首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The small molecular weight heat shock protein HSP27 was recently shown to confer a stable thermoresistant phenotype when expressed constitutively in mammalian cells after structural gene transfection. These results suggested that HSP27 may also play an important role in the development of thermotolerance, the transient ability to survive otherwise lethal heat exposure after a mild heat shock. In Chinese hamster O23 cells increased thermoresistance is first detected at 2 h after a triggering treatment of 20 min at 44 degrees C, attains a maximum at 5 hours, and decays thereafter with a half-life of 10 h. We found that the development and decay of transient thermotolerance cannot be solely explained on the basis of changes in the cellular concentration of HSP27. The cellular HSP27 concentration is not increased appreciably at 2 h after heat shock and attains a maximum at 14 h. Similar results were obtained in the case of another heat shock protein, HSP70. HSP70 follows slightly faster kinetics of accumulation (peaks at 10 h) and decays much more rapidly (ti/2 = 4h) than HSP27 (t1/2 = 13h). HSP27 has 3 isoelectric variants A, B, and C of which B and C are phosphorylated. In cells maintained at normal temperature, HSP27A represents more than 90% of all HSP27. Shifting the cell culture temperature from 37 to 44 degrees C induces the incorporation of 32P into the more acidic B and C forms, a process that occurs very rapidly since the reduction in the concentration of the A form and a corresponding increase in the level of B and C is detectable by immunoblot analysis within 2.5 min at 44 degrees C. Analyses performed at various times during development and decay of transient thermotolerance revealed a close relationship between the effect of heat shock on HSP27 phosphorylation and cell ability to survive. For example, fully thermotolerant cells (5 h post-induction) are refractory to induction of HSP27 phosphorylation by a 20-min heat shock. The induction of HSP27 phosphorylation was also studied in a family of clonal cell lines of O23 cells that are thermoresistant as a result of the constitutive expression of a transfected human HSP27 gene. In these thermoresistant cells, phosphorylation of the endogenous hamster HSP27 is induced to a level comparable to that found in the thermosensitive parental cells. However, phosphorylation of the exogenous human protein, which represents more than 80% of total HSP27 in these cells, was much less induced.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We investigated the correlation between the development of acute thermotolerance and the phosphorylation, synthesis, and expression of the HSP28 family in murine L929 cells. Following heating at 43 degrees C for 30 min, thermotolerance developed rapidly in exponential-phase cells and reached its maximum 4-9 h after heat shock. Maximal thermal resistance was maintained for 24 h and then gradually decayed. However, heat-induced phosphorylation of HSP28 was not detected. Furthermore, HSP28 synthesis during incubation at 37 degrees C for 12 h following heat shock was not detected by [3H]-leucine labeling followed by two-dimensional polyacrylamide gel electrophoresis. In addition, Northern blots failed to demonstrate expression of the HSP28 gene. Unlike HSP28, the expression of constitutive and inducible HSP70 genes, along with the synthesis of their proteins, was observed during incubation at 37 degrees C after heat shock. These results demonstrate that HSP28 synthesis and its phosphorylation are not required to develop acute thermotolerance in L929 cells.  相似文献   

