首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The animal and the dorsal side of five embryos of Xenopus laevis were studied in detail from the 7th to the 13th cleavage by means of time-lapse cinematography. At each cleavage the regionally ordered sequence of blastomere divisions is visible in the films as a cleavage wave, propagating about three times slower in the dorsal than in the animal view. In the dorsal view the waves run in an animal-vegetal direction, initially with a left-to-right deviation and in later cleavages converging on the region of the future blastopore. The lengthening of cleavage cycles begins at cycle 8 on the dorsal side, just above the future blastopore. From cycle 9 to 11 nearly equal lengthening occurs in each cycle at all animal-vegetal levels. In general, cycles lengthen a little more in median than in lateral sectors and a little more in right than in left sectors. Cycle 12 is longest in the sector above the future blastopore and shortest in the animal region. The results show that the initial pattern of a regionally ordered sequence of cleavage cycles of equal duration changes into a pattern of cycles of different durations as a result of gradual cycle lengthening, starting in the region just above the future blastopore and spreading in animal direction. The results are compared with data on the cleavage cycles of isolated blastomeres, and the possible relation with the induction of the mesoendoderm occurring during the stages studied is discussed.  相似文献   

2.
Remote photography using various photo, movie or video devices has been employed in numerous studies in wildlife research during the last 50 years. Given the rapid advances in digital technologies, digital video and photo techniques are becoming more common in use, and publications that introduce a new method or equipment for video surveillance in wildlife research (and in ornithological studies particularly) are appearing almost every year. However, still no special guide to the great variety of equipment and methods is available, and the choice and use of suitable gear for scientific purposes may be difficult for non-specialists. In this paper, we review the most common surveillance techniques used in today’s nest studies, as well as the most essential properties of image recording equipment. We also describe the digital video recording technique, which we used for observations of raptor nests, and summarise our experience of its operation. As an example of the obtained data, we present the timing of prey deliveries of goshawks and common buzzards.  相似文献   

3.
《Reproductive biology》2019,19(2):127-132
In this retrospective study, patients undergoing ovarian stimulation were allocated into two groups (47 normal responders (NR) vs 47 low responders (LR)) according to the number of aspirated oocytes and their Anti-Müllerian hormone (AMH). 171 oocytes were retrieved from the LR group and 447 oocytes from the NR group. The oocytes were studied regarding the early embryo morphokinetic parameters and cleavage stage patterns after data extraction from our EmbryoScope database. The following parameters were recorded; time of PN fading (tPNf), time to two cells (t2), three cells (t3), four cells (t4), asynchrony in 2nd cell cycle (S2), fragmentation, multinucleation, direct cleavages from 1 to 3 cells, reversed cleavage, rolling and non-tetrahedral shape. Except of an indicative time difference in t3 (dif = 0.884; p-value < 0.046), the differences in timings of early cell divisions were not statistically significant when tPNf was used as a starting point and the analysis was adjusted for age. No statistically significant differences were observed for irregular cleavage patterns, multinucleation at 2-cell stage, fragmentation and non-tetrahedral shape rate at the 4-cell stage. However, the risk for multinucleation at 4-cell stage is significantly lower in low responders (OR = 0.342; p-value < 0.019). The groups did not differ regarding fertilization and cleavage rates as well as the number of embryos that fulfill the European Society of Human Reproduction and Embryology (ESHRE) criteria for top quality characteristics on Day 2. Embryos derived from patients with low ovarian response have similar morphokinetic characteristics and cleavage stage pattern as embryos from patients with normal ovarian response.  相似文献   

