首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oligopeptide-mediated helix stabilization of peptides in hydrophobic solutions was previously found by NMR and CD spectroscopic studies. The oligopeptide included the hydrophobic amino acids found in its parent peptide and were interposed by relevant basic oracidic amino acids. The strength of the interactions depended on the amino acid sequences. However, no helix-stabilizing effect was seen for the peptides in phosphate buffer solution, because the peptides assumed a random-coil structure. In order to ascertain whether the helix-stabilizing effect of an oligopeptide on its parent peptide could operate in aqueous solution, model peptides EK17 (Ac-AEAAAAEAAAKAAAAKA-NH2) and IFM17 (Ac-AEAAAAEIFMKAAAAKA-NH2) that may assume an alpha-helix in aqueous solutions were synthesized. Interactions were examined between various oligopeptides (EAAAK, KAAAE, EIFMK, KIFME, KIFMK and EYYEE) and EK17 or IFM17 in phosphate buffer and in 80% trifluoroethanol (TFE)-20% H2O solutions by CD spectra. EAAAK had little effect on the secondary structures of EK17 in both buffer and TFE solutions, while KAAAE, which has the reverse amino acid sequence of EAAAK, had a marked helix-destabilizing effect on EK17 in TFE. EIFMK and KIFME were found to stabilize the alpha-helical structure of EK17 in phosphate buffer solutions, whereas KIFMK and EYYEE destabilized the alpha-helical structure of EK17. EIFMK and KIFME had no effect on IFM17, because unexpectedly, IFM17 had appreciable amounts of beta-sheet structure in buffer solution. It was concluded that in order for the helix-stabilizing (1) the model peptide, the alpha-helical conformation of which is to be stabilized, should essentially assume an alpha-helical structure by nature, and (2) the hydrophobicity of the side-chains of the oligopeptide should be high enough for the oligopeptide to perform stable specific side chain-side chain intermolecular hydrophobic interactions with the model peptide.  相似文献   

2.
Human parathyroid hormone (hPTH) and several deletion analogues were examined for the presence of secondary structure using circular dichroism spectroscopy. The spectra of hPTH and the deletion analogues 8-84, 34-53, 53-84, 1-34, 13-34, 1-19, and 20-34, in neutral, aqueous buffer, gave no evidence for extensive secondary structure. An alpha-helical-like spectral contribution was found to arise from a region within peptide 13-34. This spectral contribution was speculated to arise from partial stability of a helix consisting of residues 17-29. Molecular dynamics simulations of peptide 1-34 suggested that this peptide tends to fold with a bend defined by residues 10-14, with the amino-terminal and carboxyl-terminal residues tending to be in more extended forms and the other residues in helical-like conformations. The addition of trifluoroethanol promoted the formation of alpha-helix, mainly in the 1-34 region. The putative helix comprised of residues 17-29 was stabilized by the addition of 10-20% TFE, while a second putative helix proximal to the amino terminus, and comprised of residues 3-11, was stabilized by slightly higher concentrations of TFE. An amphiphilic sequence was identified within the 20-34 fragment. The development of alpha-helix on binding this fragment, and other analogues containing this sequence, to palmitoyloleoylphosphatidylserine vesicles provided experimental evidence for the potential role of this amphiphilic sequence in binding to membranes or to a membrane receptor. The relationships between these alpha-helical regions in 1-34, either potentiated by trifluoroethanol or lipid vesicles, are discussed in terms of different receptor-binding regions within hPTH.  相似文献   