4.
5.
Phosphorylation of heat shock protein 27 (Hsp27) in human platelets by mitogen-activated protein kinase-activated protein kinase (MAPKAP) 2 is associated with signaling events involved in platelet aggregation and regulation of microfilament organization. We now show that Hsp27 is also phosphorylated by cGMP-dependent protein kinase (cGK), a signaling system important for the inhibition of platelet aggregation. Stimulation of washed platelets with 8-para-chlorophenylthio-cGMP, a cGK specific activator, resulted in a time-dependent phosphorylation of Hsp27. This is supported by the ability of cGK to phosphorylate Hsp27 in vitro to an extent comparable with the cGK-mediated phosphorylation of its established substrate vasodilator-stimulated phosphoprotein. Studies with Hsp27 mutants identified threonine 143 as a yet uncharacterized phosphorylation site in Hsp27 specifically targeted by cGK. To test the hypothesis that cGK could inhibit platelet aggregation by phosphorylating Hsp27 and interfering with the MAPKAP kinase phosphorylation of Hsp27, the known MAPKAP kinase 2-phosphorylation sites (Ser15, Ser78, and Ser82) as well as Thr143 were replaced by negatively charged amino acids, which are considered to mimic phosphate groups, and tested in actin polymerization experiments. Mimicry at the MAPKAP kinase 2 phosphorylation sites led to mutants with a stimulating effect on actin polymerization. Mutation of the cGK-specific site Thr143 alone had no effect on actin polymerization, but in the MAPKAP kinase 2 phosphorylation-mimicking mutant, this mutation reduced the stimulation of actin polymerization significantly. These data suggest that phosphorylation of Hsp27 and Hsp27-dependent regulation of actin microfilaments contribute to the inhibitory effects of cGK on platelet function.  相似文献   

6.
Lung edema during sepsis is triggered by formation of gaps between endothelial cells followed by macrophage infiltration. Endothelial gap formation has been proposed to involve changes in the structure of the actin filament cytoskeleton. Heat shock protein 27 (HSP27) is believed to modulate actin filament dynamics or structure, in a manner dependent on its phosphorylation status. We hypothesized that HSP27 may play a role in endothelial gap formation, by affecting actin dependent events in endothelial cells. As there has been no report concerning HSP27 in lung edema in vivo, we examined induction and phosphorylation of HSP27 in lung following LPS injection, as a model of sepsis. In lung, HSP27 mainly localized in capillary endothelial cells of the alveolus, and in smooth muscle cells of pulmonary arteries. HSP27 became significantly more phosphorylated at 3 h after LPS treatment, while the distribution of HSP27 remained unchanged. Pre-treatment with anti-TNFalpha antibody, which has been shown to reduce lung injury, blocked increases in HSP27 phosphorylation at 3 h. HSP27 phosphorylation was also increased in cultured rat pulmonary arterial endothelial cells (RPAEC) by treatment with TNFalpha, LPS, or H2O2. This phosphorylation was blocked by pre-treatment with SB203580, an inhibitor of the upstream kinase, p38 MAP kinase. Increased endothelial permeability caused by H2O2 in vitro was also blocked by SB203580. The amount of actin associated with HSP27 was reduced after treatment with LPS, or H2O2. In summary, HSP27 phosphorylation temporally correlated with LPS induced pathological endothelial cell gap formation in vivo and in a cell culture model system. This is the first report of increased HSP27 phosphorylation associated with pathological lung injury in an animal model of sepsis.  相似文献   

7.
Little is known about the pathogenesis of Entamoeba histolytica and how epithelial cells respond to the parasite. Herein, we characterized the interactions between E. histolytica and colonic epithelial cells and the role macrophages play in modulating epithelial cell responses. The human colonic epithelial cell lines Caco-2 and T84 were grown either as monoculture or co-cultured in transwell plates with differentiated human THP-1 macrophages for 24 h before stimulation with soluble amebic proteins (SAP). In naive epithelial cells, prolonged stimulation with SAP reduced the levels of heat shock protein (Hsp) 27 and 72. However in THP-1 conditioned intestinal epithelial cells SAP enhanced Hsp27 and Hsp72, which was dependent on the activation of ERK MAP kinase. Hsp synthesis induced by SAP conferred protection against oxidative and apoptotic injuries. Treatment with SAP inhibited NF-kappaB activation induced by interleukin-1beta; specifically, the NF-kappaB-DNA binding, nuclear translocation of p65 subunit, and phosphorylation of IkappaB-alpha were reduced. Gene silencing by small interfering RNA confirmed the role of Hsp27 in suppressing NF-kappaB activation at IkappaB kinase (IKK) level. By co-immunoprecipitation studies, we found that Hsp27 interacts with IKK-alpha and IKK-beta, and this association was increased in SAP-treated conditioned epithelial cells. Overexpression of wild type Hsp27 amplified the effects of SAP, whereas a phosphorylation-deficient mutant of Hsp27 abrogated SAP-induced NF-kappaB inhibition. In conditioned epithelial cells, Hsp27 was phosphorylated at serine 15 after prolonged exposure to SAP. This mechanism may explain the absence of colonic inflammation seen in the majority of individuals infected with E. histolytica.  相似文献   

