首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In lichens, ribitol is known as a carbon storage compound, an osmotic agens involved effectively in cell compartments protection during dehydration of lichen thalli and as a cryoprotective compound. In our study, we investigated the effect of ribitol on photochemical processes of photosynthesis in foliose lichens [Lasallia pustulata (L.) Mérat., Umbilicaria hirsuta (Sw. ex Westr.) Hoffm.] at low temperature. The effects of three concentrations of ribitol, added externally to thalli segments on several chlorophyll (Chl) fluorescence parameters, were evaluated. The 72 h exposition to 8, 16, and 26 mM ribitol led to a concentration-dependent increase in FV/FM, decrease in non-photochemical quenching (NPQ) but no change in quantum yield of photosystem II photochemistry (ΦPSII) values at −5 °C). At higher temperature (0, +5 °C), no effect of ribitol addition on the photosynthetic parameters was apparent.  相似文献   

2.
A time-resolved fluorescence study of living lichen thalli at 5 K was conducted to clarify the dynamics and mechanism of the effective dissipation of excess light energy taking place in lichen under extreme drought conditions. The decay-associated spectra obtained from the experiment at 5 K were characterized by a drastically sharpened spectral band which could not be resolved by experiments at higher temperatures. The present results indicated the existence of two distinct dissipation components of excess light energy in desiccated lichen; one is characterized as rapid fluorescence decay with a time constant of 27 ps in the far-red region that was absent in wet lichen thalli, and the other is recognized as accelerated fluorescence decay in the 685–700 nm spectral region. The former energy-dissipation component with extremely high quenching efficiency is most probably ascribed to the emergence of a rapid quenching state in the peripheral-antenna system of photosystem II (PS II) on desiccation. This is an extremely effective protection mechanism of PS II under desiccation, which lichens have developed to survive in the severely desiccated environments. The latter, which is less efficient at 5 K, might have a supplementary role and take place either in the core antenna of PS II or aggregated peripheral antenna of PS II.  相似文献   

3.
Lichen thalli were exposed to 4 regimes differing in irradiance and duration of irradiation. Photosynthetic efficiency of thalli was monitored by chlorophyll fluorescence parameters and xanthophyll cycle analysis. Maximal quantum yield of photosystem 2 (FV/FM) decreased gradually with time in long-term treatment. The effect of additional short-term high irradiance (HI) treatment applied each 24 h was not significant. Nevertheless, short-term HI applied repeatedly on thalli kept in the dark led to a significant decrease of FV/FM. Non-photochemical quenching recorded during the long-term treatment corresponded to the content of zeaxanthin (Z). In short-term treatment, however, proportion of Z (and antheraxanthin) to total amount of xanthophyll cycle pigments recovered to the initial values every 24 h after each repeated short-term HI event in thalli kept in dark. Thus duration of irradiation rather than irradiance and frequency of HI events is important for a decrease in primary photosynthetic processes in wet thalli of Lasallia pustulata. Rapidly responding photoprotective mechanisms, such as conversion of xanthophyll cycle pigments, are involved mainly in short-term irradiation events, even at HI.  相似文献   

4.
Salt stress is a major abiotic stress factor that can induce many adverse effects on photosynthetic organisms. Plants and algae have developed several mechanisms that help them respond to adverse environments. Non‐photochemical quenching (NPQ) is one of these mechanisms. The thalli of algae in the intertidal zone that are attached to rocks can be subjected to salt stress for a short period of time due to the rise and fall of the tide. Ulva prolifera causes green tides and can form floating mats when green tides occur and the upper part of the thalli is subjected to high salt stress for a long period of time. In this study, we compared the Ulva prolifera photosynthetic activities and NPQ kinetics when it is subjected to different salinities over various periods of time. Thalli exposed to a salinity of 90 for 4 d showed enhanced NPQ, and photosynthetic activities decreased from 60 min after exposure up to 4 d. This indicated that the induction of NPQ in Ulva prolifera under salt stress was closely related to the stressing extent and stressing time. The enhanced NPQ in the treated samples exposed for 4 d may explain why the upper layer of the floating mats formed by Ulva prolifera thalli were able to survive in the harsh environment. Further inhibitor experiments demonstrated that the enhanced NPQ was xanthophyll cycle and transthylakoid proton gradient‐dependent. However, photosystem II subunit S and light‐harvesting complex stress‐related protein didn't over accumulate and may not be responsible for the enhanced NPQ.  相似文献   

