (Kd = 10 microM at pH 6.0 and 1.5 microM at pH 8.0). Binding of metal-free ADP was pH-dependent but was not affected by magnesium. High magnesium concentrations inhibited nucleotide binding. These results suggest that ATP interacts with two different domains of Ca-ATPase that form the catalytic site. The first domain may bind the adenine moiety of the substrate, and the pH dependence of ADP binding suggests the participation of His683 in this region. The second domain of the catalytic site may bind the gamma-phosphate and the magnesium ion of the Mg.ATP complex and constitute the locus of the electrostatic interactions between the substrate and the enzyme.  相似文献   

5.
The sarcoplasmic reticulum Ca2(+)-ATPase of skeletal muscle has two high affinity calcium sites, one of fast access ("f" site) and one of slow access ("s" site). In addition to Ca2+ these sites are able to interact with other cations like Mg2+ or K+. We have studied with a stopped-flow method the modifications produced by Mg2+ and K+ on the kinetics of the intrinsic fluorescence changes produced by Ca2+ binding to and dissociation from the Ca2(+)-ATPase of sarcoplasmic reticulum. The presence of Mg2+ ions (K1/2 = 0.5 mM at pH 7.2) leads to the appearance of a rapid phase in the Ca2+ binding, which represents half of the signal amplitude at optimal Mg2+. The presence of K+ greatly accelerates both the Ca2+ binding and the Ca2+ dissociation reactions, giving, respectively, a 4- and 8-fold increase of the rate constant of the induced fluorescence change. K+ ions also increase the rate of the 45Ca/40Ca exchange reaction at the s site measured by rapid filtration. These results lead us to build up a model for the Ca2(+)-binding mechanism of the sarcoplasmic reticulum Ca2(+)-ATPase in which Mg2+ and K+ participate at particular steps of the reaction. Moreover, we propose that, in the absence of Ca2+, this enzyme may be the pathway for monovalent ion fluxes across the sarcoplasmic reticulum membrane.  相似文献   

6.
In the absence of calcium, interaction of magnesium with SR-ATPase induced a blue shift in intrinsic fluorescence emission. This Mg2+-induced fluorescence change was pH-dependent and an apparent Mg dissociation constant of 5 mM was found at pH 7. Equilibrium studies showed that magnesium competes for the high affinity Ca2+ binding sites and stopped flow measurements of the transient kinetics indicated a multistep interaction between magnesium and the calcium pump. These results suggest that magnesium drives the sarcoplasmic reticulum atpase toward an E.Mg species which might be a dead-end complex.  相似文献   

7.
Cardiac sarcoplasmic reticulum contains an endogenous calcium-calmodulin-dependent protein kinase and a 22,000-Da substrate, phospholamban. This kinase is half-maximally activated (EC50) by 3.8 +/- 0.3 microM calcium and is absolutely dependent on exogenous calmodulin (EC50 = 49 nM). To determine the effect of this phosphorylation on calcium transport, sarcoplasmic reticulum vesicles (0.5 mg/ml) were preincubated under conditions for optimal phosphorylation (50 mM potassium phosphate, pH 7.0, 10 mM MgCl2, 0.5 mM EGTA, 0.478 mM CACl2, 0.1 microM calmodulin, 0.5 mM ATP). Control sarcoplasmic reticulum was preincubated under identical conditions but in the absence of ATP to avoid phosphorylation. Both control and phosphorylated vesicles were centrifuged and resuspended in 0.3 M sucrose, 20 mM Tris-HCl, 100 mM KCl, pH 7.0, to remove calmodulin and subsequently assayed for calcium (45Ca) transport in the presence of 2.5 mM Tris-oxalate. Phosphorylation of sarcoplasmic reticulum vesicles by calcium-calmodulin-dependent protein kinase resulted in a significant increase (2- to 4-fold) in the rate of calcium transport at low calcium concentrations (less than 3 microM), while calcium transport was minimally affected at higher calcium. Hill coefficients (n) derived from Hill plots of transport data showed no difference between control and phosphorylated sarcoplasmic reticulum (n = 2.0), indicating that phosphorylation does not alter the cooperativity between calcium sites on the calcium pump. The EC50 for calcium activation of calcium transport by control vesicles was 0.86 +/- 0.1 microM calcium, and phosphorylation of phospholamban decreased this value to 0.61 +/- 0.07 microM calcium (n = 7, p less than 0.028), indicating an increase in the apparent affinity for calcium upon phosphorylation. These results were found to be specific for calcium-calmodulin-dependent phosphorylation of phospholamban. Control experiments on the effects of the reactants used in the phosphorylation assay and subsequent centrifugation of sarcoplasmic reticulum showed no alteration of the rate of calcium transport. Therefore, the calcium pump in cardiac sarcoplasmic reticulum appears to be regulated by an endogenous calcium-calmodulin-dependent protein kinase, and this may provide an important regulatory mechanism for the myocardium.  相似文献   