4.
Prolonged embryo culture is increasingly used as a way of improving pregnancy rates, especially in the context of single embryo transfer. So far, only a handful of studies examined the relation between implantation potential and time-lapse parameters extracted from later stages (morula and blastocyst) of embryo development. For this retrospective study all 285 single vitrified-thawed blastocyst transfers (SVBT) from all consecutive unselected patients whose fertilized oocytes were submitted to time-lapse monitoring (TLM) from a two-year cohort were analysed. Two different statistical models were created; a hierarchical one including the two strongest live birth (LB) predictors (t2 and texpB2) and a more complex model based on principal component analysis (PCA) and logistic regression methods. The first, four-category, hierarchical model effectively distinguished between blastocysts of increasing LB rates (8, 30, 40, 53%). For the second data-mining model quartiles of the created Sc parameter had increasing LB rates (12, 19, 40, 49%). AUC values were comparable for both models (0.723, 95CI%:0.66–0.79 versus 0.717, 95CI%:0.65–0.78). The combination of cleavage- and blastocyst-stage variables through hierarchical or data mining-based algorithms was used successfully to predict live birth. However, due to the lack of internal / external validation the predictive capacities of this model could differ largely in different datasets.  相似文献   

5.
A polyclonal antibody raised against v-Ha-ras p21 was purified and its specificity was checked on Ha-ras transformed cell lines. It was used to immunoprecipitate p21 from different Xenopus laevis cell types: brain cells, blood cells, and embryonic material. By one-dimensional Western blot analysis, we show that ras p21 is synthesized very early in oogenesis and accumulates throughout vitellogenesis. The ras p21 content, estimated to be 1.1 ng in the full-grown oocyte, remains constant during oocyte maturation and egg cleavage. Increase in the amount of ras p21 occurs at the beginning of neurulation. Two-dimensional Western blot patterns reveal the presence of multiple molecular forms of p21 in all Xenopus cell types studied. The numerous resolved polypeptides were ascribed to the expression of at least two different ras genes. Furthermore, specific charge modifications of the ras polypeptides are observed in brain, blood, and embryonic cells. During oogenesis and early embryonic development, differences in two-dimensional patterns mainly concern variations in the relative amounts of the different polypeptides. The results are discussed in relation to the well documented synthesis activities of the growing oocyte and of the early developing embryo.  相似文献   

6.
We have identified the RNA-binding protein Hermes in a screen for vegetally localized RNAs in Xenopus oocytes. The RNA localizes to the vegetal cortex through both the message transport organizer (METRO) and late pathways. Hermes mRNA and protein are both detected at the vegetal cortex of the oocyte; however, the protein is degraded within a several hour period during oocyte maturation. Injection of antisense morpholino oligonucleotides (HE-MO) against Hermes caused a precocious reduction in Hermes protein present during maturation and resulted in a phenotype characterized by cleavage defects in vegetal blastomeres. The phenotype can be partially rescued by injecting Hermes mRNA. These results demonstrate that the localized RNA-binding protein Hermes functions during oocyte maturation to regulate the cleavage of specific vegetally derived cell lineages. Hermes most likely performs its function by regulating the translation or processing of one or more target RNAs. This is an important mechanism by which the embryo can generate unique cell lineages. The regulation of region-specific cell division is a novel function for a localized mRNA.  相似文献   

7.
The fine structure of cleavage, blastula, and gastrula stages of Fundulus heteroclitus was investigated. Cleavage blastomeres are relatively unspecialized, containing few or poorly developed organelles. Beginning in blastula stages, signs of differentiation were noted, including development of the endoplasmic reticulum and Golgi apparatus and appearance of a primary nucleolus and polyribosomes. More extensive structural specializations occur in gastrula stages, including further development of the endoplasmic reticulum and appearance of a granular component in the nucleolus. These changes are associated with cell differentiation and an increased capacity for protein synthesis, and may be preparatory to subsequent histogenesis. The periblast is a continuous syncytial cytoplasmic layer located between the blastodisc and yolk and is formed during late cleavage by incomplete division of the cytoplasm of the blastodisc. Cytoplasmic projections extend from the periblast (and from the basal region of cleavage blastomeres prior to formation of the periblast) into the yolk and function in uptake of yolk material in the absence of pinocytosis. Yolk material appears to be digested by the periblast and transferred into the segmentation cavity where it is available to the blastomeres. Protein granules, lipid droplets, glycogen, crystalline arrays, and multivesicular bodies are related to food storage and utilization by blastomeres. The yolk gel layer enclosing the yolk sphere was found to be a thin layer of cytoplasm continuous with the margin of the periblast and is renamed the yolk cytoplasmic layer.  相似文献   