5.
Climate change alters the abiotic constraints faced by plants, including increasing temperature and water stress. These changes may affect flower development and production of flower rewards, thus altering plant–pollinator interactions. Here, we investigated the consequences of increased temperature and water stress on plant growth, floral biology, flower‐reward production, and insect visitation of a widespread bee‐visited species, Borago officinalis. Plants were grown for 5 weeks under three temperature regimes (21, 24, and 27°C) and two watering regimes (well‐watered and water‐stressed). Plant growth was more affected by temperature rise than water stress, and the reproductive growth was affected by both stresses. Vegetative traits were stimulated at 24°C, but impaired at 27°C. Flower development was mainly affected by water stress, which decreased flower number (15 ± 2 flowers/plant in well‐watered plants vs. 8 ± 1 flowers/plant under water stress). Flowers had a reduced corolla surface under temperature rise and water stress (3.8 ± 0.5 cm2 in well‐watered plants at 21°C vs. 2.2 ± 0.1 cm2 in water‐stressed plants at 27°C). Both constraints reduced flower‐reward production. Nectar sugar content decreased from 3.9 ± 0.3 mg/flower in the well‐watered plants at 21°C to 1.3 ± 0.4 mg/flower in the water‐stressed plants at 27°C. Total pollen quantity was not affected, but pollen viability decreased from 79 ± 4% in the well‐watered plants at 21°C to 25 ± 9% in the water‐stressed plants at 27°C. Flowers in the well‐watered plants at 21°C received at least twice as many bumblebee visits compared with the other treatments. In conclusion, floral modifications induced by abiotic stresses related to climate change affect insect behavior and alter plant–pollinator interactions.  相似文献   

6.
Effects of heat stress on the photosynthesis system and antioxidant activities in Fingered citron (Citrus medica var. sarcodactylis Swingle) were investigated. Two-year-old Fingered citron plants were exposed to different temperature (28, 35, 40, and 45°C) for 6 h; then the photosynthetic capacity, chlorophyll fluorescence, chloroplast ultrastructure, and antioxidant activities in the leaves were evaluated. Exposure to 40 and 45°C for 6 h resulted in a significant decrease in the photosynthetic rate (P n), carboxylation efficiency (CE), the maximal photochemical efficiency of photosystem II, and the light-saturated photosynthetic rate, which were related to the reduction of CO2 assimilation, inactivation of photosystem II and photosynthetic electron transport. Moreover, transmission electron microscopy showed chloroplast ultrastructural alterations, including their swelling, matrix zone expanding, and lamella structure loosening. Furthermore, heat stress, especially at 45°C, caused oxidative damage resulted from ROS accumulation in Fingered citron leaves accompanied by increases in activities of superoxide dismutase, peroxidase, and catalase. However, exposure to 35°C for 6 h or 40°C for 4 h had no significant influence on the photosynthetic capacity at all. The results suggest that Fingered citron plants show no heat injury when temperature is below 40°C.  相似文献   

7.
We investigated the influence of root zone temperature (RZT) and the aerial application of paraquat on stress defence mechanisms of Trichosanthes cucumerina L. To achieve this objective, T. cucumerina cv Green was grown with roots at 25 and 30°C root zone temperature and maintained at 20 ± 1°C air temperature in a growth chamber. These RZT and air temperature had earlier been shown to favor growth and fruit production in T. cucumerina. Plants at each RZT were subjected to paraquat treatment (+P) and without paraquat treatment (−P). Paraquat (0.2 mmol/L) was applied as aerial spray. Results showed that the individual main effects of RZT and paraquat treatments significantly affected the chlorophyll fluorescence and gas exchange parameters, while the interaction of both treatments had no significant effect. Results showed that the total phenolics and ascorbic acid contents of T. cucumerina at 30°C were significantly higher than at 25°C. The T. cucumerina plants in +P treatment recorded significantly lower maximum photochemical efficiency (F v/F m), net photosynthesis (A), transpiration rate (E), intercellular CO2 concentration (C i) and stomatal conductance (g 1) compared to untreated plants. Also, plants raised at 30°C recorded significantly higher F v/F m, A, E, C i and g 1 compared to plants raised at 25°C. Plants that were sampled at 48 h after paraquat treatment recorded a higher degree of oxidative damage compared to those sampled at 24 h after treatment. We showed that the degree of damage suffered by T. cucumerina, when treated with paraquat either at 25 or 30°C RZT was similar at 48 h after treatment. We concluded that either at 25 or 30°C, exposure of T. cucumerina to paraquat would impose the same degree of oxidative damage.  相似文献   

