首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
In many ant species, the queens can keep spermatozoa alive in their spermatheca for several years, which goes along with unique morphological characteristics of the queen's spermatheca. The relative spermatheca size in ant queens is prominently larger than that in social wasps. Furthermore, the epithelium lining the spermatheca reservoir of ants consists of columnar cells in the hilar region and squamous cells in the distal region, whereas it is formed by columnar cells only in social wasps. To study the evolution of the unique spermatheca morphology in ant queens, we compared the various processes during spermatheca development between two ponerine ant species of the genus Pachycondyla (= Brachyponera) and three polistine wasp species of the genus Polistes. From histological observations, we can define four developmental events in the ant queens: (1) invagination of the spermatheca primordium, (2) the reservoir wall thickness becomes unequal, (3) the reservoir diameter doubles as the lining epithelial cells become flattened except for the hilar region, and (4) the increase in thickness of the reservoir epithelium is limited to the hilar region which doubles in thickness. In polistine wasps, the second and the third developmental events are absent and the entire epithelium of the spermatheca wall becomes thick in the final step. We therefore conclude that for ant queens the second and third steps are crucial for the enlargement of the spermatheca size, and that the second to the fourth steps are crucial for the specialization of the reservoir wall structure.  相似文献   

2.
Parafabricia ventricingulata females have a pair of spermathecae located in the radiolar crown anterio-dorsal to the buccal opening. The spermathecae have three regions; an entrance, 7 μm across, leading into a ciliated ‘atrium’ that is approximately 50 μm long; a connecting piece, 2–5 μm across and 25 μm long, leading from the ‘atrium’ to the sperm receptacle. The sperm receptacle is heavily pigmented and spherical. The sperm lie in a large mass in the receptacle with no particular orientation. Oriopsis bicoloris females have a pair of unpigmented spermathecae in the collar behind the radiolar crown. Each spermatheca is a simple blind duct 100 μm long, with a lumen 8 μm in diameter. Between 30 and 40 sperm lie in the lumen of each spermatheca. Oriopsis brevicollaris females have a pair of spermathecae located in the radiolar crown above the buccal opening. From the opening, 10 μm across, a blind duct runs for 90 μm. Sperm are stored in the distal region of the duct. Sperm lie along the margins of the duct in close contact with microvilli. Up to 10 sperm were found in each spermatheca. Oriopsis mobilis females have a pair of spermathecae located in the radiolar crown above the buccal opening. The opening, 3 μm across, leads into a blind duct that runs for 30 μm. Sperm are stored in the distal region of the spermathecae where they are embedded in spermathecal cells. Between 10 and 20 sperm were found in each spermatheca. Oriopsis dentata was found not to have spermathecae. The homologies of the spermathecae found within the Sabellinae and Fabriciinae (Sabellidae) and the Spirorbinae (Serpulidae) are discussed, but cannot be resolved on present evidence.  相似文献   

3.
Gotoh, A., Billen, J., Tsuji, K., Sasaki, T. and Ito, F. 2011. Histological study of the spermatheca in three thelytokous parthenogenetic ant species, Pristomyrmex punctatus, Pyramica membranifera and Monomorium triviale (Hymenoptera: Formicidae). —Acta Zoologica (Stockholm) 00 :1–8. The evolution of obligate parthenogenesis may induce the degeneration of female mating ability and subsequently affect the morphology of the female reproductive organs related to mating and/or sperm storage. Here, we investigated the size and structure of the sperm storage organ, the spermatheca, in three thelytokous parthenogenetic myrmicine ant species, Pristomyrmex punctatus, Pyramica membranifera and Monomorium triviale, and compared it with that of their related sexually reproducing species. So far, mated individuals have never been found in these three species, which appears to be in line with their parthenogenetic status. Although the spermatheca appears to be useless in these species, we could not find any evidence on the degeneration in size and morphology of their spermathecae. The spermathecal reservoir still has the columnar hilar epithelium, which is one of the major features for a functional spermatheca in ants.  相似文献   

