首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The amino acid sequences of two very different high-potential iron-sulfur protein (HiPIP) isozymes have been determined from the moderately halophilic purple phototrophic bacterium, Rhodospirillum salinarum. Iso-1 HiPIP, which is monomeric and contains 57 amino acid residues, is most similar to the Thiobacillus ferrooxidans iron-oxidizing enzyme (45% identity and a 6-residue deletion). On the other hand, iso-2 HiPIP, which is isolated as an oligomer, contains a peptide chain with 54 amino acid residues. It is the smallest reported to date and is only 31% identical to iso-1 HiPIP. A massive deletion of 17 residues is found at the N-terminus, such that only 2 residues remain prior to the first cysteine. Iso-2 HiPIP also has a 12-residue insertion and a 5-residue deletion. Prior to this study, there were only 2 absolutely conserved residues (Tyr 19 and Gly 75, Chromatium numbering) in addition to the 4 iron-sulfur cluster binding cysteine residues among the 13 HiPIPs sequenced to date. We found that Tyr 19 is absent in iso-2 HiPIP along with the entire N-terminal loop. Moreover, Gly 75 is substituted in both R. salinarum HiPIPs. These characteristics make the R. salinarum HiPIPs, and especially iso-2, the most divergent yet characterized.  相似文献   

2.
The molecular structure of the high-potential iron-sulfur protein (HiPIP) isolated from the phototrophic bacterium, Rhodocyclus tenuis, has been solved and refined to a nominal resolution of 1.5 A with a crystallographic R-factor of 17.3% for all measured X-ray data from 30 A to 1.5 A. It is the smallest of the HiPIP structures studied thus far with 62 amino acid residues. Crystals used in the investigation belonged to the space group P2(1) with unit cell dimensions of a = 36.7 A, b = 52.6 A, c = 27.6 A and beta = 90.8 degrees and contained two molecules per asymmetric unit. The structure was solved by a combination of multiple isomorphous replacement with two heavy-atom derivatives, anomalous scattering from the iron-sulfur cluster, symmetry averaging and solvent flattening. The folding motif for this HiPIP is characterized by one small alpha-helix, six Type I turns, an approximate Type II turn and one Type I' turn. As in other HiPIPs, the iron-sulfur cluster is co-ordinated by four cysteinyl ligands and exhibits a cubane-like motif. These cysteinyl ligands are all located in Type I turns. The hydrogen bonding around the metal cluster in the R. tenuis protein is similar to the patterns observed in the Chromatium vinosum and Ectothiorhodospira halophila HiPIPs. Several of the amino acid residues invariant in the previously determined C. vinosum and E. halophila structures are not retained in the R. tenuis molecule. There are 13 solvent molecules structurally conserved between the two R. tenuis HiPIP molecules in the asymmetric unit, some of which are important for stabilizing surface loops. Interestingly, while it is assumed that this HiPIP functions as a monomer in solution, the two molecules in the asymmetric unit pack as a dimer and are related to each other by an approximate twofold rotation axis.  相似文献   

3.
Three soluble cytochromes were found in two strains of the halophilic non-sulfur purple bacterium Rhodospirillum salexigens. These are cytochromes C2, C and c-551. Cytochrome C2 was recognized by the presence of positive charge at the site of electron transfer (measured by laser flash photolysis), although the protein has an overall negative charge (pI = 4.7). Cytochrome C2 has a high redox potential (300 mV) and is monomeric (13 kDa). Cytochrome c was recognized from its characteristic absorption spectrum. It has a redox potential of 95 mV, an isoelectric point of 4.3, and is isolated as a dimer (33 kDa) of identical subunits (14 kDa), a property which is typical of this family of proteins. R. salexigens cytochrome c-551 has an absorption spectrum similar to the low redox potential Rb. sphaeroides cytochrome c-551.5. It also has a low redox potential (-170 mV), is very acidic (pI = 4.5), and is monomeric (9 kDa), apparently containing 1 heme per protein. The existence of abundant membrane-bound cytochromes c-558 and c-551 which are approximately half reduced by ascorbate and completely reduced by dithionite suggests the presence of a tetraheme reaction center cytochrome in R. salexigens, although reaction centers purified in a previous study (Wacker et al., Biochim. Biophys. Acta (1988) 933, 299-305) did not contain a cytochrome. The most interesting observation is that R. salexigens contains a photoactive yellow protein (PYP), previously observed only in the extremely halophilic purple sulfur bacterium Ectothiorhodospira halophila. The R. salexigens PYP appears to be slightly larger than that of Ec. halophila (16 kDa vs. 14 kDa). Otherwise, these two yellow proteins have similar absorption spectra, chromatographic properties and kinetics of photobleaching and recovery.  相似文献   