8.
In this study, we evaluated how cadmium inhibitory effect on photosystem II and I electron transport may affect light energy conversion into electron transport by photosystem II. To induce cadmium effect on the photosynthetic apparatus, we exposed Chlamydomonas reinhardtii 24 h to 0–4.62 μM Cd2+. By evaluating the half time of fluorescence transients O–J–I–P at different temperatures (20–30°C), we were able to determine the photosystem II apparent activation energies for different reduction steps of photosystem II, indicated by the O–J–I–P fluorescence transients. The decrease of the apparent activation energies for PSII electron transport was found to be strongly related to the cadmium-induced inhibition of photosynthetic electron transport. We found a strong correlation between the photosystem II apparent activation energies and photosystem II oxygen evolution rate and photosystem I activity. Different levels of cadmium inhibition at photosystem II water-splitting system and photosystem I activity showed that photosystem II apparent activation energies are strongly dependent to photosystem II donor and acceptor sides. Therefore, the oxido-reduction state of whole photosystem II and I electron transport chain affects the conversion of light energy from antenna complex to photosystem II electron transport.  相似文献   

9.
In January and February 2010, heavy sea ice formed along the coast of the Bohai Sea and the northern Yellow Sea, China. Intertidal organisms were subjected to serious freezing stress. In this study, we investigated the freezing tolerance of the upper intertidal economic seaweed Porphyra yezoensis. The maximum photochemical efficiency of PS II (F v/F m) in undehydrated thalli remained high after 24 h at −2°C and that in dehydrated thalli decreased in a proportion to thallial water loss. F v/F m dropped sharply after 24 h at −20°C, regardless of absolute cellular water content (AWC). The F v/F m in frozen thalli recovered rapidly at 0–20°C. A wide range of water loss in the thalli enhanced their tolerance to freezing. F v/F m values in undehydrated thalli dropped sharply after 3 d at −2°C or 10 d at −20°C while those in dehydrated thalli (20–53% AWCs) remained at high levels after 9 d at −2°C or 30 d at −20°C. These results indicate that P. yezoensis has high freezing tolerance by means of dehydration during the ebb tide and rapid recovery of F v/F m from freezing. A strategy of P. yezoensis industry to avoid heavy loss during freezing season is discussed based on these findings.  相似文献   

10.
Three-week old canola (Brassica napus L.) seedlings grown at 20/16°C (day/night) were subjected to short-term (4 and 8 h) heat stress (45°C) or maintained at a normal temperature of 20°C. Half of the plants under each treatment received a 10−6 M solution of brassinolide (BL) 1 h prior to beginning the temperature treatments. The concentration (ng/g dry weight) of endogenous abscisic acid (ABA) was subsequently determined in young leaves via the stable isotope dilution method. Applied BL had no effect on endogenous ABA for plants maintained at normal temperatures. However, ABA concentration was significantly elevated by heat stress alone and doubled by heat stress + BL. These results suggest that the well-known enhancement of tolerance to high temperature stress that can be obtained by BL or 24-epi-BL applications may be caused by a brassinosteroid-induced elevation in endogenous ABA concentration.  相似文献   