8.
Calcium loading of skeletal muscle sarcoplasmic reticulum performed passively by incubation with high calcium concentrations (0.5--15 mM) on ice gives calcium loads of 50--60 nmol/mg sarcoplasmic reticulum protein. This accumulated calcium is not released by EGTA [ethyleneglycol bis-(2-aminoethyl)-N,N,N',N'-tetraacetic acid], but almost completely released by ionophore X-537A plus EGTA or phospholipase A plus EGTA treatment and is therefore assumed to be inside the sarcoplasmic reticulum. This calcium is distributed in one saturable and one non-saturable calcium compartment, as derived from the dependence of the calcium load on the calcium concentration in the medium. These compartments are assigned to bound and ionized calcium inside the sarcoplasmic reticulum, respectively. Maximum calcium binding under these conditions was 33 nmol/mg protein with an apparent half-saturation constant of 5,8 nmol/mg free calcium inside, or between 1.2 and 0.6 mM free calcium inside, assuming an average vesicular water space of 5 or 10 microliter/mg protein, respectively. Calcium-dependent phosphorylation of sarcoplasmic reticulum calcium-transport ATPase from orthophosphate depends on the square of free calcium inside, whilst inhibition of phosphorylation depends on the square of free calcium in the medium. Calcium-dependent phosphorylation appears to be determined by the free calcium concentrations inside or outside allowing calcium binding to the ATPase according to the two classes of calcium binding constants for low affinity calcium binding or high affinity calcium binding, respectively. It is further suggested that the saturation of the low-affinity calcium-binding sites of the ATPase facing the inside of the sarcoplasmic reticulum membrane is responsible for the greater apparent orthophosphate and magnesium affinity in calcium-dependent phosphorylation than in calcium-independent phosphorylation from orthophosphate. Maximum calcium-dependent phosphoprotein formation at 20 degrees C and pH 7.0 is about 4 nmol/mg sarcoplasmic reticulum protein.  相似文献   

9.
Calcium bound to the sarcoplasmic reticulum Ca2+ -ATPase was removed by chelating free calcium ion with EGTA. The kinetic calcium binding reaction to the calcium-unbound ATPase was studied by varying the pH (6.0-8.8) and temperature (0-20 degrees C) at a saturating concentration of 50-100 microM [Ca2+]. At pH 6.0 and 0 degrees C, calcium sites of the enzyme at a rate of t1/2 approximately 10 s. By increasing the pH from 6.0 to 8.8, about half of the total calcium sites were converted from a slow binding state to a rapid binding state (less than 2s). The maximum level was reached at about pH 7.4, and the midpoint of the conversion was observed at about pH 6.7. On the other hand, the slow binding reaction to the other sites was not significantly affected by the pH increase. At pH 7.0 and 20 degrees C, about 90% of the total calcium sites rapidly (less than 2s) bound calcium. The present results suggest that pH and temperature resolve the kinetics of two pools of calcium bound to the Ca2+-ATPase.  相似文献   