3.
We previously reported that the 18-mer amphiphilic alpha-helical peptide, Hel 13-5, consisting of 13 hydrophobic residues and five hydrophilic amino acid residues, can induce neutral liposomes (egg yolk phosphatidylcholine) to adopt long nanotubular structures and that the interaction of specific peptides with specific phospholipid mixtures induces the formation of membrane structures resembling cellular organelles such as the Golgi apparatus. In the present study we focused our attention on the effects of peptide sequence and chain length on the nanotubule formation occurring in mixture systems of Hel 13-5 and various neutral and acidic lipid species by means of turbidity measurements, dynamic light scattering measurements, and electron microscopy. We designed and synthesized two sets of Hel 13-5 related peptides: 1) Five peptides to examine the role of hydrophobic or hydrophilic residues in amphiphilic alpha-helical structures, and 2) Six peptides to examine the role of peptide length, having even number residues from 12 to 24. Conformational, solution, and morphological studies showed that the amphiphilic alpha-helical structure and the peptide chain length (especially 18 amino acid residues) are critical determinants of very long tubular structures. A mixture of alpha-helix and beta-structures determines the tubular shapes and assemblies. However, we found that the charged Lys residues comprising the hydrophilic regions of amphiphilic structures can be replaced by Arg or Glu residues without a loss of tubular structures. This suggests that the mechanism of microtubule formation does not involve the charge interaction. The immersion of the hydrophobic part of the amphiphilic peptides into liposomes initially forms elliptic-like structures due to the fusion of small liposomes, which is followed by a transformation into tubular structures of various sizes and shapes.  相似文献   

4.
Secondary structure formation in the disordered terminal regions of flagellin were studied by circular dichroic (CD) spectroscopy, Fourier transform infrared spectroscopy, and x-ray diffraction. The terminal regions of flagellin are known to form alpha-helical bundles upon polymerization into flagellar filaments. We found from comparative CD studies of flagellin and its F40 tryptic fragment that a highly alpha-helical conformation can be induced and stabilized in the terminal regions in 2,2,2-trifluoroethanol (TFE) containing solutions, which is known to promote intra-molecular hydrogen bonding. Two oligopeptides, N(37-61) and C(470-494), each corresponding to a portion of terminal regions and predicted to have a high alpha-helix forming potential, were synthesized and studied. Both peptides were disordered in an aqueous environment, but they showed a strong tendency to assume alpha-helical structure in solutions containing TFE. On the other hand, peptides were found to form transparent gels at high concentrations (> 15 mg/ml) and all three methods confirmed that the peptides become ordered into a predominantly beta structure upon gel formation. Our results show that large segments of the disordered terminal regions of flagellin can adopt alpha-helical as well as beta structure depending on the environmental conditions. This high degree of conformational adaptability may be reflecting some unique characteristics of the flagellin termini, which are involved in self-assembly and polymorphism of flagellar filament.  相似文献   

5.
The conformational features of a peptide derived by the 10-30 sequence of the mitochondrial domain of AKAP121 [Ac-1XKKPLALPGMLALLGWWWFFSRKKX25-NH2 (X=beta-Ala)] in water and in a water/trifluoroethanol (TFE) mixture at 298 K have been determined by NMR and CD spectroscopy. Backbone clustering analysis of NMR-derived structures led to the identification of a single representative structure in water/TFE. The structure of the peptide consists mainly of an alpha-helix, whose core is the region 7-23, with a less ordered N-terminal part. These data are confirmed by CD analysis. It is noteworthy that the high hydrophobic Trp16-Phe20 segment, that might also mediate interaction with tubulin, is organized in an alpha-helical wheel. Our conformational data can be the starting point for the development of highly selective peptides that interfere with the biological function of the Protein Kinase A scaffold protein AKAP121.  相似文献   

6.
J S Holtz  J H Holtz  Z Chi    S A Asher 《Biophysical journal》1999,76(6):3227-3234
Bombolitin I and III (BI and BIII) are small amphiphilic peptides isolated from bumblebee venom. Although they exist in predominately nonhelical conformations in dilute aqueous solutions, we demonstrate, using UV Raman spectroscopy, that they become predominately alpha-helical in solution at pH > 10, in high ionic strength solutions, and in the presence of trifluoroethanol (TFE) and dodecylphosphocholine (DPC) micelles. In this paper, we examine the effects of electrostatic and hydrophobic interactions that control folding of BI and BIII by systematically monitoring their secondary structures as a function of solution conditions. We determine the BI and BIII secondary structure contents by using the quantitative UV Raman methodology of Chi et al. (1998. Biochemistry. 37:2854-2864). Our findings suggest that the alpha-helix turn in BIII at neutral pH is stabilized by a salt bridge between residues Asp2 and Lys5. This initial alpha-helical turn results in different BI and BIII alpha-helical folding mechanisms observed in high pH and high salt concentrations: BIII folds from its single alpha-helix turn close to its N-terminal, whereas the BI alpha-helix probably nucleates within the C-terminal half. We also used quasielastic light scattering to demonstrate that the BI and BIII alpha-helix formation in 0.2 M Ca(ClO4)2 is accompanied by formation of trimers and hexamers, respectively.  相似文献   