11.
To understand the effects of low temperature stress on Kappaphycus alvarezii and the responses of antioxidant systems and photosystem II (PSII), behaviour in K. alvarezii thalli exposed to low temperatures (20°C, 17°C and 14°C) for 2 hours was evaluated. Compared with the control at 26°C, activities of some antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX) and the level of antioxidant substance (reduced glutathione) increased in K. alvarezii thalli when exposed to lowered temperatures (20°C, 17°C). Hydroxyl free radical (·OH) scavenging activity of K. alvarezii thalli also increased at 20°C and 17°C compared with the control. This indicated that the resistance to low temperature stress in the antioxidant system of K. alvarezii increased at lowered temperatures of 20°C and 17°C. However, at the lowest temperature (14°C), no significant increases of this algal antioxidant were observed. Under low temperature stress, the maximum quantum yield of PSII photochemistry (FV/FM) and PSII actual photochemical efficiency (ΦPSII) decreased in K. alvarezii thalli, suggesting that the photosynthetic capacity declined. Components of the photosynthetic apparatus (such as the oxygen-evolving complex, light absorption antennas, reaction centres, electron acceptor sides and electron donor sides of PSII) were damaged by low temperature stress to varying degrees. In addition, it was found that low temperature stress led to decreases of both D1 protein and Rubisco LSU (Rubisco large subunit) protein levels. This work is a significant contribution towards understanding the basic mechanism involved in the resistance and the adaptation of K. alvarezii to low temperature stress conditions.  相似文献   

12.
The isomorphic phases of Endocladia muricata (Post. & Rupr.) J. Ag. Were compared for photosynthetic and respiratory difference in response to a variety of environmental manipulations. Photosynthetic light response during submergence at 15° C and the pattern of respiratory recovery following prolonged emergence (3 h) at either 15° or 30° C were similar between gametophytes and tetrasporophytes. The phases showed the same ability to photosynthesize and respire during emergence at each temperature tested (15°, 25°, and 35° C, fully hydrated thalli) and at various desiccation state (measured at 25° C only). Submerged rates of photosynthesis following prolonged emergence at 15° and 30° C were, however slightly greater (17%) for tetrasporophytes as compared to gametophytes. Regardless of the life history phase, plants incubated at 15° C during emergence recovered more completely than plants incubated at 30° C. Photosynthetic recovery after 1 h in plants incubated at 15° C often “spiked” and yielded rates as great as 185% of pretreatment rates. Increased photosynthetic rates during recovery were absent for the 30° C incubations. The initial photosynthetic recovery of plants collected from the upper limits of distribution was greater than that of plants collected from the lower limits. Recovered rates of respiration were highly variable over time. Respiration often exceeded pretreatment values more then threefold, and the elevated rates were sustained for 12 h. Photosynthesis and respiration in air were comparable to rates in seawater and varied slightly with increasing temperature. Photosynthetic and respiratory rates also decreased with increasing tissue water loss. Thus, only slight differences in physiological performance were observed between phases and individuals collected from different vertical positions. Metabolic differences were transient and apparent only under experimental conditions that modeled extreme environmental conditions.  相似文献   

13.
The effect of arbuscular mycorrhizal (AM) fungus, Glomus etunicatum, on growth, water status, chlorophyll concentration and photosynthesis in maize (Zea mays L.) plants was investigated in pot culture under low temperature stress. The maize plants were placed in a sand and soil mixture at 25°C for 7 weeks, and then subjected to 5°C, 15°C and 25°C for 1 week. Low temperature stress decreased AM root colonization. AM symbiosis stimulated plant growth and had higher root dry weight at all temperature treatments. Mycorrhizal plants had better water status than corresponding non-mycorrhizal plants, and significant differences were found in water conservation (WC) and water use efficiency (WUE) regardless of temperature treatments. AM colonization increased the concentrations of chlorophyll a, chlorophyll b and chlorophyll a + b. The maximal fluorescence (Fm), maximum quantum efficiency of PSII primary photochemistry (Fv/Fm) and potential photochemical efficiency (Fv/Fo) were higher, but primary fluorescence (Fo) was lower in AM plants compared with non-AM plants. AM inoculation notably increased net photosynthetic rate (Pn) and transpiration rate (E) of maize plants. Mycorrhizal plants had higher stomatal conductance (gs) than non-mycorrhizal plants with significant difference only at 5°C. Intercellular CO2 concentration (Ci) was lower in mycorrhizal than that in non-mycorrhizal plants, especially under low temperature stress. The results indicated that AM symbiosis protect maize plants against low temperature stress through improving the water status and photosynthetic capacity.  相似文献   

