首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Nah SS  Choi IY  Yoo B  Kim YG  Moon HB  Lee CK 《FEBS letters》2007,581(9):1928-1932
We investigated the effects of advanced glycation end products (AGE) which accumulate in articular cartilage with age in human osteoarthritic chondrocytes. We found AGE-BSA significantly increased MMP-1, -3, and -13, and TNF-alpha in a dose-dependent manner. AGE-BSA-stimulated JNK, p38, and ERK and NF-kappaB activity. The stimulatory effect of AGE-BSA on MMP-1, -3, and -13 were reversed by treatment with specific JNK, p38 inhibitors, suggesting JNK and p38 are involved in AGE-BSA-induced MMPs and TNF-alpha. We also observed that NF-kappaB is involved in AGE-BSA-induced TNF-alpha. Pretreatment with soluble receptor for AGE (sRAGE) also reduced AGE-stimulated MMPs and TNF-alpha, implicating the involvement of receptor for AGE (RAGE). In conclusion, accumulation of AGE may have a role in the development of osteoarthritis by increasing MMP-1, -3, and -13, and TNF-alpha.  相似文献   

5.
6.
The role of stress-activated protein kinases (SAPKs), c-Jun NH(2)-terminal kinase (JNK) and p38 mitogen-activated protein (MAP) kinase, in preconditioning (PC) was examined with the use of isolated rat hearts subjected to four cyclic episodes of 5-min ischemia and 10-min reperfusion followed by 30-min ischemia and 2-h reperfusion (I/R). A group of hearts was preperfused with 100 microM curcumin, a c-Jun and JNK1 inhibitor, or 5 microM SB 203580, a p38 MAP kinase inhibitor. Another group of hearts was preperfused with 20 microM anisomycin, a stimulator for both JNK and p38 MAP kinases. I/R increased the protein levels of JNK1, c-Jun, and p38 MAP kinase. PC also enhanced the induction of these kinases, but subsequent I/R-mediated increase was blocked by PC. Curcumin blocked I/R- and PC-mediated increase in JNK1 and c-Jun protein levels, whereas it had no effects on p38 MAP kinase. SB 203580, on the other hand, was equally effective in reducing the p38 MAP kinase activation but exerted no effects on JNK1 and c-Jun induction. I/R-mediated increased myocardial infarction was reduced by any of the following compounds: anisomycin, curcumin, and SB 203580. The cardioprotective effects of PC were abolished by either curcumin or SB 203580. The results demonstrate that PC is mediated by a signal-transduction pathway involving both JNK1 and p38 MAP kinase. Activation of SAPKs, although transient, is obligatory for PC.  相似文献   

7.
8.
9.
Extracellular matrix facilitates anchorage-dependent cell survival via interaction of its arginine-glycine-aspartate (RGD) motif with integrins. In this report, we describe an unexpected, apoptosis-promoting the effect of immobilized RGD (iRGD) on tumor necrosis factor-alpha (TNF-alpha)-induced apoptosis. Mesangial cells cultured on RGD-coated plates showed enhanced susceptibility to TNF-alpha-induced apoptosis. iRGD alone did not affect cell survival. In contrast, iRGD did not facilitate but inhibited apoptosis induced by H(2)O(2). Mitogen-activated protein (MAP) kinases and tyrosine kinases are important mediators for the RGD-integrin signaling. Pretreatment with MAP kinase kinase inhibitor PD098059, c-Jun N-terminal kinase (JNK)-c-Jun/AP-1 inhibitor curcumin or p38 MAP kinase inhibitor SB203580 did not attenuate the apoptosis-promoting effect of iRGD. Consistently, transfection with dominant-negative mutants of extracellular signal-regulated kinases, JNK or p38 MAP kinase did not inhibit the effect of iRGD. In contrast, protein tyrosine kinase inhibitors, genistein, and herbimycin A, abrogated the apoptosis-promoting effect of iRGD. Of note, TNF-alpha-induced apoptosis on uncoated plates was not attenuated by tyrosine kinase inhibitors. These data provide the first evidence that iRGD accelerates certain apoptosis. We identified that the effect was mediated by the tyrosine kinase-dependent, MAP kinase-independent mechanism.  相似文献   

10.
11.
12.
13.
Glutamate induces cell death by upsetting the cellular redox homeostasis, termed oxidative glutamate toxicity, in a mouse hippocampal cell line, HT22. Extracellular signal-regulated kinases (ERK) 1/2 are known key players in this process. Here we characterized the roles of both MAP kinases and cell cycle regulators in mediating oxidative glutamate toxicity and the neuroprotective mechanisms of curcumin in HT22 cells. c-Jun N-terminal kinase (JNK) and p38 kinase were activated during the glutamate-induced HT22 cell death, but at a later stage than ERK activation. Treatment with a JNK inhibitor, SP600125, or a p38 kinase inhibitor, SB203580, partly attenuated this cell death. Curcumin, a natural inhibitor of JNK signaling, protected the HT22 cells from glutamate-induced death at nanomolar concentrations more efficiently than SP600125. These doses of curcumin affected neither the level of intracellular glutathione nor the level of reactive oxygen species, but inactivated JNK and p38 significantly. Moreover, curcumin markedly upregulated a cell-cycle inhibitory protein, p21cip1, and downregulated cyclin D1 levels, which might help the cell death prevention. Our results suggest that curcumin has a neuroprotective effect against oxidative glutamate toxicity by inhibiting MAP kinase signaling and influencing cell-cycle regulation.  相似文献   