8.
We investigated the effects of thrombin on the induction of heat shock proteins (HSP) 70 and 27, and the mechanism behind the induction in aortic smooth muscle A10 cells. Thrombin increased the level of HSP27 but had little effect on the level of HSP70. Thrombin stimulated the accumulation of HSP27 dose dependently between 0.01 and 1 U/ml and cycloheximide reduced the accumulation. Thrombin stimulated an increase in the level of HSP27 mRNA and actinomycin D suppressed the thrombin-increased mRNA level. Thrombin induced the phosphorylation of p38 mitogen-activated protein kinase (MAPK). The HSP27 accumulation by thrombin was reduced by SB-203580 and PD-169316 but not by SB-202474. SB-203580 and PD-169316 suppressed the thrombin-induced phosphorylation of p38 MAPK. SB-203580 reduced the thrombin-increased level of HSP27 mRNA. Dissociation of the aggregated HSP27 to the dissociated HSP27 was induced by thrombin. Dissociation was inhibited by SB-203580. Thrombin induced the phosphorylation of HSP27 and the phosphorylation was suppressed by SB-203580. These results indicate that thrombin stimulates not only the dissociation of HSP27 but also the induction of HSP27 via p38 MAPK activation in aortic smooth muscle cells.  相似文献   

9.
Jung JH  Park JH  Jee MH  Keum SJ  Cho MS  Yoon SK  Jang SK 《Journal of virology》2011,85(18):9359-9368
High-mobility group box 1 (HMGB1), an abundant nuclear protein that triggers host immune responses, is an endogenous danger signal involved in the pathogenesis of various infectious agents. However, its role in hepatitis C virus (HCV) infection is not known. Here, we show that HMGB1 protein is translocated from the nucleus to cytoplasm and subsequently is released into the extracellular milieu by HCV infection. Secreted HMGB1 triggers antiviral responses and blocks HCV infection, a mechanism that may limit HCV propagation in HCV patients. Secreted HMGB1 also may have a role in liver cirrhosis, which is a common comorbidity in HCV patients. Further investigations into the roles of HMGB1 in the diseases caused by HCV infection will shed light on and potentially help prevent these serious and prevalent HCV-related diseases.  相似文献   

10.
11.
Zhang L  Pang E  Loo RR  Rao J  Go VL  Loo JA  Lu QY 《Proteomics》2011,11(24):4638-4647
Pancreatic cancer is a deadly disease characterized by poor prognosis and patient survival. Green tea polyphenols have been shown to exhibit multiple antitumor activities in various cancers, but studies on the pancreatic cancer are very limited. To identify the cellular targets of green tea action, we exposed a green tea extract (GTE) to human pancreatic ductal adenocarcinoma HPAF-II cells and performed two-dimensional gel electrophoresis of the cell lysates. We identified 32 proteins with significantly altered expression levels. These proteins are involved in drug resistance, gene regulation, motility, detoxification and metabolism of cancer cells. In particular, we found GTE inhibited molecular chaperones heat-shock protein 90 (Hsp90), its mitochondrial localized homologue Hsp75 (tumor necrosis factor receptor-associated protein 1, or Trap1) and heat-shock protein 27 (Hsp27) concomitantly. Western blot analysis confirmed the inhibition of Hsp90, Hsp75 and Hsp27 by GTE, but increased phosphorylation of Ser78 of Hsp27. Furthermore, we showed that GTE inhibited Akt activation and the levels of mutant p53 protein, and induced apoptosis and growth suppression of the cells. Our study has identified multiple new molecular targets of GTE and provided further evidence on the anticancer activity of green tea in pancreatic cancer.  相似文献   