14.
The ameliorative role of 28-homobrassinolide under chilling stress in various growth, photosynthesis, enzymes and biochemical parameters of cucumber (Cucumis sativus L.) were investigated. Cucumber seedlings were sprayed with 0 (control), 10−8, or 10−6 M of 28-homobrassinolide at the 30-day stage. 48 h after treatment plants were exposed for 18 h to chilling temperature (10/8°C, 5/3°C). The most evident effect of chilling stress was the marked reduction in plant growth, chlorophyll (Chl) content, and net photosynthetic rate, efficiency of photosystem II and activities of nitrate reductase and carbonic anhydrase. Moreover, the activities of antioxidant enzymes; catalase (E.C. 1.11.1.6), peroxidase (E.C.1.11.1.7), superoxide dismutase (E.C. 1.15.1.1) along with the proline content in leaves of the cucumber seedlings increased in proportion to chilling temperature. The stressed seedlings of cucumber pretreated with 28-homobrassinolide maintained a higher value of antioxidant enzymes and proline content over the control suggesting the protective mechanism against the ill-effect caused by chilling stress might be operative through an improved antioxidant system. Furthermore, the protective role of 28-homobrassinolide was reflected in improved growth, water relations, photosynthesis and maximum quantum yield of photosystem II both in the presence and absence of chilling stress.  相似文献   

15.
The mechanism of the severe quenching of chlorophyll (Chl) fluorescence under drought stress was studied in a lichen Physciella melanchla, which contains a photobiont green alga, Trebouxia sp., using a streak camera and a reflection-mode fluorescence up-conversion system. We detected a large 0.31 ps rise of fluorescence at 715 and 740 nm in the dry lichen suggesting the rapid energy influx to the 715-740 nm bands from the shorter-wavelength Chls with a small contribution from the internal conversion from Soret bands. The fluorescence, then, decayed with time constants of 23 and 112 ps, suggesting the rapid dissipation into heat through the quencher. The result confirms the accelerated 40 ps decay of fluorescence reported in another lichen (Veerman et al., 2007 [36]) and gives a direct evidence for the rapid energy transfer from bulk Chls to the longer-wavelength quencher. We simulated the entire PS II fluorescence kinetics by a global analysis and estimated the 20.2 ns− 1 or 55.0 ns− 1 energy transfer rate to the quencher that is connected either to the LHC II or to the PS II core antenna. The strong quenching with the 3-12 times higher rate compared to the reported NPQ rate, suggests the operation of a new type of quenching, such as the extreme case of Chl-aggregation in LHCII or a new type of quenching in PS II core antenna in dry lichens.  相似文献   

16.
Low temperature (77°K) fluorescence emission and excitation spectra were recorded for wet and desiccated thalli of Porphyra perforata . The photosystem I (F730) and photosystem II (F695) fluorescence emission kinetics during photosystem II trap closure were also recorded at 77°K. Desiccation induced a lowering of the fluorescence yield over the whole emission spectrum but the decrease was most pronounced for the photosystem II fluorescence bands, F688 and F695. It was shown that the desiccation-induced changes of the phycoerythrin sensitized emission spectrum were due to 1) a decrease in the fluorescence yield of the photosystem I antenna, 2) an even stronger decrease in the fluorescence of photosystem II, which was mediated by an increased spillover (kT(II→I)) of excitation to photosystem I and an increase in the absorption cross section, α, for photosystem I. We hypothesize that the increase of both kT(II→I) and α are part of a mechanism by which the desiccation-tolerant, high light exposed, Porphyra can avoid photodynamic damage to photosystem II, when photosynthesis becomes inhibited as a result of desiccation during periods of low tide.  相似文献   