4.
Summary Sperm storage by females has reached an extreme degree of development in ants. Ant queens, which are unusually long-lived insects, typically store and maintain an unreplenished supply of viable sperm for ten or more years. The spermatheca of Crematogaster opuntiae includes a receptacle and a discrete pair of accessory, or spermathecal, glands, structures commonly found in sperm storage organs of insects. The bean-shaped receptacle consists of a layer of simple epithelium externally and a cuticular layer internally. In the hilar region, the epithelium is highly columnar and exhibits ultrastructural features characteristic of transport epithelia, such as infolded basal membranes, abundant polymorphic mitochondria, and apical microvilli. The spermathecal glands contain cells that have long, dense microvilli that project into a central lumen, abundant mitochondria, and large fields of glycogen. The valve and pump region of the spermatheca provide a mechanism to conserve sperm by controlling the rate of sperm release. The columnar epithelium may function as excretory tissue that serves to maintain an environment in which sperm can remain viable for many years.  相似文献   

5.
The elongated spermathecal duct of bumblebees has been studied in hibernating queens, queens shortly after hibernation, mature egg-laying queens and uninseminated queens captured during summer, and workers. Only rather small size differences are found when comparing spermathecae of queens and workers. Clear differences between bumblebee queens and workers are found when comparing the histochemistry of the spermathecal ducts. Adult queens, regardless of age and reproductive status have spermathecal ducts that contain PAS positive material, whereas workers do not. It is suggested that the polysaccharides in the spermathecal ducts of queens are necessary as a source of energy for the rapid activation of spermatozoa passing through the duct prior to oocyte fertilization. An ultrastructural investigation revealed the presence of high glycogen content in the cells lining the duct of queens. Assuming that sperm cells are kept in a rather inactive state in the reservoir, the carbohydrate (glycogen) probably serves as an energy source for the sperm. The comparatively increased spermathecal duct length of bumblebees may increase the retention time of sperm inside the lumen.  相似文献   

6.
The occurrence of sexual reproduction among ant workers   总被引:3,自引:0,他引:3  
In less than 100 species of ponerine ants, queens no longer exist and have been replaced by mated egg-laying workers. Workers in other subfamilies can lay haploid eggs when queens are removed, but they never reproduce sexually. Ponerine workers are able to mate because they have a spermatheca in most species, foreign males are sexually active near their nests, and their pygidial gland secretions can assume a sexual meaning. Furthermore, ponerine queens are seldom very fecund, and one or several gamergates are able to approximate their egg production. Finally, opportunities for colony fragmentation occur consequent to their life history, and this is a necessary precondition because gamergates cannot start new colonies independently. Many of these characteristics are associated with the limited caste divergence exhibited in this phylogenetically primitive group. Although a few non-ponerine species exhibit some of these preconditions, gamergates have not been found outside the Ponerinae, which alone exhibit the combination of traits leading to queen elimination and worker mating.  相似文献   

7.
A consequence of multiple mating by females can be that the sperm of two or more males directly compete for the fertilisation of ova inside the female reproductive tract. Selection through sperm-competition favours males that protect their sperm against that of rivals and strategically allocate their sperm, e.g., according to the mating status of the female and the morphology of the spermatheca. In the majority of spiders, we encounter the otherwise unusual situation that females possess two independent insemination ducts, both ending in their own sperm storage organ, the spermatheca. Males have paired mating organs, but generally can only fill one spermatheca at a time. We investigated whether males of the African golden orb-web spider Nephila madagascariensis can prevent rival males from mating into the same spermatheca and whether the mating status of the female and/or the spermatheca causes differences in male mating behaviour. There was no significant difference in the duration of copulations into unused spermathecae of virgin and mated females. We found that copulations into previously inseminated spermathecae were generally possible, but shorter than copulations into the unused side of mated females or with virgins. Thus, male N. madagascariensis may have an advantage when they mate with virgins, but cannot prevent future males from mating. However, in rare instances, parts of the male genitals can completely obstruct a female genital opening.  相似文献   

8.
Honey bee queens have the ability to store sperm in spermathecae for fertilizing eggs throughout their life. To investigate mechanisms for sperm storage in Apis mellifera, we employed suppression subtractive hybridization (SSH) to find differentially expressed fragments in spermathecae between virgin queens and newly mated queens. A new gene, named SRP16, was obtained by joining the SSH products with 5′-RACE and 3′-RACE. SRP16 is predicted to encode a 41?kDa protein with 363 amino acid residues. Its expression was found in the spermathecae dominantly in honey bee queens but not in honey bee workers, with the highest expression found in spermathecae of virgin and newly mated queens. SRP16 expression was weak in other tissues of queens other than in the spermathecae and showed no obvious change with reproductive status of queens. The results suggest that SRP16 may play important roles in sperm storage and honey bee reproduction.  相似文献   

