首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genetic relationships of A genomes of Triticum urartu (Au) and Triticum monococcum (Am) in polyploid wheats are explored and quantified by AFLP fingerprinting. Forty-one accessions of A-genome diploid wheats, 3 of AG-genome wheats, 19 of AB-genome wheats, 15 of ABD-genome wheats, and 1 of the D-genome donor Ae. tauschii have been analysed. Based on 7 AFLP primer combinations, 423 bands were identified as potentially A genome specific. The bands were reduced to 239 by eliminating those present in autoradiograms of Ae. tauschii, bands interpreted as common to all wheat genomes. Neighbour-joining analysis separates T. urartu from T. monococcum. Triticum urartu has the closest relationship to polyploid wheats. Triticum turgidum subsp. dicoccum and T. turgidum subsp. durum lines are included in tightly linked clusters. The hexaploid spelts occupy positions in the phylogenetic tree intermediate between bread wheats and T. turgidum. The AG-genome accessions cluster in a position quite distant from both diploid and other polyploid wheats. The estimates of similarity between A genomes of diploid and polyploid wheats indicate that, compared with Am, Au has around 20% higher similarity to the genomes of polyploid wheats. Triticum timo pheevii AG genome is molecularly equidistant from those of Au and Am wheats.  相似文献   

2.
Cytogenetic work has shown that the tetraploid wheats, Triticum turgidum and T. timopheevii, and the hexaploid wheat T. aestivum have one pair of A genomes, whereas hexaploid T. zhukovskyi has two. Variation in 16 repeated nucleotide sequences was used to identify sources of the A genomes. The A genomes of T. turgidum, T. timopheevii, and T. aestivum were shown to be contributed by T. urartu. Little divergence in the repeated nucleotide sequences was detected in the A genomes of these species from the genome of T. urartu. In T. zhukovskyi one A genome was contributed by T. urartu and the other was contributed by T. monococcum. It is concluded that T. zhukovskyi originated from hybridization of T. timopheevii with T. monococcum. The repeated nucleotide sequence profiles in the A genomes of T. zhukovskyi showed reduced correspondence with those in the genomes of both ancestral species, T. urartu and T. monococcum. This differentiation is attributed to heterogenetic chromosome pairing and segregation among chromosomes of the two A genomes in T. zhukovskyi.  相似文献   

3.
Purothionins were extracted and purified from the diploid wheat Triticum monococcum. Two proteins were obtained, one of which was present in only very small amounts. The major purothionin of T. monococcum was sequenced and it had an amino acid sequence identical with that of the beta-purothionin of Triticum aestivum (hexaploid bread wheat). It is known that T. monococcum contains the wheat A genome, so the structural gene coding for the beta-purothionin must comprise a part of the A genome. There have been no observable (as amino acid replacements) changes in the DNA comprising either the beta-purothionin gene of T. aestivum or the purothionin gene of T. monococcum, since T. monococcum (or its wild equivalent, Triticum boeoticum) hybridized with the diploid wheat B genome progenitor and started the evolution from diploid to allohexaploid wheat. All of the investigated characteristics of the purothionin-like protein isolated in small amounts suggested that it was essentially identical in amino acid sequence with the T. monococcum purothionin. It may be a dimerized form of beta-purothionin.  相似文献   

4.
小麦染色体组的起源与进化探讨   总被引:4,自引:0,他引:4  
陈庆富   《广西植物》1997,17(3):276-282
对小麦染色体组的起源及其进化进行了全面综述后,提出了一个新的小麦进化途径,并认为:(1)Triticummonococumvarurartu是多倍体小麦A组的原初供体,在A组进入多倍体小麦后有Tmonovarboeoticum的基因渗入;(2)B和G组的原初供体是Tspeltoides的S组,在该S组进入多倍体小麦后有两个进化方向,即S组结构分化形成G组和S组经外源染色体代换及重组等而进化成B组;(3)Tturgidum和Ttimophevi都是来自Tspeltoides为母本与Tmonovarurartu杂交后并双二倍化而形成的原初四倍体小麦(SSAA),并由它分别经遗传渗入和结构分化而成;(4)Tzhukovskyi是Ttimophevi作母本与Tmonovarboeoticum杂交并双二倍化而形成,故它具有分别来自Tmonovarurartu和Tmonovarboeoticum的两类A组;(5)Taestivum的D组来自Ttauschi;(6)无论A组、B组、D组、G组在进入多倍体小麦后均有相当分化,同时在其供体种中也有一定分化。  相似文献   