17.
Thermal acclimation by Saxifraga cernua to low temperatures results in a change in the optimum temperature for gross photosynthetic activity and may directly involve the photosynthetic apparatus. In order to test this hypothesis photosynthetic electron transport activity of S. cernua thylakoids acclimated to growth temperatures of 20°C and 10°C was measured in vitro. Both populations exhibited optimum temperatures for whole chain and PSII electron transport activity at temperatures close to those at which the plants were grown. Chlorophyll a fluorescence transients from 10°C-acclimated leaves showed higher rates in the rise and subsequent quenching of variable fluorescence at low measuring temperatures; 20°C-acclimated leaves showed higher rates of fluorescence rise at higher measuring temperatures. At these higher temperatures, fluorescence quenching rates were similar in both populations. The kinetics of State 1-State 2 transitions in 20°C- and 10°C-acclimated leaf discs were measured as changes in the magnitude of the fluorescence emission maxima measured at 77K. Leaves acclimated at 10°C showed a larger F730/F695 ratio at low temperatures, while at higher temperatures, 20°C-acclimated leaves showed a higher F730/F695 ratio after the establishment of State 2. High incubation temperatures also resulted in a decrease in the F695/F685 ratio for 10°C-acclimated leaves, suggesting a reduction in the excitation transfer from the light-harvesting complex of photosystem II to photosystem II reaction centers. The relative amounts of chlorophyll-protein complexes and thylakoid polypeptides separated electro-phoretically were similar for both 20°C- and 10°C-acclimated leaves. Thus, photosynthetic acclimation to low temperatures by S. cernua is correlated with an increase in photosynthetic electron transport activity but does not appear to be accompanied by major structural changes or different relative amounts in thylakoid protein composition.  相似文献   

18.
Glycine betaine (GB) is an effective compatible solute that improves the tolerance in plants to various stresses. We investigated the effects of 2 mM GB applied to the roots of a tobacco (Nicotiana tabacum L.) cultivar on enhancing photosynthesis under low-temperature (LT) stress (5/5 °C, 12/12 h, 300 μmol m−2 s−1) and in the subsequent recovery (25/18 °C) from the stress. The net photosynthetic rate, intrinsic efficiency measured as the ratio of variable to maximum fluorescence, and actual efficiency of the photochemistry of photosystem 2 as well as the ATPase activity in the thylakoid membrane decreased, and a distinct K step in the fluorescence transient O-J-I-P appeared under cold stress. Exogenous GB alleviated the decrease in all these parameters. The LT-stress induced the accumulation of 33–66 kDa polypeptides and decreased the proportion of unsaturated fatty acids in the thylakoid membrane. In plants subjected to LT-stress, GB protected these polypeptides from damage and enhanced the proportion of unsaturated fatty acids. An increase in non-radiative energy dissipation (NPQ) may be involved in the improvement of the function of the thylakoid membrane by GB since exogenous GB protected violaxanthin de-epoxidase and enhanced NPQ.  相似文献   

19.
Temperature response curves of chlorophyll a fluorescence parameters were used to assess minimum sub-zero temperature assuring functioning of photosynthetic photochemical processes in photosystem II (PS II) of Antarctic lichens. Umbilicaria Antarctica and Xanthoria elegans were measured within the temperature range from −20 to +10°C by a fluorometric imaging system. For potential (F V/F M) and actual (Φ II) quantum yields of photochemical processes the minimum temperature was found to be between −10 and −20°C. Non-photochemical quenching (NPQ) of absorbed excitation energy increased with temperature drop reaching maximum NPQ at −15°C. Image analysis revealed intrathalline heterogeneity of chlorophyll a fluorescence parameters with temperature drop. Temperature response of Φ II exhibited an S-curve with pronounced intrathalline differences in X. elegans. The same relation was linear with only limited intrathalline difference in U. antarctica. The results showed that Antarctic lichen species were well adapted to sub-zero temperatures and capable of performing primary photosynthesis at −15°C.  相似文献   

20.
Thalli of epiphytic lichen Hypogymnia physodes (L.) Nyl. and terricolous Cladonia furcata (Huds.) Schrad., collected from an area with background arsenic concentrations, were exposed to 0, 0.1, 1 and 10 μg mL−1 arsenate (As(V)) solutions for 24 h. After exposure they were kept in the metabolically active state for 0, 24 and 48 h in a growth chamber. In the freeze dried samples glutathione (GSH), glutathione disulphide (GSSG), cysteine (Cys) and cystine were analysed and induction of phytochelatin (PC) synthesis measured by reversed-phase high-performance liquid chromatography in combination with fluorescence detection or UV spectrometry. Total arsenic content in thalli was measured by instrumental neutron activation analysis (INAA). In H. physodes, which contained higher amounts of arsenic compared to C. furcata, total glutathione content significantly decreased in samples exposed to 10 μg mL−1 As(V), whereas in C. furcata a significant increase was observed. In both species PC synthesis was induced in thalli exposed to 10 μg mL−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号