7.
To investigate the role of the N-terminal region in the lytic mechanism of the pore-forming toxin sticholysin II (St II), we studied the conformational and functional properties of peptides encompassing the first 30 residues of the protein. Peptides containing residues 1-30 (P1-30) and 11-30 (P11-30) were synthesized and their conformational properties were examined in aqueous solution as a function of peptide concentration, pH, ionic strength, and addition of the secondary structure-inducing solvent trifluoroethanol (TFE). CD spectra showed that increasing concentration, pH, and ionic strength led to aggregation of P1-30; as a consequence, the peptide acquired beta-sheet conformation. In contrast, P11-30 exhibited practically no conformational changes under the same conditions, remaining essentially structureless. Moreover, this peptide did not undergo aggregation. These differences clearly point to the modulating effect of the first 10 hydrophobic residues on the peptides aggregation and conformational properties. In TFE both the first ten hydrophobic peptides acquired alpha-helical conformation, albeit to a different extent, P11-30 displayed lower alpha-helical content. P1-30 presented a larger fraction of residues in alpha-helical conformation in TFE than that found in St II's crystal structure for that portion of the protein. Since TFE mimics the membrane environment, such increase in helical content could also occur upon toxin binding to membranes and represent a step in the mechanism of pore formation. The peptides conformational properties correlated well with their functional behavior. Thus, P1-30 exhibited much higher hemolytic activity than P11-30. In addition, P11-30 was able to block the toxin's hemolytic activity. The size of pores formed in red blood cells by P1-30 was estimated by measuring the permeability to PEGs of different molecular mass. The pore radius (0.95 +/- 0.01 nm) was very similar to that of the pore formed by the toxin. The results demonstrate that the synthetic peptide P1-30 is a good model of St II conformation and function and emphasize the contribution of the toxin's N-terminal region, and, in particular, the hydrophobic residues 1-10 to pore formation.  相似文献   

8.
Wang M  Shan L  Wang J 《Biopolymers》2006,83(3):268-279
Two synthetic peptides, SNasealpha1 and SNasealpha2, corresponding to residues G55-I72 and K97-A109, respectively, of staphylococcal nuclease (SNase), are adopted for detecting the role of helix alpha1 (E57-A69) and helix alpha2 (M98-Q106) in the initiation of folding of SNase. The helix-forming tendencies of the two SNase peptide fragments are investigated using circular dichroism (CD) and two-dimensional (2D) nuclear magnetic resonance (NMR) methods in water and 40% trifluoroethanol (TFE) solutions. The coil-helix conformational transitions of the two peptides in the TFE-H2O mixture are different from each other. SNasealpha1 adopts a low population of localized helical conformation in water, and shows a gradual transition to helical conformation with increasing concentrations of TFE. SNasealpha2 is essentially unstructured in water, but undergoes a cooperative transition to a predominantly helical conformation at high TFE concentrations. Using the NMR data obtained in the presence of 40% TFE, an ensemble of alpha-helical structures has been calculated for both peptides in the absence of tertiary interactions. Analysis of all the experimental data available indicates that formation of ordered alpha-helical structures in the segments E57-A69 and M98-Q106 of SNase may require nonlocal interactions through transient contact with hydrophobic residues in other parts of the protein to stabilize the helical conformations in the folding. The folding of helix alpha1 is supposed to be effective in initiating protein folding. The formation of helix alpha2 depends strongly on the hydrophobic environment created in the protein folding, and is more important in the stabilization of the tertiary conformation of SNase.  相似文献   