10.
The aim of the present study was to test simple reaction sequences which describe calcium-independent plus calcium-dependent phosphorylation of sarcoplasmic reticulum transport. ATPase by orthophosphate including the function of magnesium in phosphoenzyme formation. The reaction schemes considered were based on the reaction sequence for calcium-independent phosphorylation proposed previously; namely that the transport enzyme (E) forms a ternary complex (Mg . E . Pi), by random binding of free magnesium and free orthophosphate, which is in equilibrium with the magnesium-phosphoenzyme (Mg . E-P). Phosphorylation, performed at pH 7.0 20 degrees C and a constant free orthophosphate concentration using sarcoplasmic reticulum vesicles either unloaded or loaded passively with calcium in the presence of 5 mM or 40 mM CaCl2, resulted in a gradual decrease in the apparent magnesium half-saturation constant and an increase in maximum phosphoprotein formation with increasing calcium loads. When phosphorylation of sarcoplasmic reticulum vesicles preloaded in the presence of 5 mM CaCl2 was performed at a constant free magnesium concentration, a decrease in the apparent orthophosphate half-saturation constant and an increase in maximum phosphoprotein formation was observed as compared with vesicles from which calcium inside has been removed by ionophore X-537A plus EGTA treatment; however, both parameters remained unchanged by increasing free magnesium from 20 mM to 30 mM. When phosphorylation of sarcoplasmic reticulum vesicles passively loaded with calcium in the presence of 40 mM CaCl2, at which the saturation of the low-affinity calcium binding sites of the ATPase is presumably near maximum, was performed at increasing concentrations of free orthophosphate, there was a parallel shift of phosphoprotein formation as a function of free magnesium and vice versa, with no change in the maximum phosphoenzyme formation. Comparison of the experimental data with the pattern of phosphoprotein formation predicted from model equations for various theoretical possible reaction sequences suggests that phosphoenzyme formation from orthophosphate possesses the following features. Firstly, calcium present at the inside of the sarcoplasmic reticulum membrane binds to the free enzyme and in sequential order to E . Mg . Pi or Mg . E-P or to both, but neither to E. Mg nor to E . Pi. Secondly, calcium-independent and calcium-dependent phosphoproteins are magnesium-phosphoenzymes. Calcium-dependent phosphoenzyme is a magnesium-calcium-enzyme phosphate complex with 1 magnesium, 2 calciums and 1 orthophosphate (the last covalently) bound to the enzyme [Mg . E-P . (Cai)2], and not a 'calcium-phosphoprotein' without bound magnesium.  相似文献   

11.
Calcium release from high and low-affinity calcium-binding sites of intact bovine brain calmodulin (CaM) and from the tryptic fragment 78-148, purified by high-pressure liquid chromatography, containing only the high-affinity calcium-binding sites, was determined by fluorescence stopped-flow with 2-p-toluidinylnaphthalene sulfonate (TNS). The tryptic fragments 1-77 and 78-148 each contain a calcium-dependent TNS-binding site, as shown by the calcium-dependent increase in TNS fluorescence. The rate of the monophasic fluorescence decrease in endogenous tyrosine on calcium dissociation from intact calcium-saturated calmodulin (kobs 10.8 s-1 and 3.2 s-1 at 25 degrees C and 10 degrees C respectively) as well as the rate of equivalent slow phase of the biphasic decrease in TNS fluorescence (kobsslow 10.6 s-1 and 3.0 s-1 at 25 degrees C and 10 degrees C respectively) and the rate of the solely monophasic decrease in TNS fluorescence, obtained with fragment 78-148 (kobs 10.7 s-1 and 3.5 s-1 at 25 degrees C and 10 degrees C respectively), were identical, indicating that the rate of the conformational change associated with calcium release from the high-affinity calcium-binding sites on the C-terminal half of calmodulin is not influenced by the N-terminal half of the molecule. The fast phase of the biphasic decrease of TNS fluorescence, observed by the N-terminal half of the molecule. The fast phase of the biphasic decrease of TNS fluorescence, observed with intact calmodulin only (kobsfast 280 s-1 at 10 degrees C) but not with fragment 78-148, is most probably due to the conformational change associated with calcium release from low-affinity sites on the N-terminal half. The calmodulin fragments 1-77 and 78-148 neither activated calcium/calmodulin-dependent protein kinase of cardiac sarcoplasmic reticulum nor inhibited calmodulin-dependent activation at a concentration approximately 1000-fold greater (5 microM) than that of the calmodulin required for half-maximum activation (5.9 nM at 0.8 mM Ca2+ and 5 mM Mg2+) of calmodulin-dependent phosphoester formation.  相似文献   