4.
Abstract Plant hormones from biomass of the purple non-sulfur bacterium Rhodospiririllum rubrum were isolated for the first time. These compounds show high physiological activities (300–330%) in the cytokinin bioassay. All three detected cytokinins are adenine derivatives, according to spectral analysis. One of them was identified as 6-(4-hydroxy-3-methyl-2-trans-2-bytenylamino)-9-ß-D-ribofuranosylpurine (zeatinriboside) as shown by thin-layer chromatography and reversed-phase high-performance liquid chromatography. The possible functions of bacterial cytokinins are also discussed.  相似文献   

5.
Large single crystals of the high potential iron-sulfur protein isolated from Rhodospirillum tenue strain 3761 have been obtained. They belong to the space group P2(1) with unit cell dimensions of a = 36.7 A, b = 52.6 A, c = 27.6 A, and beta = 90.8 degrees. There are two molecules in the asymmetric unit. Based on oscillation photographs, the crystals diffract to at least 1.6 A resolution. They are stable in the x-ray beam and appear suitable for a high resolution x-ray structure analysis.  相似文献   

6.
7.
Crystals of the high-potential iron-sulfur protein from Ectothiorhodospira halophila strain BN 9626 have been grown from 3.4 to 3.5 M ammonium sulfate solutions at pH 7.5. The crystals belong to the space group P21 with unit cell dimensions of a = 60.00 A, b = 31.94 A, c = 40.27 A, and beta = 100.5 degrees. There are 2 molecules/asymmetric unit. The crystals diffract to at least 1.8 A, are stable in the x-ray beam, and are suitable for a high resolution x-ray crystallographic analysis.  相似文献   

8.
Studies of the nitrogen nutrition and pathways of ammonia assimilation in Rhodocyclus purpureus and Rhodospirillum tenue have shown that these two seemingly related bacteria differ considerably in aspects of their nitrogen metabolism. When grown photoheterotrophically with malate as carbon source, R. purpureus utilized only NH4+ or glutamine as sole nitrogen sources and was unable to fix N2. By contrast, R. tenue was found to utilize a variety of amino acids as nitrogen sources and was a good N2 fixer. No nitrogenase activity was detected in cells of R. purpureus grown on limiting ammonia, whereas cells of R. tenue grown under identical conditions reduced acetylene to ethylene at high rates. Regardless of the nitrogen source supporting growth, extracts of cells of R. purpureus contained high levels of glutamate dehydrogenase, whereas R. tenue contained only trace levels of this enzyme. Alanine dehydrogenase activity was absent from both species. We conclude that R. purpureus is incapable of fixing molecular nitrogen and employs the glutamate dehydrogenase pathway as the primary means of assimilating NH4+ under all growth conditions. R. tenue, on the other hand, employs the glutamine synthetase/glutamate synthase pathway for the incorporation of NH4+ supplied exogenously or as the product of N2 fixation.  相似文献   

9.
Rhodospirillum centenum exhibited a number of general properties typically observed in nonsulfur purple bacteria, but also displayed a number of unusual characteristics that include: (1) conversion of the vibrioid/spiral cells to thick-walled cysts under certain growth conditions; (2) absence of O2 repression of photopigment synthesis; (3) synthesis of “R-bodies”; and (4) swarming motility on agar surfaces that allows macroscopic observation of colony phototaxis. The unusual characteristics indicate that Rsp.centenum will prove to be a valuable experimental system for investigating various basic problems, especially in connection with photosensory phenomena and the regulation of photopigment synthesis by dioxygen and light. The present comparative study of 13 strains was undertaken to further define the Rsp. centenum biotype. Received: 3 August 1995 / Accepted: 1 November 1995  相似文献   

10.
Four soluble c-type cytochromes, the high redox potential 4-Fe-S ferredoxin known as HiPIP, a large molecular weight 2-Fe-S ferredoxin and a 4-Fe-S 'bacterial' ferredoxin, were isolated from extracts of two strains of Rps. marina. Cytochrome c-550, cytochrome c' and cytochrome c-549 were previously described, and we have extended their characterization. Cytochrome c-558, which has not previously been observed in Rps. marina, appears to be a low-spin isozyme of the more commonly observed high-spin cytochrome c'. HiPIP, which was not observed in previous work, was found to be abundant in Rps. marina. The 2-Fe-S ferredoxin, which has previously been observed only in Rps. palustris, has a native size greater than 100 kDa and a subunit size of 17 kDa. The 'bacterial' ferredoxin appears to have only a single four-iron-sulfur cluster. We examined photosynthetic membranes by difference spectroscopy and found abundant c-type cytochromes. Approximately one-quarter of the heme can be reduced by ascorbate and the remainder by dithionite. There is 2 nm difference between the high-potential heme (554 nm) and the low (552 nm). These characteristics resemble those of the tetraheme reaction center cytochrome of Rps. viridis. In addition to the electron transfer components, we found small amounts of a fluorescent yellow protein which has spectral resemblance to a photoactive yellow protein from Ec. halophila.  相似文献   