9.
The chain length dependence of helix formation of transmembrane peptides in lipids was investigated using fragments corresponding to the second transmembrane domain of the alpha-factor receptor from Saccharomyces cerevisiae. Seven peptides with chain lengths of 10 (M2-10; FKYLLSNYSS), 14 (M2-14), 18 (M2-18), 22 (M2-22), 26 (M2-26), 30 (M2-30) and 35 (M2-35; RSRKTPIFIINQVSLFLIILHSALYFKYLLSNYSS) residues, respectively, were synthesized. CD spectra revealed that M2-10 was disordered, and all of the other peptides assumed partially alpha-helical secondary structures in 99% trifluoroethanol (TFE)/H(2)O. In 50% TFE/H(2)O, M2-30 assumed a beta-like structure. The other six peptides exhibited the same CD patterns as those found in 99% TFE/H(2)O. In 1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-dimyristoyl-sn-glycero-3-phospho-rac-(1-glycerol) (4:1 ratio) vesicles, M2-22, M2-26, and M2-35 formed alpha-helical structures, whereas the other peptides formed beta-like structures. Fourier transform infrared spectroscopy in 1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-dimyristoyl-sn-glycero-3-phospho-rac-(1-glycerol) (4:1) multilayers showed that M2-10, M2-14, M2-18, and M2-30 assumed beta-structures in this environment. Another homologous 30-residue peptide (M2-30B), missing residues SNYSS from the N terminus and extending to RSRKT on the C terminus, was helical in lipid bilayers, suggesting that residues at the termini of transmembrane domains influence their biophysical properties. Attenuated total reflection Fourier transform infrared spectroscopy revealed that M2-22, M2-26, M2-30B, and M2-35 were alpha-helical and oriented at angles of 12 degrees, 13 degrees, 36 degrees, and 34 degrees, respectively, with respect to the multilayer normal. This study showed that chain length must be taken into consideration when using peptides representing single transmembrane domains as surrogates for regions of an intact receptor. Furthermore, this work indicates that the tilt angle and conformation of transmembrane portions of G protein-coupled receptors may be estimated by detailed spectroscopic measurements of single transmembrane peptides.  相似文献   

10.
The three-dimensional structures of the two peptides plantaricin E (plnE; 33 residues) and plantaricin F (plnF; 34 residues) constituting the two-peptide bacteriocin plantaricin EF (plnEF) have been determined by nuclear magnetic resonance (NMR) spectroscopy in the presence of DPC micelles. PlnE has an N-terminal alpha-helix (residues 10-21), and a C-terminal alpha-helix-like structure (residues 25-31). PlnF has a long central alpha-helix (residues 7-32) with a kink of 38+/-7 degrees at Pro20. There is some flexibility in the helix in the kink region. Both helices in plnE are amphiphilic, while the helix in plnF is polar in its N-terminal half and amphiphilic in its C-terminal half. The alpha-helical content obtained by NMR spectroscopy is in agreement with CD studies. PlnE has two GxxxG motifs which are putative helix-helix interaction motifs, one at residues 5 to 9 and one at residues 20 to 24, while plnF has one such motif at residues 30 to 34. The peptides are flexible in these GxxxG regions. It is suggested that the two peptides lie parallel in a staggered fashion relative to each other and interact through helix-helix interactions involving the GxxxG motifs.  相似文献   

11.
Cell adhesion molecule, CD2, from the immunoglobulin superfamily, is comprised of antibodies and Ig-like domains and plays a fundamental role, not only in the immune system, but also in the interactions between cells, specifically in cell-cell adhesion. This study examines the N-terminal domain 1 of CD2 (CD2-1) at different pHs, and in 2,2,2-trifluoroethanol (TFE), using nears- and far-UV circular dichroism (CD), fluorescence, and 1H nuclear magnetic resonance to elucidate factors contributing to the Ig beta-structure. Contrary to the complete unfolding induced by guanidinehydrochloride, CD2-1 retains its native tertiary structure at pHs from 1.0 to 10.0. Like the effects of high temperatures that have previously been observed, TFE reduces the integrity of the tertiary structure, while reorganizing the secondary structure from a native all-beta-sheet to a significantly alpha-helical conformation. The induced helicity of CD2-1 correlates with the helicity inherent in its primary sequence. Our results suggest that electrostatic interactions are less important for the formation of the native secondary and tertiary structure of CD2-1, although they are crucial for CD2's adhesion function. Interference with the protein's hydrophobic interactions and hydrogen-bonding networks, however, causes significant changes in its conformation. Residues of CD2-1, with high conformational flexibility, may contribute for the formation of a metastable dimer by domain-swapping.  相似文献   