12.
J Myung  W P Jencks 《FEBS letters》1991,278(1):35-37
The E-E* model for calcium pumping by the CaATPase of sarcoplasmic reticulum includes two distinct conformational states of the enzyme, E and E*. Exterior Ca2+ binds only to E and interior Ca2+ binds only to E*. Therefore, it is expected that there will be competition between the binding of calcium to the unphosphorylated enzyme from the two sides of the membrane. The equilibrium concentration of cECa2, the enzyme with Ca2+ bound at the exterior site, was measured at different Ca2+ concentrations with empty sarcoplasmic reticulum vesicles (SRV) and with SRV loaded with 40 mM Ca2+ by reaction with 0.5 mM [gamma-32P]ATP plus 20 mM EGTA for 13 ms (100 mM KCl, 5 mM MgSO4, 40 mM Mops/KOH, pH 7.0, 25 degrees C). The sigmoidal dependence on free exterior calcium concentration of the concentration of cECa2, measured as [32P]phosphoenzyme, is identical with empty and loaded SRV, within experimental error. The value of K0.5 is 2.8 microM, and the Hill coefficient is 2. This result shows that there is no competition between binding of Ca2+ to the outside and the inside of the membrane. This is consistent with a model in which the vectorial specificity for calcium binding is controlled by the chemical state of the enzyme, rather than a simple conformational change. It is concluded that there are not two interconverting forms of the free enzyme, E and E*, instead the vectorial specificity for binding and dissociation of Ca2+ is determined by the state of phosphorylation of the CaATPase.  相似文献   

13.
The rise of intrinsic fluorescence due to calcium binding to sarcoplasmic reticulum ATPase occurs with a kobs of approximately 2 s-1 at pH 6.0, which is much lower than that observed at neutral pH. This is consistent with a H+-Ca2+ competition for the high-affinity sites. An accelerating effect of ATP on the calcium-induced transition can be clearly demonstrated at that pH. Nonhydrolyzable nucleotides, such as AMP-PNP, do not elicit the same response. Acetylphosphate also accelerates the calcium-induced fluorescence rise, demonstrating that this effect is limited to substrates that are able to form the phosphorylated enzyme intermediate. This effect, which is attributed to occupancy of the phosphorylation domain of the catalytic site, is distinct from the known secondary activation of enzyme turnover which is produced by ATP and by inactive nucleotide analogs, but not by acetylphosphate.  相似文献   

14.
Slow dissociation of ATP from the calcium ATPase   总被引:1,自引:0,他引:1  
The acyl-phosphate intermediate of the sarcoplasmic reticulum calcium ATPase reaction, formed in a brief incubation of vesicular enzyme with 5 microM [gamma-32P]ATP and calcium, reacts biphasically with added ADP (pH 7.0, 25 degrees C, 100 mM KCl, 5 mM MgSO4). Both the burst size and the rate constant for the slow phase increase with increasing ADP concentration in the way that is expected if the burst represents very rapid formation of an equilibrium amount of enzyme-bound ATP and the slow phase represents rate-limiting dissociation of ATP. Also consistent with this interpretation are the slow labeling of phosphoenzyme under conditions in which unlabeled ATP must dissociate first and the observation of a burst of ATP formation on ADP addition to phosphoenzyme. Values of the equilibrium constants for ADP dissociation from phosphoenzyme (0.75 mM), for ATP formation on the enzyme (2.3), and for the ATP dissociation rate constant (37 s-1) were obtained from a quantitative analysis of the data.  相似文献   

15.
Phosphorylation of the calcium-transport ATPase of skeletal muscle sarcoplasmic reticulum by inorganic phosphate was investigated in the presence or absence of a calcium gradient. The maximum phosphoprotein formation in the presence of a calcium gradient at 20 degrees C and pH 7.0 is approximately 4 nmol/mg sarcoplasmic reticulum protein, but only between 2.4 and 2.8 nmol/mg protein in the absence of a calcium gradient, using Ionophore X-537 A or phospholipase-A-treated sarcoplasmic reticulum vesicles. Maximum phosphoprotein formation independent of calcium gradient at 20 degrees C and pH 6.2 is in the range of 3.6--4 nmol/mg protein. Half-maximum phosphoprotein formation dependent on calcium gradient was achieved with 0.1--0.2 mM free orthophosphate at 10 mM free magnesium or at 0.1--0.2 mM free magnesium at 10 mM free orthophosphate. Phosphoprotein formation independent of calcium gradient is in accordance with a model which assumes, firstly, the formation of a ternary complex of the ATPase protein with orthophosphate and magnesium (E . Pi . Mg) in equilibrium with the phosphoprotein (E-Pi . Mg) and, secondly, an interdependence of both ions in the formation of the ternary complex. The apparent equilibrium constant was 0.6 and the apparent dissociation constants KMg, KMg', KPi and KPi' were 8.8, 1.9, 7.2 and 1.5 mM respectively, assuming a total concentration of the phosphorylation site per enzyme of 7 nmol/mg protein.  相似文献   