9.
[目的]明确宽翅曲背蝗Pararcyptera microptera meridionalis雌虫受精囊的形态、组织结构与超微结构,为更好地认识昆虫受精囊的功能提供依据.[方法]本研究以宽翅曲背蝗已交配雌成虫为实验材料,利用光学显微镜和透射电子显微镜观察其受精囊的形态、组织结构和超微结构.[结果]宽翅曲背蝗受精囊由一个端囊和一条长的受精囊管组成,端囊用于储存精子.端囊和受精囊管有相似的组织学结构,由外到内依次为肌肉层、基膜、上皮层及表皮内膜.上皮层含上皮细胞、腺细胞和导管细胞3种细胞类型.腺细胞具有一个被有微绒毛的细胞外腔.腺细胞的分泌物经细胞外腔通过分泌导管进入到受精囊腔.分泌导管由导管细胞形成.[结论]在宽翅曲背蝗受精囊的端囊和受精囊管上,内膜和腺细胞的细胞外腔结构均存在差异,由此推测,端囊和受精囊管的功能存在一定差异.上皮细胞的超微结构特点显示上皮细胞具有支持、分泌和吸收的功能.  相似文献   

10.
It has been proposed that multiple sperm storage organs (spermathecae) could allow polyandrous females to control paternity. There is little conclusive evidence for this since insemination of individual spermathecae is generally not experimentally manipulable. Here, we examined sperm use patterns in the Australian redback spider (Latrodectus hasselti), which has paired, independent spermathecae. We assessed paternity when two rivals were forced to inseminate a single storage organ or opposite storage organs. When males inseminated a single spermatheca, mean paternity of the female's first mate was 79.8% (median 89.4%), and 38% of first mates achieved 100% paternity. In contrast, when males inseminated opposite organs, the mean paternity of the first mate was 49.3% (median 49.9%), only 10% of males achieved complete precedence, and paternity was normally distributed, suggesting sperm mixing. Males responded to this difference by avoiding previously inseminated female reproductive tracts. Complete sperm precedence can only be achieved if females permit males to copulate with both reproductive tracts. Females often cannibalize smaller males during their first copulation, thus limiting their paternity to 50%. These data show that multiple sperm storage organs can increase female control of paternity.  相似文献   

11.
Multiple mating (i.e., polyandry) by queens in social Hymenoptera is expected to weaken social cohesion since it lowers within-colony relatedness, and hence, indirect fitness benefits from kin selection. Yet, there are many species where queens mate multiply. Several hypotheses have been put forward to explain the evolution and maintenance of polyandry. Here,we investigated the ‘sperm limitation’ and the ‘diploid male load’ hypotheses in the ant Cataglyphis cursor. Genetic analyses of mother-offspring combinations showed that queens mate with up to 8 males, with an effective mating frequency of 3.79. Significant paternity skew (unequal contribution of the fathers) was detected in 1 out of 5 colonies. The amount of sperm stored in the spermatheca was not correlated with the queen mating frequency, and males carry on average enough sperm in their seminal vesicles to fill one queen’s spermatheca. Analyses of the nuclear DNA-content of males also revealed that all were haploid. These results suggest that the ‘sperm limitation’ and the ‘diploid male load’ hypotheses are unlikely to account for the queen mating frequency reported in this ant. In light of our results and the life-history traits of C. cursor, we discuss alternative hypotheses to account for the adaptive significance of multiple mating by queens in this species. Received 13 August 2008; revised 19 November 2008; accepted 21 November 2008.  相似文献   

12.
The influence of different commercial queen producers on the quality of Apis mellifera queens was assessed. It was aimed to determine the quality characteristics of queens reared by commercial queen producers located in the province of Antalya, which is an important region in queens production due to its climatic characteristics. For this purpose, the quality characteristics of a total of 105 queen bees obtained from 21 enterprises were determined. Differences between the enterprises in terms of the number of spermatozoa (P < 0.01) were determined. In terms of the diameter of spermatheca, spermatheca volume and live weight, statistical differences between the enterprises were also observed (P < 0.05). When the relationships between the measured characteristics were examined, significant values were obtained statistically between live weight and diameter of spermathecae (0.268) and spermatheca volume (0.258). It was also determined that there is a significant correlation between spermatheca diameter and spermatheca volume (0.995). The spermatheca diameter of a good quality queen bee should not be <1.2 mm, spermatheca volume 0.90 mm3 and live weight not <200 mg. Only live weight was found to be within the normal quality standard values when the average results of the quality criteria are taken into consideration. Other characters such as spermathecae diameter, spermathecae volume and number of spermatozoa in spermathecae seem to be below quality standard values.  相似文献   