14.
15.
The aberrant expression of matrix metalloproteinase-9 (MMP-9) is implicated in the invasion and angiogenesis process of brain tumor. This study has investigated the effects of curcumin on MMP-9 expression in human astroglioma cell lines. Curcumin significantly inhibited the MMP-9 enzymatic activity and protein expression that was induced by PMA. The inhibitory effect of curcumin on MMP-9 expression correlates with the decreased MMP-9 mRNA level and the suppression of MMP-9 promoter activity. The curcumin-mediated inhibition of MMP-9 gene expression appears to occur via NF-kappaB and AP-1 because their DNA binding activities were suppressed by curcumin. Furthermore, curcumin strongly repressed the PMA-induced phosphorylation of ERK, JNK, and p38 MAP kinase, which were dependent on the PKC pathway. Therefore, the inhibition of MMP-9 expression by curcumin might have therapeutic potential for controlling the growth and invasiveness of brain tumor.  相似文献   

16.
The aim of this study was to determine whether Helicobacter pylori activates mitogen-activated protein (MAP) kinases in gastric epithelial cells. Infection of AGS cells with an H. pylori cag+ strain rapidly (5 min) induced a dose-dependent activation of extracellular signal-regulated kinases (ERK), p38, and c-Jun N-terminal kinase (JNK) MAP kinases, as determined by Western blot analysis and in vitro kinase assay. Compared with cag+ strains, cag- clinical isolates were less potent in inducing MAP kinase, particularly JNK and p38, activation. Isogenic inactivation of the picB region of the cag pathogenicity island resulted in a similar loss of JNK and p38 MAP kinase activation. The specific MAP kinase inhibitors, PD98059 (25 microM; MAP kinase kinase (MEK-1) inhibitor) and SB203580 (10 microM; p38 inhibitor), reduced H. pylori-induced IL-8 production in AGS cells by 78 and 82%, respectively (p < 0.01 for each). Both inhibitors together completely blocked IL-8 production (p < 0.001). However, the MAP kinase inhibitors did not prevent H. pylori-induced IkappaBalpha degradation or NF-kappaB activation. Thus, H. pylori rapidly activates ERK, p38, and JNK MAP kinases in gastric epithelial cells; cag+ isolates are more potent than cag- strains in inducing MAP kinase phosphorylation and gene products of the cag pathogenicity island are required for maximal MAP kinase activation. p38 and MEK-1 activity are required for H. pylori-induced IL-8 production, but do not appear to be essential for H. pylori-induced NF-kappaB activation. Since MAP kinases regulate cell proliferation, differentiation, programmed death, stress, and inflammatory responses, activation of gastric epithelial cell MAP kinases by H. pylori cag+ strains may be instrumental in inducing gastroduodenal inflammation, ulceration, and neoplasia.  相似文献   

17.
Mitogen-activated protein (MAP) kinases have been suggested as potential mediators for interleukin 1beta (IL-1beta)-induced gene activation. This study investigated the role of the MAP kinases p38 and ERK2 in IL-1beta-mediated expression of the chemokine MCP-1 by human mesangial cells. Phosphorylation of p38 kinase, which is necessary for activation, increased significantly after IL-1beta treatment. p38 kinase immunoprecipitated from IL-1beta-treated cells phosphorylated target substrates to a greater extent than p38 kinase from controls. SB 203580, a selective p38 kinase inhibitor, was used to examine the role of p38 kinase in MCP-1 expression. SB 203580 decreased IL-1beta-induced MCP-1 mRNA and protein levels, but did not affect MCP-1 mRNA stability. Because NF-kappaB is necessary for MCP-1 gene expression, the effect of p38 kinase inhibition on IL-1beta induction of NF-kappaB was measured. SB 203580 (up to 25 microM) had no effect on IL-1beta-induced NF-kappaB nuclear translocation or DNA binding activity. Our previous work showed that IL-1beta also activates the MAP kinase ERK2 in human mesangial cells. PD 098059, a selective inhibitor of the ERK activating kinase MEK1, had no effect on IL-1beta-induced MCP-1 mRNA or protein levels, or on IL-1beta activation of NF-kappaB. These data indicate that p38 kinase is necessary for the induction of MCP-1 expression by IL-1beta, but is not involved at the level of cytoplasmic activation of NF-kappaB. In contrast, ERK2 does not mediate IL-1beta induced MCP-1 gene expression.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号