16.
We investigated the kinetics of calcium dissociation from its high-affinity transport sites on sarcoplasmic reticulum Ca2(+)-ATPase by combining fast filtration with stopped-flow fluorescence measurements. At pH 6 and 20 degrees C, in the absence of potassium and in the presence of 20 mM MgCl2, isotopic exchange of bound calcium exhibited biphasic kinetics, with two phases of equal amplitude, regardless of the initial extent of binding site saturation. The rapidly exchangeable site, whose occupancy by calcium controlled the rate constant of the slow phase, had an apparent affinity for calcium of about 3-6 microM. A similar high affinity was also deduced from measurements of the calcium dependence of the rate constant for ATPase fluorescence changes. This affinity was higher than the overall affinity for calcium deduced from the equilibrium binding measurements (dissociation constant of 15-20 microM); this was consistent with the occurrence of cooperativity (Hill coefficient of 1.6-1.8). The drop in intrinsic fluorescence observed upon chelation of calcium was always slightly faster than the dissociation of calcium itself, although the rates for both this drop in fluorescence and calcium dissociation varied slightly from one preparation to the other. This fluorescence drop was therefore mainly due to dissociation of the bound ions, not to slow transconformation of the ATPase. Dissociation of the two bound calcium ions in a medium containing EGTA exhibited monophasic kinetics in the presence of a calcium ionophore, with a rate constant about half that of the fast phase of isotopic exchange. This particular pattern was observed over a wide range of experimental conditions, including the presence of KCl, dimethyl sulfoxide, 4-nonylphenol, or a nucleotide analogue, at pH 6 or 7, and at various temperatures. The kinetics of calcium dissociation under the above various conditions were not correlated with the ATPase affinity for calcium deduced from equilibrium measurements under the same conditions. These results are consistent with sequential dissociation of calcium from a narrow binding pocket inside which a single calcium ion can move fairly easily. Escape of calcium might be controlled by a structural compartment acting as a gate.  相似文献   

17.
Cobalt ion inhibits the Ca2+ + Mg2(+)-ATPase activity of sealed sarcoplasmic reticulum vesicles, of solubilized membranes and of the purified enzyme. To use Co2+ appropriately as a spectroscopic ruler to map functional sites of the Ca2+ + Mg2(+)-ATPase, we have carried out studies to obtain the kinetic parameters needed to define the experimental conditions to conduct the fluorimetric studies. 1. The apparent K0.5 values of inhibition of this ATPase are 1.4 mM, 4.8 mM and 9.5 mM total Co2+ at pH 8.0, 7.0 and 6.0, respectively. The inhibition by Co2+ is likely to be due to free Co2+ binding to the enzyme. Millimolar Ca2+ can fully reverse this inhibition, and also reverses the quenching of the fluorescence of fluorescein-labeled sarcoplasmic reticulum membranes due to Co2+ binding to the Ca2+ + Mg2(+)-ATPase. Therefore, we conclude that Co2+ interacts with Ca2+ binding sites. 2. Co2+.ATP can be used as a substrate by this enzyme with Vmax of 2.4 +/- 0.2 mumol ATP hydrolyzed min-1 (mg protein)-1 at 20-22 degrees C and pH 8.0, and with a K0.5 of 0.4-0.5 mM. 3. Co2+ partially quenches, about 10 +/- 2%, the fluorescence of fluorescein-labeled sarcoplasmic reticulum Ca2+ + Mg2(+)-ATPase upon binding to this enzyme at pH 8.0. From the fluorescence data we have estimated an average distance between Co2+ and fluorescein in the ATPase of 1.1-1.8 nm or 1.3-2.1 nm for one or two equidistant Co2+ binding sites, respectively. 4. Co2+.ATP quenches about 20-25% of the fluorescence of fluorescein-labeled Ca2+ + Mg2(+)-ATPase, from which we obtain a distance of 1.1-1.9 nm between Co2+ and fluorescein located at neighbouring catalytic sites.  相似文献   