13.
Commensal pea crabs inhabiting bivalves have a high reproductive output due to the extension andfecundity of the ovary. We studied the underlying morphology of the female reproductive system in the Pinnotheridae Pinnotheres pisum, Pinnotheres pectunculi and Nepinnotheres pinnotheres using light microscopy and transmission electron microscopy (TEM). Eubrachyura have internal fertilization: the paired vaginas enlarge into storage structures, the spermathecae, which are connected to the ovaries by oviducts. Sperm is stored inside the spermathecae until the oocytes are mature. The oocytes are transported by oviducts into the spermathecae where fertilization takes place. In the investigated pinnotherids, the vagina is of the “concave pattern” (sensu Hartnoll 1968 ): musculature is attached alongside flexible parts of the vagina wall that controls the dimension of its lumen. The genital opening is closed by a muscular mobile operculum. The spermatheca can be divided into two distinct regions by function and morphology. The ventral part includes the connection with vagina and oviduct and is regarded as the zone where fertilization takes place. It is lined with cuticle except where the oviduct enters the spermatheca by the “holocrine transfer tissue.” At ovulation, the oocytes have to pass through this multilayered glandular epithelium performing holocrine secretion. The dorsal part of the spermatheca is considered as the main sperm storage area. It is lined by a highly secretory apocrine glandular epithelium. Thus, two different forms of secretion occur in the spermathecae of pinnotherids. The definite role of secretion in sperm storage and fertilization is not yet resolved, but it is notable that structure and function of spermathecal secretion are more complex in pinnotherids, and probably more efficient, than in other brachyuran crabs. J. Morphol., 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
Both Aedes aegypti and Anopheles gambiae mosquitoes undergo physiological and behavioral changes after the females mate, but unlike Ae. aegypti, the mated state in An. gambiae is not attained through the action of male accessory gland substances. Experiments in which the spermathecae of mated females were manipulated suggest that a spermatheca filled with sperm is responsible for triggering oviposition behavior. An estimated 48% of the previously mated An. gambiae females mated again when the interval between encounters with males was less than 24h. Unlike male Ae. aegypti that can inseminate up to seven females after their testes are removed, An. gambiae do not store sperm in the vas deferens and without testes would be unable to inseminate any females.  相似文献   

15.
Here we present evidence that the male mating products (sperm and gland products) reduce survival during hibernation of queens of the bumblebee B. terrestris. Most remarkably, the inseminated queens are significantly more likely to have melanized spermathecae than their virgin sisters. Although we could not detect a direct relationship between these two findings they are quite remarkable since B. terrestris is a monandrous and comparably long-lived insect where sexual conflict is unlikely to evolve. The reduced survival can probably be attributed to a general cost of maintaining the sperm, whereas the presence of melanized spermathecae in the inseminated queens may indicate a pathogen transferred during mating or genetic incompatibilities between males and queens. Received 30 December 2007; revised 27 April 2008; accepted 1 May 2008.  相似文献   

16.
The prophenoloxidase system (proPO-AS) is a primordial constituent of insect innate immunity. Its broad action spectrum, rapid response time, and cytotoxic by-products induced by phenoloxidase (PO) production contribute to the effective clearing of invading pathogens. However, such immune reactions may not be optimal for insect organs that evolved to have mutualistic interactions with non-self-cells. Ant queens are long-lived, but only mate early in adult life and store the sperm in a specialized organ, the spermatheca. They never re-mate so their life-time reproductive success is ultimately sperm-limited, which maintains strong selection for high sperm viability before and after storage. The proPO-AS may therefore be inappropriate for the selective clearing of sexually transmitted infections, as it might also target sperm cells that cannot be replaced.We measured PO enzymatic activity in the sperm storage organs of three ant species before and after mating. Our data show that no PO is produced in the sperm storage organs, relative to other somatic tissues as controls, and that these negative results are not due to non-detection in small volumes as non-immune-relevant catalase activity in single spermatheca fluid samples of both virgin and mated queens was significant. The lack of PO activity in sperm storage organs across three different ant species may represent an evolutionarily conserved adaptation to life-long sperm storage by ant queens. We expect that PO activity will be similarly suppressed in queen spermathecae of other eusocial Hymenoptera (bees and wasps) and, more generally, of insect females that store sperm for long periods.  相似文献   