8.
Summary The indirect immunofluorescence technique was used to demonstrate a substance reacting with gastrin antisera in the brain of Xenopus laevis.Immunoreactive material was found in two sites: (1) In the caudal hypothalamus more precisely in the nucleus infundibularis ventralis, (NIV) of the pars ventralis of the tuber cinereum, (PVTC). The fluorescent axons of the reactive parikarya of the NIV give rise to two symmetrical tracts which run rostro-ventrally and join, in the infundibular floor, the preoptico-hypophysial tract, where they form an uneven median tract coursing caudally and running along the medio-tuberal area before entering the external zone of the median eminence. (2) In the anterior preoptic area (APOA), where numerous nerve fibers and endings form a dense network near the preoptic recess. The exact origin of these terminals has not yet been determined.Control of immunohistochemical specificity shows that the labeling by gastrin antisera is suppressed by gastrin (2–17), but also by cholecystokinin (CCK) and pentagastrin (Peptavlon). These results indicate that the immunoreactive substance revealed belongs to the gastrin group and has an antigenic determinant composed of the amino acid sequence or a portion thereof common to gastrin, CCK and Peptavlon (Trp-Met-Asp-Phe).It should be emphasized that, in the brain of Xenopus laevis, both gastrinimmunoreactive sites correspond to the sites of uptake of steroid hormones (Kelley et al., 1975; Morrell et al., 1975).Supported by the D.G.R.S.T., Contrat n 77.7.0648  相似文献   

9.
The Xenopus tadpole is able to regenerate its tail, including skin, muscle, notochord, spinal cord and neurons and blood vessels. This process requires rapid tissue growth and morphogenesis. Here we show that a focus of apoptotic cells appears in the regeneration bud within 12 h of amputation. Surprisingly, when caspase-3 activity is specifically inhibited, regeneration is abolished. This is true of tails both before and after the refractory period. Programmed cell death is only required during the first 24 h after amputation, as later inhibition has no effect on regeneration. Inhibition of caspase-dependent apoptosis results in a failure to induce proliferation in the growth zone, a mispatterning of axons in the regenerate, and the appearance of ectopic otoliths in the neural tube, in the context of otherwise normal continued development of the larva. Larvae amputated during the refractory stage exhibit a much broader domain of caspase-3-positive cells, suggesting a window for the amount of apoptosis that is compatible with normal regeneration. These data reveal novel roles for apoptosis in development and indicate that a degree of apoptosis is an early and obligate component of normal tail regeneration, suggesting the possibility of the existence of endogenous inhibitory cells that must be destroyed by programmed cell death for regeneration to occur.  相似文献   

10.
Transforming growth factor-beta1-stimulated clone 22 (TSC-22) encodes a leucine zipper-containing protein that is highly conserved. During mouse embryogenesis, TSC-22 is expressed at the site of epithelial-mesenchymal interaction. Here, we isolated Xenopus laevis TSC-22 (XTSC-22) and analyzed its function in early development. XTSC-22 mRNA was first detected in the ectoderm of late blastulae. Translational knockdown using XTSC-22 antisense morpholino oligonucleotides (XTSC-22-MO) caused a severe delay in blastopore closure in gastrulating embryos. This was not due to mesoderm induction or convergent-extension, as confirmed by whole-mount in situ hybridization and animal cap assay. Cell lineage tracing revealed that migration of ectoderm cells toward blastopore was disrupted in XTSC-22-depleted embryos, and these embryos had a marked increase in the number of dividing cells. In contrast, cell division was suppressed in XTSC-22 mRNA-injected embryos. Co-injection of XTSC-22-MO and mRNA encoding p27Xic1, which inhibits cell cycle promotion by binding cyclin/Cdk complexes, reversed aberrant cell division. This was accompanied by rescue of the delay in blastopore closure and cell migration. These results indicate that XTSC-22 is required for cell movement during gastrulation though cell cycle regulation.  相似文献   