11.
Structural studies carried out on the isolated free lipid A of Rhodospirillum tenue 2761 revealed a new type of structure for this lipid. The lipid A backbone of 1',6-linked glucosamine disaccharide (central disaccharide) is substituted by three different sugar residues: the non-reducing end of the disaccharide by 4-amino-4-deoxy-L-arabinose 1-phosphate and its reducing end glycosidically by D-arabinofuranose 1-phosphate; further, the reducing glucosamine of the disaccharide is branched to a third glucosamine residue by a 1',4-glycosidic linkage. The amino and the hydroxyl groups of the central disaccharide are acylated by 3-hydroxydecanoic acid (amide-linked) and palmitic and myristic acids (ester-linked). Neither amino nor hydroxyl groups of the three external sugar residues are acylated. The results suggest the following chemical structure for the lipid A of R. tenue 2761: (formula: see text).  相似文献   

12.
The soluble electron transfer protein content of Rhodopseudomonas rutila was found to consist of two basic cytochromes and a (4Fe-4S) ferredoxin. Cytochrome c' was easily identified by its characteristic high spin absorption spectra. The native molecular weight is 29,000 and the subunit is 14,000. Cytochrome c-550 has low spin absorption spectra and a high redox potential (376 mV) typical of cytochromes c2. The molecular weight is about 14,000. The ferredoxin is apparently a dimer (43,000) of approximately 18,000 Da subunits. There are 1.3 to 1.5 iron-sulfur clusters per monomer of 18- to 21-kDa protein. The N-terminal amino acid sequence is like the (7Fe-8S) ferredoxins of Rhodobacter capsulatus and Azotobacter vinelandii. Remarkably, there are only 2 or 3 out of 25 amino acid substitutions. Difference absorption spectra of Rps. rutila membranes indicate that there is not tetraheme reaction center cytochrome c, such as is characteristic of Rps. viridis. However, there are a high potential cytochrome c and a low potential cytochrome b in the membrane, which are suggestive of a cytochrome bc1 complex. Rps. rutila is most similar to Rps. palustris in microbiological properties, yet it does not have the cytochromes c-556, c-554, and c-551 in addition to c2 and c', which are characteristic of Rps. palustris. Furthermore, the Rps. rutila cytochrome c' is dimeric, whereas the same protein from Rps. palustris is the only one known to be monomeric. The cytochrome pattern is more like that of Rhodospirillum rubrum and Rb. capsulatus, which are apparently only able to make cytochromes c2 and c'.  相似文献   

13.
We report the discovery of photoresponsive, flagellum-independent motility of the alpha-proteobacterium Rhodobacter capsulatus, a nonsulfur purple phototrophic bacterium. This motility takes place in the 1.5% agar-glass interface of petri plates but not in soft agar, and cells move toward a light source. The appearances of motility assay plates inoculated with wild-type or flagellum-deficient mutants indicate differential contributions from flagellar and flagellum-independent mechanisms. Electron microscopy confirmed the absence of flagella in flagellar mutants and revealed the presence of pilus-like structures at one pole of wild-type and mutant cells. We suggest that R. capsulatus utilizes a flagellum-independent, photoresponsive mechanism that resembles twitching motility to move in a line away from the point of inoculation toward a light source.  相似文献   

14.
The third amino acid sequence of a high potential iron-sulfur protein, that of the non-sulfur purple photosynthetic bacterium Rhodopseudomonas gelatinosa, has been determined. It consists of a single polypeptide chain of 74 amino acid residues, which is slightly smaller than the high potential iron-sulfur proteins from the sulfur purple bacteria Chromatium vinosum (85 residues) and Thiocapsa pfennigii (81 residues). The sequence of the gelatinosa protein is similar to the C. vinosum and T. pfennigii proteins with 38% and 37% identically matching residues, although six gaps are proposed for the comparison (the C. vinosum and T. pfennigii proteins have 44% identically matching residues out of 73 positions compared with only one 4-residue gap). Only 17 redisues, including the 4 cystein residues essential for binding the four-iron-sulfur chromophore, are invariant in the three known sequences. A discussion of the role of conserved residues in maintenance of the three-dimensional structure and in electron transport is presented.  相似文献   