18.
Calcium efflux from sarcoplasmic reticulum vesicles that have been equilibrated with 1-100 mM CaCl2 in the absence of ATP has two apparently first order components. The initial calcium content of each component increases with the total Ca content of the sarcoplasmic reticulum, which reaches 5, 24, and 80 nmol/mg of protein after equilibration with 1, 10, and 100 mM CaCl2, respectively. Initial rates of Ca efflux into a medium containing 10 mM EGTA increase in proportion to Ca in the loading medium up to 20 mM. Above 20 mM, efflux from the slow component clearly saturates, whereas efflux from the fast component continues to increase. The rate constant for the smaller, faster component to efflux (k congruent to 0.5 min-1) is not affected by changing the concentration of Ca either inside or outside the vesicles. The rate constant of the larger, slower component (k congruent to 0.05 min-1) is also unaffected by changes in internal Ca concentration. However, external [Ca2+] diminishes the rate constant of the slow component 6-10-fold. Inhibition by external [Ca2+] is characterized by cooperative interaction between two sites with an apparent Kd of 5.3 X 10(-6) M. The two components may represent two populations of sarcoplasmic reticulum vesicles that differ 10-fold in passive permeability to Ca when external [Ca2+] is less than 10(-6) M, and 60-100-fold when external [Ca2+] is greater than 10(-5) M. The passive permeability in one of these populations seems to be regulated by external, high affinity Ca binding sites.  相似文献   

19.
Dihydrofolate reductase from wild-type Escherichia coli (WT-ECDHFR) and from a mutant enzyme in which aspartate 27 is replaced by asparagine have been compared with respect to the binding of the inhibitor methotrexate (MTX). Although the Asp27----Asn substitution causes only small changes in the association rate constants (kon) for the formation of binary and ternary (with NADPH) complexes, the dissociation rate constants for these complexes (koff) are increased for the mutant enzyme by factors of about 5- and 100-fold, respectively, at pH 7.65. In binding experiments, the initial MTX binary and ternary complexes of the mutant enzyme were found to undergo relatively rapid isomerization (kobs approximately 17 and 145 s-1, respectively). Although such rapid isomerization of complexes of WT-ECDHFR could not be detected in binding experiments, evidence of a slow isomerization (k = 4 x 10(-3) s-1) of the ternary WT-ECDHFR.MTX.NADPH complex was obtained from progress of inhibition experiments. This slow isomerization increases binding of MTX to WT-ECDHFR only 2.4-fold (much less than previously estimated). From presently available data, we could not determine the contribution of the rapid isomerization of complexes to the binding of MTX to the mutant enzyme. The Asp27----Asn substitution increases the overall dissociation constant (KD) 9-fold for the binary complex and 85-fold for the ternary complex. When it is also taken into account that a proton ultimately derived from the solvent must be added to MTX bound to the WT enzyme, but not to MTX bound to the mutant enzyme, these increases in KD for the mutant enzyme correspond to decreases in binding energy for MTX of 3.9 and 5.2 kcal/mol at pH 7.65 for the binary and ternary complexes, respectively.  相似文献   

20.
The effect of trifluoroperazine on the sarcoplasmic reticulum membrane   总被引:1,自引:0,他引:1  
The inhibitory effect of trifluoroperazine (25-200 microM) on the sarcoplasmic reticulum calcium pump was studied in sarcoplasmic reticulum vesicles isolated from skeletal muscle. It was found that the lowest effective concentrations of trifluoroperazine (10 microM) displaces the Ca2+ dependence of sarcoplasmic reticulum ATPase to higher Ca2+ concentrations. Higher trifluoroperazine concentrations (100 microM) inhibit the enzyme even at saturating Ca2+. If trifluoroperazine is added to vesicles filled with calcium in the presence of ATP, inhibition of the catalytic cycle is accompanied by rapid release of accumulated calcium. ATPase inhibition and calcium release are produced by identical concentrations of trifluoroperazine and, most likely, by the same enzyme perturbation. These effects are related to partition of trifluoroperazine ino the sarcoplasmic reticulum membrane, and consequent alteration of the enzyme assembly within the membrane structure, and of the bilayer surface properties. The effect of trifluoroperazine was also studied on dissociated ('chemically skinned') cardiac cells undergoing phasic contractile activity which is totally dependent on calcium uptake and release by sarcoplasmic reticulum, and is not influenced by inhibitors of slow calcium channels. It was found that trifluoroperazine interferes with calcium transport by sarcoplasmic reticulum in situ, as well as with the role of sarcoplasmic reticulum in contractile activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号