12.
The structures of the first and the second transmembrane segment of the bovine mitochondrial oxoglutarate carrier (OGC) were studied by circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopies. Peptides 21-46 and 78-108 of its primary sequence were synthesized and structurally characterized in membrane-mimetic environments. CD data showed that at high concentrations of TFE (>50%) and SDS (>2%) both peptides assume alpha-helical structures, whereas in more hydrophilic environments only peptide 78-108 has a helical structure. (1)H-NMR spectra of the two peptides in TFE/water and SDS were fully assigned, and the secondary structures of the peptides were obtained from nuclear Overhauser effects, (3)J(alphaH-NH) coupling constants and alphaH chemical shifts. The three-dimensional solution structures of the peptides in TFE/water were generated by distance geometry calculations. A well-defined alpha-helix was found in the region K24-V39 of peptide 21-46 and in the region A86-F106 of peptide 78-108. We cannot exclude that in intact OGC the extension of these helices is longer. The helix of peptide 21-46 is essentially hydrophobic, whereas that of peptide 78-108 is predominantly hydrophilic.  相似文献   

13.
Peptide GFSKAELAKARAAKRGGY folds in an alpha-helical conformation that is stabilized by formation of a hydrophobic staple motif and an N-terminal capping box (Munoz V. Blanco FJ, Serrano L, 1995, Struct Biol 2:380-385). To investigate backbone and side-chain internal motions within the helix and hydrophobic staple, residues F2, A5, L7, A8, and A10 were selectively 13C- and 15N-enriched and NMR relaxation experiments were performed in water and in water/trifluoroethanol (TFE) solution at four Larmor frequencies (62.5, 125, 150, and 200 MHz for 13C). Relaxation data were analyzed using the model free approach and an anisotropic diffusion model. In water, angular variances of motional vectors range from 10 to 20 degrees and backbone phi,psi bond rotations for helix residues A5, L7, A8, and A10 are correlated indicating the presence of Calpha-H, Calpha-Cbeta, and N-H rocking-type motions along the helix dipole axis. L7 side-chain CbetaH2 and CgammaH motions are also correlated and as motionally restricted as backbone CalphaH, suggesting considerable steric hindrance with neighboring groups. In TFE which stabilizes the fold, internal motional amplitudes are attenuated and rotational correlations are increased. For the side chain of hydrophobic staple residue F2, wobbling-in-a-cone type motions dominate in water, whereas in TFE, the Cbeta-Cgamma bond and phenyl ring fluctuate more simply about the Calpha-Cbeta bond. These data support the Daragan-Mayo model of correlated bond rotations (Daragan VA, Mayo KH, 1996, J Phys Chem 100:8378-8388) and contribute to a general understanding of internal motions in peptides and proteins.  相似文献   

14.
Losonczi JA  Tian F  Prestegard JH 《Biochemistry》2000,39(13):3804-3816
The N-terminal fragment of adenosine diphosphate (ADP) ribosylation factor 1 (ARF1) is proposed to be involved in the guanosine triphosphate- (GTP-) dependent, reversible association of the protein with membranes through the interaction of not only the N-linked myristoyl chain but also its highly conserved N-terminal hydrophobic residues. Based on the N-terminal sequence of this protein, specifically (13)C- and (15)N-labeled peptides were synthesized with and without an N-myristoyl anchor. The behavior, including structure, dynamics, and orientation, of these peptides in a lipid environment was then studied through a combination of solution (1)H nuclear magnetic resonance (NMR) techniques in micelles and heteronuclear solid-state NMR experiments in magnetically aligned bicelles. The work presented is an extension of the previously reported characterization of the myristoylated N-terminal fragment of ARF1 [Losonczi and Prestegard (1998) Biochemistry 37, 706-716] to include a comparison to a nonmyristoylated analogue. Results indicate that both myristoylated and nonmyristoylated peptides are alpha-helical in a lipid environment and that N-myristoylation does not greatly influence the structure of the peptides. Evidence is presented suggesting association of the peptides with bilayer disks through a combination of edge and surface interactions.  相似文献   