12.
We previously reported that p38 mitogen-activated protein (MAP) kinase plays a part in sphingosine 1-phosphate-stimulated heat shock protein 27 (HSP27) induction in osteoblast-like MC3T3-E1 cells. In the present study, we investigated whether phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) is involved in the induction of HSP27 in these cells. Sphingosine 1-phosphate time dependently induced the phosphorylation of Akt. Akt inhibitor, 1L-6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate, reduced the HSP27 induction stimulated by sphingosine 1-phosphate. The sphingosine 1-phosphate-induced phosphorylation of GSK-3beta was suppressed by Akt inhibitor. The sphingosine 1-phosphate-induced HSP27 levels were attenuated by LY294002 or wortmannin, PI3K inhibitors. Furthermore, LY294002 or Akt inhibitor did not affect the sphingosine 1-phosphate-induced phosphorylation of p38 MAP kinase and SB203580, a p38 MAP kinase inhibitor, had little effect on the phosphorylation of Akt. These results suggest that PI3K/Akt plays a part in the sphingosine 1-phosphate-stimulated induction of HSP27, maybe independently of p38 MAP kinase, in osteoblasts.  相似文献   

13.
14.
The spontaneous frequency of mutants resistant to growth inhibition by ouabain (OUAR mutants) was found to be about 5:10(-5) per viable cell in uncloned cultures of Chinese hamster V79-4 cells. In freshly-isolated clones or cultures started from a few cells this frequency was initially reduced to about 1.10(-6) in 1 mM ouabain. No increase in the frequency of OUAR mutants was found in cultures treated with gamma-rays despite exploration of such variables as radiation dose, ouabain concentration, post-treatment interval before selection, cell density in selective medium, and clonal state of the cells at the time of adding ouabain (in situ vs. respreading method). A similar negative result was found for accelerated helium ions, for which the mutagenic effectiveness per unit dose has been shown to be about 10 times higher than gamma-rays for the induction of thioguanine-resistant mutants in these cells. Some evidence was found for an interaction between cellular radiation damage and ouabain-resistance, which may lead to a reduction in the survival of OUAR mutants in irradiated populations, but this damage seemed insufficient to account for inability to detect radiation-induced OUAR mutants. Reproducibly large increases in the frequency of OUAR mutants were found in cultures treated with various concentrations of ethyl methanesulphonate (EMS) by respreading cells in 1 mM ouabain for up to 8 days after EMS treatment. The concentration-OUAR mutant induction curve was approximately linear with low EMS concentrations. Recent evidence is reviewed in support of the suggestion, made in earlier studies, that ionising radiation is unable to induce OUAR mutants because of the severity of the genetic damage it causes.  相似文献   

15.
16.
328 X-linked recessive lethal mutations induced in late spermatids by hycanthone methanesulfonate were tested for coverage by duplications that comprised, in total, about 24% of the euchromatic X chromosome; 78 lethals appeared to be covered. Crossover localization tests of a random sample of 38 non-covered lethals revealed 4 chromosomes carrying a lethal within a duplicated segment. Lethals localized to a particular region were crossed to reference deficiencies and single-locus mutations, and inter se, to ascertain their genetic extent. The proportion of multi-locus deletions among these 78 covered and 4 non-covered lethals was 3/48, 1/10 and 13/24 for the distal, medial and proximal regions, respectively. A storage period of 9 days did not noticeably influence these proportions. In the sample of 38 non-covered lethals, and among 17 of the covered single-site lethals, 4 cases of strong crossover suppression were detected. Comparison of these results with data obtained with other mutagens suggests that induction of multi-locus deletions, and possibly of other types of chromosome rearrangement, could in part depend on other mechanisms than those acting in the formation of translocations and chromosome loss. For the purpose of mutagen testing, these findings imply that, in Drosophila, results in the regular genetic tests for chromosome breakage events do not always accurately predict the capacity of a mutagen to induce multi-locus deletions. This is of importance since transmissible multi-locus deletions have been considered a significant source of genetic damage in man.  相似文献   