11.
This article reviews cell cycle changes that occur during midblastula transition (MBT) in Xenopus laevis based on research carried out in the authors' laboratory. Blastomeres dissociated from the animal cap of blastulae, as well as those in an intact embryo, divide synchronously with a constant cell cycle duration in vitro, up to the 12th cell cycle regardless of their cell sizes. During this synchronous cleavage, cell sizes of blastomeres become variable because of repeated unequal cleavage. After the 12th cell cycle blastomeres require contact with an appropriate protein substrate to continue cell division. When nucleocytoplasmic (N/C) ratios of blastomeres reach a critical value during the 13th cycle, their cell cycle durations lengthen in proportion to the reciprocal of cell surface areas, and cell divisions become asynchronous due to variations in cell sizes. The same changes occur in haploid blastomeres with a delay of one cell cycle. Thus, post-MBT cell cycle control becomes dependent not only on the N/C relation but also on cell surface activities of blastomeres. Unlike cell cycle durations of pre-MBT blastomeres, which show monomodal frequency distributions with a peak at about 30 min, those of post-MBT blastomeres show polymodal frequency distributions with peaks at multiples of about 30 min, suggesting 'quantisement' of the cell cycle. Thus, we hypothesised that MPF is produced periodically during its unit cycle with 30 min period, but it titrates, and is neutralized by, an inhibitor contained in the nucleus in a quantity proportional to the genome size; however, when all of the inhibitor has been titrated, excess MPF during the last cycle triggers mitosis. At MBT, cell cycle checkpoint mechanisms begin to operate. While the operation of S phase checkpoint to monitor DNA replication is initiated by N/C relation, the initiation of M phase checkpoint operation to monitor chromosome segregation at mitosis is regulated by an age-dependent mechanism.  相似文献   

12.
Antioxidant cellular mechanisms are essential for cell redox homeostasis during animal development and in adult life. Previous in situ hybridization analyses of antioxidant enzymes in zebrafish have indicated that they are ubiquitously expressed. However, spatial information about the protein distribution of these enzymes is not available. Zebrafish embryos are particularly suitable for this type of analysis due to their small size, transparency and fast development. The main objective of the present work was to analyze the spatial and temporal gene expression pattern of the two reported zebrafish glutathione peroxidase 4 (GPx4) genes during the first day of zebrafish embryo development. We found that the gpx4b gene shows maternal and zygotic gene expression in the embryo proper compared to gpx4a that showed zygotic gene expression in the periderm covering the yolk cell only. Following, we performed a GPx4 protein immunolocalization analysis during the first 24-h of development. The detection of this protein suggests that the antibody recognizes GPx4b in the embryo proper during the first 24 h of development and GPx4a at the periderm covering the yolk cell after 14-somite stage. Throughout early cleavages, GPx4 was located in blastomeres and was less abundant at the cleavage furrow. Later, from the 128-cell to 512-cell stages, GPx4 remained in the cytoplasm but gradually increased in the nuclei, beginning in marginal blastomeres and extending the nuclear localization to all blastomeres. During epiboly progression, GPx4b was found in blastoderm cells and was excluded from the yolk cell. After 24 h of development, GPx4b was present in the myotomes particularly in the slow muscle fibers, and was excluded from the myosepta. These results highlight the dynamics of the GPx4 localization pattern and suggest its potential participation in fundamental developmental processes.  相似文献   