15.
Lipid-peptide interaction has been investigated using cationic amphiphilic alpha-helical peptides and systematically varying their hydrophobic-hydrophilic balance (HHB). The influence of the peptides on neutral and acidic liposomes was examined by 1) Trp fluorescence quenched by brominated phospholipid, 2) membrane-clearing ability, 3) size determination of liposomes by dynamic light scattering, 4) morphological observation by electron microscopy, and 5) ability to form planar lipid bilayers from channels. The peptides examined consist of hydrophobic Leu and hydrophilic Lys residues with ratios 13:5, 11:7, 9:9, 7:11, and 5:13 (abbreviated as Hels 13-5, 11-7, 9-9, 7-11, and 5-13, respectively; Kiyota, T., S. Lee, and G. Sugihara. 1996. Biochemistry. 35:13196-13204). The most hydrophobic peptide (Hel 13-5) induced a twisted ribbon-like fibril structure for egg PC liposomes. In a 3/1 (egg PC/egg PG) lipid mixture, Hel 13-5 addition caused fusion of the liposomes. Hel 13-5 formed ion channels in neutral lipid bilayer (egg PE/egg PC = 7/3) at low peptide concentrations, but not in an acidic bilayer (egg PE/brain PS = 7/3). The peptides with hydrophobicity less than Hel 13-5 (Hels 11-7 and Hel 9-9) were able to partially immerse their hydrophobic part of the amphiphilic helix in lipid bilayers and fragment liposome to small bicelles or micelles, and then the bicelles aggregated to form a larger assembly. Peptides Hel 11-7 and Hel 9-9 each formed strong ion channels. Peptides (Hel 7-11 and Hel 5-13) with a more hydrophilic HHB interacted with an acidic lipid bilayer by charge interaction, in which the former immerses the hydrophobic part in lipid bilayer, and the latter did not immerse, and formed large assemblies by aggregation of original liposomes. The present study clearly showed that hydrophobic-hydrophilic balance of a peptide is a crucial factor in understanding lipid-peptide interactions.  相似文献   

16.
Hipposin is a potent 51-mer antimicrobial peptide (AMP) from Atlantic halibut with sequence similarity to parasin (19-mer catfish AMP), buforin I (39-mer toad AMP), and buforin II (an active 21-mer fragment of buforin I), suggesting that the antimicrobial activity of these peptides might all be due to a common antimicrobial sequence motif. In order to identify the putative sequence motif, the antimicrobial activity of hipposin fragments against 20 different bacteria was compared to the activity of hipposin, parasin and buforin II. Neither parasin nor the 19-mer parasin-like fragment HIP(1-19) (differs from parasin in only three residues) that is derived from the N-terminal part (residues 1-19) of hipposin had marked antimicrobial activity. In contrast, the fragment HIP(16-36) (identical to buforin II) that is derived from the middle part of hipposin (residues 16-36) had such activity, indicating that this part of hipposin contained an antimicrobial sequence motif. The activity was enhanced when the parasin-like N-terminal sequence was also present, as the fragment HIP(1-36) which consists of residues 1-36 in hipposin was more potent than HIP(16-36). Extending HIP(1-36) with three C-terminal residues-thereby constructing the buforin I-like peptide HIP(1-39) (differs from buforin I in only three residues)-increased the activity further. Also, the presence of the C-terminal part of hipposin (residues 40-51) increased the activity, as hipposin was clearly the most potent of all the peptides that were tested. Circular dichroism structural analysis of the peptides revealed that they were all non-structured in aqueous solution. However, trifluoroethanol and the membrane-mimicking entities dodecylphosphocholine micelles and negatively charged liposomes induced (amphiphilic) alpha-helical structuring in hipposin. Judging from the structuring of the individual fragments, the tendency for alpha-helical structuring appeared to be greater in the C-terminal and the buforin II-like middle region of hipposin than in the parasin-like N-terminal region.  相似文献   

17.
Acid-induced conformational changes were studied in human placental cystatin (HPC) in terms of circular dichroism (CD) spectroscopy, the binding of hydrophobic dye 1-anilinonapthalene-8-sulphonic acid (ANS), and intrinsic fluorescence measurements. Our results show the formation of an acid-induced molten globule state at pH 2.0, with significant secondary and tertiary interactions that resemble the native state, exposed hydrophobic regions and the effects of trifluoroethanol (TFE) and methanol in conversion of the acid-denatured state of HPC to the alcohol-induced state, which is characterized by increased helical content, disrupted tertiary structure, and the absence of hydrophobic clusters. Alcohol-induced formation of alpha-helical structures at pH 2.0 is evident from the increase in the ellipticity values at 222 nm, with native-like secondary structural features at 40% TFE. The increase in helical content was observed up to 80% TFE concentration. The ability of TFE (40%) to refold acid-denatured HPC to native-state conformation is also supported by intrinsic and ANS fluorescence measurements.  相似文献   