15.
The amino acid sequence of cytochrome c' from the purple photosynthetic bacterium Rhodospirillum rubrum S1 has been determined and is consistent with homology to cytochrome c' from the nonphotosynthetic bacterium Alcaligenes sp. NCIB 11015. There is 29% identity in the chosen alignment of these two proteins. R. rubrum cytochrome c' is composed of a single peptide chain of 126 amino acid residues with a single heme covalently bound near the COOH terminus. There is no sequence similarity to mitochondrial cytochrome c, except at the heme binding site.  相似文献   

16.
The name Rhodospirillum salexigens, spec. nov., was proposed for the strain WS 68, isolated by W. R. Sistrom at the Oregon coast from salt water. The spiral-shaped phototrophically or chemotrophically growing, salt demanding bacterium contains intracytoplasmic membranes arranged parallel to the cytoplasmic membrane. Bacteriochlorophyll a and spirilloxanthin are the major pigments. Growth occurs between 20 and 45°C at a neutral pH. The DNA base composition was 64 mol % guanine plus cytosine. The cell wall contains peptidoglycan and proteins but no glycolipids.  相似文献   

17.
18.
A detailed study of the soluble cytochrome composition of Rhodopseudomonas sphaeroides (ATCC 17023) indicates that there are five c-type cytochromes and one b-type cytochrome present. The molecular weights, heme contents, amino acid compositions, isoelectric points, and oxidation-reduction potentials were determined and the proteins were compared with those from other bacterial sources. Cytochromes c2 and c' have previously been well characterized. Cytochrome c-551.5 is a diheme protein which has a very low redox potential, similar to certain purple bacterial and algal cytochromes. Cytochrome c-554 is an oligomer, which is spectrally similar to the low-spin isozyme of cytochrome c' found in other purple bacteria (e.g., Rhodopseudomonas palustris cytochrome c-556). An unusual high-spin c-type heme protein has also been isolated. It is spectrally distinguishable from cytochrome c' and binds a variety of heme ligands including oxygen. A large molecular-weight cytochrome b-558 is also present which appears related to a similar protein from Rhodospirillum rubrum, and the bacterioferritin from Escherichia coli. None of the soluble proteins appear to be related to the abundant membrane-bound c-type cytochrome in Rps. sphaeroides which has a larger subunit molecular weight similar to mitochondrial cytochrome c1 and chloroplast cytochrome f.  相似文献   

19.
A proteomics approach was evaluated for analysis of photosyntheis-related proteins that are characteristic of chromatophores, particles derived from purple phototrophic bacterial intracytoplasmic membranes. Proteins of purified chromatophores from Rhodopseudomonas palustris were solubilized and digested with trypsin, to create a collection of peptides that were fractionated by liquid chromatography. Peptide sequences were determined and assigned to specific proteins by analysis of tandem mass spectra of peptides, and comparison to a library derived from the recently determined R. palustris genome sequence. A total of 300 proteins were detected with a probability value >/=0.9, and the number of proteins detected increased to 345 when the minimum probability value was reduced to 0.5. Membrane-integral proteins of the reaction center, cytochrome b/c (1), light-harvesting and ATPase complexes were used as controls to assess how well this approach performs with hydrophobic proteins. New genes were identified, and tentatively designated as encoding photosynthesis-related proteins. We conclude that this approach is a powerful method to evaluate the possible existence of new photosynthesis-related proteins (and genes), although alternative methods are needed to evaluate the exact functions of newly discovered genes.  相似文献   

20.
Abstract The anoxygenic phototrophic purple sulfur bacterium Thiocapsa roseopersicina was grown in illuminated continuous cultures with thiosulfate as growth limiting substrate. Aeration resulted in completely colorless cells growing chemotrophically, whereafter the conditions were changed to a 23 h oxic/1 h anoxic regime. After 11 volume changes at a dilution rate of 0.031 h−1 (35% of μmax) a time dependent equilibrium was established. During the 23 h oxic periods bacteriochlorophyll a synthesis (BChl a ) was not observed, whereas during the 1 h anoxic periods synthesis was maximal (i.e. 1.1 μg (mg protein)−1 h−1). As a result the BChl a concentration gradually increased from zero to an average value over 24 h of 1.9 μg (mg protein)−1. Concomitantly, the protein concentration increased from 13.9 mg 1−1 during continuous oxic conditions to 28.8 mg 1−1. For comparison, the protein concentration during fully phototrophic growth at an identical thiosulfate concentration in the inflowing medium was 53.7 mg 1−1. The specific respiration rate was 8 μmol O2 (mg protein)−1 h−1 during full chemotrophic growth and gradually decreased to 3.5 μmol O2 (mg protein)−1 h−1 after 11 volume changes at the regime employed. These data show that T. rosepersicina is able to simultaneously utilize light and aerobic respiration of thiosulfate as sources of energy. The ecological relevance of the data is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号