13.
In the blastocoel roof (BCR) of the Xenopus laevis embryo, epibolic movements are driven by the radial intercalation of deep cell layers and the coordinate spreading of the overlying superficial cell layer. Thinning of the lateral margins of the BCR by radial intercalation requires fibronectin (FN), which is produced and assembled into fibrils by the inner deep cell layer of the BCR. A cellular automata (CA) computer model was developed to analyze the spatial and temporal movements of BCR cells during epiboly. Simulation parameters were defined based on published data and independent results detailing initial tissue geometry, cell numbers, cell intercalation rates, and migration rates. Hypotheses regarding differential cell adhesion and FN assembly were also considered in setting system parameters. A 2-dimensional model simulation was developed that predicts BCR thinning time of 4.8 h, which closely approximates the time required for the completion of gastrulation in vivo. Additionally, the model predicts a temporal increase in FN matrix assembly that parallels fibrillogenesis in the embryo. The model is capable of independent predictions of cell rearrangements during epiboly, and here was used to predict successfully the lateral dispersion of a patch of cells implanted in the BCR, and increased assembly of FN matrix following inhibition of radial intercalation by N-cadherin over-expression.  相似文献   

14.
Summary In early cleavage stages ofLymnaea stagnalis, three kinds of intercellular junctions could be distinguished up to the sixth cleavage: intermediate, septate and gap junctions. The first two form junctional belts located on the cell border at the periphery of the embryo. For the purpose of our study we were most interested in gap junctions as they are alleged to be structures that allow cell-to-cell communication. Gap junctions first appear at the four cell stage. Up to the sixth cleavage no difference in the distribution pattern could be found between and within each of the four quadrants of the embryo. Some of the cell tiers along the animal-vegetal axis lack gap junctions either between the blastomeres within the tier or between the blastomeres from adjacent tiers. All gap junctions observed in freeze fracture replicas show plaques with an irregular IMP pattern. The average IMP diameter measures 12 nm (SD±2 nm). In stages fixed after the fifth cleavage, gap junctions are found between micromeres at the animal pole and the central 3D macromere. This is in agreement with the presumed interaction between these cells at this stage. The possibility of a transition of non-functional into functional gap junctions after the fifth cleavage is discussed.  相似文献   

15.
Spontaneous and induced cancers are rare in non-isogeneic or inbred amphibians. Neoplastic cells become immortalized through loss of a normal capacity to die by apoptosis. Mature lymphocytes of mammals require activation and entry into the cell cycle in order to become susceptible to apoptosis. Whether Xenopus lymphocytes differ from mammalian lymphocytes in this regard is examined. In vitro exposure of PMA, or its analogue, MPMA, to adult splenocytes of Xenopus laevis was used to affect apoptosis. Flow cytometric analysis of FITC-Annexin V/propidium iodide (PI) fluorescence (apoptosis) and BrdU uptake (DNA synthesis) were assayed concurrently in the same lymphocyte population over time. Significant increases in apoptotic levels were induced throughout a 72 hour period in PMA-treated cells only. Lymphocytes were also separated by size for analysis. Several sub-populations of lymphocytes were identified, the most interesting of which was small and apoptotic within 4 hours, after PMA exposure. PMA-induced DNA synthesis did not become elevated until after 24 hours. Direct apoptosis, i.e. without cell cycle entry, was found only in these small, mature lymphocytes. Since small lymphocytes make up the vast majority of those being analyzed, direct apoptosis may be a determining mechanism in the resistance to neoplasia observed in Amphibia. Cells that die more readily are less likely to transform into neoplastic cells.  相似文献   

16.
The membrane potential of Rana pipiens eggs (-55.0 mV +/- 11.2(16)) was more likely to recover from impalement and was always more negative than that of eggs of Xenopus laevis (-19.3 mV +/- 4.2(68)). It was also much more negative than previously reported. Essentially similar membrane resistance changes were measured in the two frog species through fertilization and cleavage. Small transient depolarizations only associated with the onset of the fertilization potential in Xenopus could be prevented by hyperpolarizing the egg membrane prior to fertilization. Repolarization was variable and longer in Rana and often accompanied by large transient spontaneous depolarizations. Insemination time, the time between fertilization and cleavage and the first cleavage division cycle, were all about twice as long in Rana. Xenopus egg cleavage was invariably accompanied by pronounced transient hyperpolarizations that were essentially absent in Rana.  相似文献   