17.
An antiviral protein is released by mosquito cells persistently infected with Sindbis virus. Differences in both sensitivity to and production of this virus-specific activity were apparent in three independently produced Aedes albopictus cell lines. This activity inhibits total viral RNA synthesis in a time-dependent manner. The antiviral effect is maximally realized when cells are treated with the activity 48 h before infections. These data suggest that the antiviral activity induces an antiviral state in treated cells which prevents the formation or efficient function of viral RNA-synthesizing complexes.  相似文献   

18.
It has been reported that mumps virus protein V or the C-terminal Cys-rich region of protein V (Vsp) is associated with blocking of the interferon (IFN) signal transduction pathway through a decrease in STAT-1 production. The intracellular target of the V protein was investigated by using a two-hybrid screening system with Vsp as bait. Full-length V protein and Vsp were able to bind to RACK1, and the interaction did not require two WD domains, WD1 and WD2, in RACK1. A significant interaction between V protein and RACK1 was also demonstrated in cells persistently infected with mumps virus (FLMT cells), and the formation of the complex was not affected by treatment with IFN. On the other hand, in uninfected cells, STAT-1 was associated with the long form of the beta subunit of the alpha IFN receptor, and this association was mediated by the function of RACK1 as an adaptor protein. Immunoprecipitation and glutathione S-transferase pull-down experiments revealed that the association of RACK1 or mumps virus V protein with the IFN receptor was undetectable in mumps virus-infected cells. Furthermore, RACK1 interacted with mumps virus V protein with a higher affinity than STAT-1 did. Therefore, it is suggested that mumps virus V protein has the ability to interact strongly with RACK1 and consequently to bring about the disruption of the complex formed from STAT-1, RACK1, and the IFN receptor.  相似文献   

19.
Heat shock induces in cells the synthesis of specific proteins called heat shock proteins (HSPs) and a transient state of thermotolerance. The putative role of one of the HSPs, HSP27, as a protective molecule during thermal stress has been directly assessed by measuring the resistance to hyperthermia of Chinese hamster and mouse cells transfected with the human HSP27 gene contained in plasmid pHS2711. One- and two-dimensional gel electrophoresis of [3H]leucine- and [32P]orthophosphate-labeled proteins, coupled with immunological analysis using Ha27Ab and Hu27Ab, two rabbit antisera that specifically recognize the hamster and the human HSP27 protein respectively, were used to monitor expression and inducibility of the transfected and endogenous proteins. The human HSP27 gene cloned in pHS2711 is constitutively expressed in rodent cells, resulting in accumulation of the human HSP27 and all phosphorylated derivatives. No modification of the basal or heat-induced expression of endogenous HSPs is detected. The presence of additional HSP27 protein provides immediate protection against heat shock administered 48 h after transfection and confers a permanent thermoresistant phenotype to stable transfectant Chinese hamster and mouse cell lines. Mild heat treatment of the transfected cells results in an induction of the full complement of the endogenous heat shock proteins and a small increase in thermoresistance, but the level attained did not surpass that of heat-induced thermotolerant control cells. These results indicate that elevated levels of HSP27 is sufficient to give protection from thermal killing. It is concluded that HSP27 plays a major role in the increased thermal resistance acquired by cells after exposure to HSP inducers.  相似文献   

20.
Journal of Molecular Histology - Endocrine secretory granules (ESGs) are morphological characteristics of endocrine/neuroendocrine cells and store peptide hormones/neurotransmitters. ESGs contain...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号