18.
The interactive and conformational behavior of a series of neuropeptide Y-[18-36] (NPY-[18-36]) analogs in hydrophobic environments have been investigated using reversed-phase high-performance liquid chromatography (RP-HPLC) and circular dichroism (CD) spectroscopy. The peptides studied comprised a series of 16 analogs of NPY-[18-36], each containing a single D-amino acid substitution. The influence of these single L-->D substitutions on the alpha-helical conformation of the NPY-[18-36] analogs in different solvent environments was determined by CD spectroscopy. Retention parameters related to the hydrophobic contact area and the affinity of interaction were determined with an n-octadecyl (C18) adsorbent. Structural transitions for all peptides were manifested as significant changes in the hydrophobic binding domain and surface affinity between 4 degrees C and 37 degrees C. The results indicated that the central region of NPY-[18-36] (residues 23-33) is important for maintenance of the alpha-helical conformation. Moreover, L-->D amino acid residue substitutions within the N- and C-terminal regions, as well as Asn29 and Leu30, do not appear to affect the secondary structure of the peptide. These studies demonstrate that RP-HPLC provides a powerful adjunct for investigations into the induction of stabilized secondary structure in peptides upon their interaction with hydrophobic surfaces.  相似文献   

19.
Synthesis and biological evaluation of pNPY fragments   总被引:3,自引:0,他引:3  
Peptide fragments of pNPY corresponding to the C-terminal segments (13-36) and (25-36), the N-terminal segments (1-12) and (1-24), the segments (6-14) and (7-20), which contain a putative beta-turn, and the internal segments (13-24) and (20-30) were synthesized using solid phase methodology. These fragments were assayed for NPY receptor binding activity in the rat hypothalamus membrane preparation, enhancement of food intake in the rat following ivt administration and inhibition of electrically stimulated muscle contraction in the rat vas deferens. Only the C-terminal fragment (13-36) retained some of the activities of pNPY, appearing to act as a weak agonist, having an additive effect with pNPY on the inhibition of muscle contraction and prolonging the duration of action of pNPY in the feeding assay. It also had considerable alpha-helical character, as did pNPY. None of the other peptide fragments had any agonist or antagonist activity. These results suggest that the expression of full biological NPY activity requires both the C- and the N-terminal segments as well as a putative amphiphilic alpha-helical segment (14-31).  相似文献   

20.
We have analyzed by circular dichroism (CD) and proton nuclear magnetic resonance (NMR) the helical propensity of the all-beta protein acidic fibroblast growth factor (aFGF) and two peptides corresponding to beta-strand 8 (beta8 peptide, amino acids 95-107) and the beta-strand 8/turn/beta-strand 9 hairpin (beta8/9 peptide, amino acids 95-114), which has been involved in receptor binding. A secondary structure prediction of aFGF carried out by several procedures labels the 95-104 sequence as predominantly alpha-helical. A titration of aFGF with 2,2,2-trifluoroethanol (TFE) induces a change in the far-UV CD spectrum of the protein giving rise to a prominent alpha-helical shape (22% alpha-helix). The cooperativity of the transition and the moderate TFE concentrations used (midpoint at 24%) suggest that the effect of TFE is specific. Moreover, a titration performed at pH 2 yields a higher amount of alpha-helix (55%) at a smaller TFE concentration. Synthetic peptides containing the beta8 and beta8/9 sequences display a random coil conformation at pH 7 but acquire alpha-helical structure in the presence of TFE, methanol, and SDS micelles. At pH below 3.0 a significant amount (20-30%) of alpha-helical conformation is present in both the beta8 and beta8/9 peptides even in the absence of other solvent additives. The secondary structure of the peptides was determined by proton nuclear magnetic resonance (1H NMR). These results suggest that the 95-114 sequence of aFGF has helical propensity and that the protein may fold nonhierarchically in the early steps of folding, acquiring its final beta-structure by a later interaction with the rest of the polypeptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号