17.
可口革囊星虫受精过程及早期卵裂的细胞学变化   总被引:2,自引:0,他引:2  
为探究可口革囊星虫(Phascolosoma esculenta)受精过程中精子入卵、极体排放、雌雄原核的形成与结合以及早期卵裂的特点,为胚胎发育机制研究奠定基础及指导人工育苗,显微观察了可口革囊星虫卵母细胞的形态;用荧光染色剂HOECHST33258对已固定的成熟卵及受精卵进行染色的方法,在荧光显微镜下观察了可口革囊星虫受精过程及第一与第二次卵裂的细胞学变化。成熟卵呈椭圆形,卵膜较厚,核区偏位,染色体排列整齐。在水温30℃-31℃、盐度23条件下,授精后5min-10min,精子完成入卵;授精后10min-20min,完成第一次减数分裂、释放第一极体;授精后20min-30min,完成第二次减数分裂、放出第二极体,部分受精卵的第一极体分裂为二;授精后30min-40min,雌、雄原核形成,并相互靠近向卵中央迁移;授精后40min-50min,雌、雄原核在卵中央结合成合子核;授精后50min-70min及70min-90min分别完成第一及第二次卵裂。可口革囊星虫的受精过程及早期卵裂的细胞学特点为:1)成熟卵是处在第一次减数分裂中期的初级卵母细胞,具有受精能力;2)精子入卵位点是随机的,存在多精入卵现象;3)雌、雄原核以融合方式结合成合子核;4)第一及第二次卵裂均为经裂、不等裂。  相似文献   

18.
19.
Immunocytochemical studies using a monoclonal anti-porcine vimentin antibody reveal a well-organized pattern of staining in Xenopus laevis oocytes, eggs and early embryos. The positions of Xenopus vimentin and desmin in two-dimensional (2D) polyacrylamide gels were first established by immunoblotting of muscle Triton extracts with anti-intermediate filament antibodies (anti-IFA), which cross-react with all intermediate filament proteins (IFPs). The anti-porcine vimentin reacts with vimentin and desmin in muscle 2D immunoblots, but only reacts with one polypeptide in oocyte blots in the position predicted for vimentin (Mr 55 x 10(3), pI 5.6). Using an anti-sense probe derived from a Xenopus vimentin genomic clone in RNase protection assays, we show that expression of vimentin begins in previtellogenic oocytes. The level of expression remains constant throughout oogenesis and in unfertilized eggs. These data suggest that vimentin is expressed in oocytes and eggs. Most interestingly, the immunocytochemical results also show that vimentin is present in the germ plasma of oocytes, eggs and early embryos. It is therefore possible that vimentin has an important role in the formation or behaviour of early germ line cells.  相似文献   

20.
Summary Sequential electron microscopic observations of thymic histogenesis in the toad, Xenopus laevis, reveal that the thymus arises as epithelial buddings of the visceral pouches at Nieuwkoop-Faber stage 40, and acquires its basic histological features at stages 48–49. In the rudiments and the surrounding mesenchyme at stages 43–45, there are non-epithelial cells with pseudopodia, abundant ribosomes, and marginated heterochromatin. These cells, possible precursor cells of thymic lymphocytes, are frequently observed to attach and pass through the basal lamina which coats the thymic rudiment. The proliferation and differentiation of large lymphocytes are evident at stage 47. During stages 48–49 the small lymphocytes, lymphoid cortex and epithelial medulla including the thymic cysts, differentiate, and vascularization occurs.The results provide an ultrastructural basis for recent experimental evidence that the thymus exerts its essential function at stages 47–48. The possibility of non-epithelial derivation of thymic lymphocytes is discussed.The author wishes to express his thanks to Asst. Prof. Ch. Katagiri for his helpful advice during the course of this study  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号