17.
The fine structure of the reproductive accessory gland of the parthenogenetic thrips Heliothrips haemorrhoidalis (Thysanoptera : Thripidae) is reported. It consists of an apical bulb and a fine gland duct. The former consists of an epithelium with secretory and duct-forming cells surrounding a large gland lumen lined with a thin cuticle and filled with dense secretion. Spent secretory cells degenerate and are eliminated from the epithelium. The gland duct is characterized by an irregular, branched lumen surrounded by a very flat epithelium. A valve controls the opening of the duct lumen. The proximal gland duct runs through a cuticular papilla that opens between the dorsal ovipositor valves. The secretions may serve for ovipositor valve lubrication and possibly to protect laid eggs. Observations of serial sections through the vagina exclude the presence of a spermatheca in this species.  相似文献   

18.
The spermatheca of Plethodon cinereus is a compound tubular gland that stores sperm from mating in early spring (March–April) to oviposition in summer (June–July). The seasonal variation of sperm storage in this species has previously been studied by light and transmission electron microscopy. In this paper, sperm aggregations, interaction of sperm with the spermathecal epithelium, and spermathecal secretions are studied using scanning electron microscopy. Within spermathecal tubules, relatively small groups of sperm are aligned along their entire lengths in parallel arrays. This pattern is similar to other plethdontids with complex spermathecae. Lumina of spermathecal tubules are filled with secretory material in April prior to the arrival of sperm, and after sperm appear, a coating of secretory material persists on the apices of the spermathecal epithelium. Sperm peripheral to the central luminal mass can become embedded in the secretory matrix or pushed deeper into the spermathecal epithelium. The spermathecal secretions may serve to attract and prolong the viability of sperm, but sperm that become enmeshed in the secretions or epithelium are phagocytized. Sperm and spermathecal secretions are largely absent after ovulation and in summer months, and new secretory vacuoles are formed in fall, although mating does not occur until spring.  相似文献   

19.
Sperm storage in female insects is important for reproductive success and sperm competition. In Drosophila melanogaster females, sperm viability during storage is dependent upon secretions produced by spermathecae and parovaria. Class III dermal glands are present in both structures. Spermathecal glands are initially comprised of a three-cell unit that is refined to a single secretory cell in the adult. It encapsulates an end-apparatus joining to a cuticular duct passing secretions to the spermathecal lumen. We have examined spermatheca morphogenesis using DIC and fluorescence microscopy. In agreement with a recent study, cell division ceases by 36 h after puparium formation (APF). Immunostaining of the plasma membrane at this stage demonstrates that gland cells wrap around the developing end-apparatus and each other. By 48–60 h APF, the secretory cell exhibits characteristic adult morphology of an enlarged nucleus and extracellular reservoir. A novel finding is the presence of an extracellular reservoir in the basal support cell that is continuous with the secretory cell reservoir. Some indication of early spermathecal gland formation is evident in the division of enlarged cells lying adjacent to the spermathecal lumen at 18 h APF and in cellular processes that bind clusters of cells between 24 and 30 h APF.  相似文献   

20.
The alignment of sperm in a cloacal sperm storage gland, the spermatheca, was studied in female desmognathine salamanders by scanning and transmission electron microscopy. Females representing nine species and collected in spring, late summer, and fall in the southern Appalachian Mountains contained abundant sperm in their spermathecae. The spermatheca is a compound tubuloalveolar gland connected by a single common tube to the middorsal wall of the cloaca. Sperm enter the common tube in small groups aligned in parallel along their axes, and continue in a straight course until encountering divisions of the common tube (neck tubules) or luminal borders of distal bulbs, which can act as barriers. Sperm may form tangles, in which small clusters retain their mutual alignment, at the branches of the neck tubules from the common tube, or in the lumen of the distal bulbs, where subsequent waves of sperm collide with sperm already present. The nuclei of some sperm from the initial group to encounter the walls of the distal bulbs appear to become embedded in secretory material on the luminal border or in the apical cytoplasm of the spermathecal epithelial cells. We propose that these sperm become trapped in the spermatheca and are ultimately degraded. J. Morphol. 238:143–155, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号