5.
All forms of domesticated tetraploid wheat (Triticum turgidum, genomes AABB) are nearly monomorphic for restriction fragment length polymorphism (RFLP) haplotype a at the Xpsr920 locus on chromosome 4A (Xpsr920-A1a), and wild tetraploid wheat is monomorphic for haplotype b. The Xpsr920-A1a/b dimorphism provides a molecular marker for domesticated and wild tetraploid wheat, respectively. Hexaploid wheat (Triticum aestivum, genomes AABBDD) is polymorphic for the 2 haplotypes. Bacterial artificial chromosome (BAC) clones hybridizing with PSR920 were isolated from Triticum urartu (genomes AA), Triticum monococcum (genomes AmAm), and T. turgidum ssp. durum (genomes AABB) and sequenced. PSR920 is a fragment of a putative ATP binding cassette (ABC) transporter gene (designated ABCT-1). The wheat ABCT-1 gene is more similar to the T. urartu gene than to the T. monococcum gene and diverged from the T. urartu gene about 0.7 MYA. The comparison of the sequence of the wheat A genome BAC clone with that of the T. urartu BAC clone provides the first insight into the microsynteny of the wheat A genome with that of T. urartu. Within 103 kb of orthologous intergenic space, 37 kb of new DNA has been inserted and 36 kb deleted leaving 49.7% of the region syntenic between the clones. The nucleotide substitution rate in the syntenic intergenic space has been 1.6 x 10(-8) nt(-1) year(-1), which is, respectively, 4 and 3 times as great as nucleotide substitution rates in the introns and the third codon positions of the juxtaposed gene. The RFLP is caused by a miniature inverted transposable element (MITE) insertion into intron 18 of the ABCT-A1 gene. Polymerase chain reaction primers were developed for the amplification of the MITE insertion site and its sequencing. The T. aestivum ABCT-A1a haplotype is identical to the haplotype of domesticated tetraploid wheat, and the ABCT-A1b haplotype is identical to that of wild tetraploid wheat. This finding shows for the first time that wild tetraploid wheat participated in the evolution of hexaploid wheat. A cline of the 2 haplotype frequencies exists across Euro-Asia in T. aestivum. It is suggested that T. aestivum in eastern Asia conserved the gene pool of the original T. aestivum more than wheat elsewhere.  相似文献   

6.
In this study, the internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA in the tetraploid wheats, Triticum turgidum (AABB) and Triticum timopheevii (AAGG), their possible diploid donors, i.e., Triticum monococcum (AA), Triticum urartu (AA), and five species in Aegilops sect. Sitopsis (SS genome), and a related species Aegilops tauschii were cloned and sequenced. ITS1 and ITS2 regions of 24 clones from the above species were compared. Phylogenetic analysis demonstrated that Aegilops speltoides was distinct from other species in Aegilops sect. Sitopsis and was the most-likely donor of the B and G genomes to tetraploid wheats. Two types of ITS repeats were cloned from Triticum turgidum ssp. dicoccoides, one markedly similar to that from T. monococcum ssp. boeoticum (AA), and the other to that from Ae. speltoides (SS). The former might have resulted from a recent integression event. The results also indicated that T. turgidum and T. timopheevii might have simultaneously originated from a common ancestral tetraploid species or be derived from two hybridization events but within a very short interval time. ITS paralogues in tetraploid wheats have not been uniformly homogenized by concerted evolution, and high heterogeneity has been found among repeats within individuals of tetraploid wheats. In some tetraploid wheats, the observed heterogeneity originated from the same genome (B or G). Three kinds of ITS repeats from the G genome of an individual of T. timopheevii ssp. araraticum were more divergent than that from inter-specific taxa. This study also demonstrated that hybridization and polyploidization might accelerate the evolution rate of ITS repeats in tetraploid wheats.  相似文献   

7.
Common wheat (Triticum aestivum) has for decades been a textbook example of the evolution of a major crop species by allopolyploidization. Using a sophisticated extension of the PCR technique, we have successfully isolated two single-copy nuclear genes, DMC1 and EF-G, from each of the three genomes found in hexaploid wheat (BA(u)D) and from the two genomes of the tetraploid progenitor Triticum turgidum (BA(u)). By subjecting these sequences to phylogenetic analysis together with sequences from representatives of all the diploid Triticeae genera we are able for the first time to provide simultaneous and strongly supported evidence for the D genome being derived from Aegilops tauschii, the A(u) genome being derived from Triticum urartu, and the hitherto enigmatic B genome being derived from Aegilops speltoides. Previous problems of identifying the B genome donor may be associated with a higher diversification rate of the B genome compared to the A(u) genome in the polyploid wheats. The phylogenetic hypothesis further suggests that neither Triticum, Aegilops, nor Triticum plus Aegilops are monophyletic.  相似文献   

8.
Chromosome pairing at metaphase I was studied in different interspecific hybrids involving Aegilops speltoides (SS) and polyploid wheats Triticum timopheevii (AtAtGG), T. turgidum (AABB), and T. aestivum (AABBDD) to study the relationships between the S, G, and B genomes. Individual chromosomes and their arms were identified by means of C-banding. Pairing between chromosomes of the G and S genomes in T. timopheevii x Ae. speltoides (AtGS) hybrids reached a frequency much higher than pairing between chromosomes of the B and S genomes in T. turgidum x Ae. speltoides (ABS) hybrids and T. aestivum x Ae. speltoides (ABDS) hybrids, and pairing between B- and G-genome chromosomes in T. turgidum x T. timopheevii (AAtBG) hybrids or T. aestivum x T. timopheevii (AAtBGD) hybrids. These results support a higher degree of closeness of the G and S genomes to each other than to the B genome. Such relationships are consistent with independent origins of tetraploid wheats T. turgidum and T. timopheevii and with a more recent formation of the timopheevi lineage.  相似文献   

9.
R Sallares  T A Brown 《Génome》1999,42(1):116-128
We present DNA sequence data showing population variation in the intergenic spacer (IGS) regions of the ribosomal DNAs (rDNAs) on the A genomes of 27 diploid and polyploid wheats. PCRs (polymerase chain reactions) specific for the A(m) genome gave products with five populations of Triticum monococcum but did not give products with AABB or AABBDD wheats. PCRs specific to the A(u) genome of T. urartu gave products with all the AABB and AABBDD polyploids that were tested, but not with T. monococcum. AAGG tetraploids gave products only with the A(u)-specific primers, but the AAAAGG hexaploid T. zhukovskyi gave products with both the A(u) and A(m) primers. Phylogenetic analysis showed a substantial degree of IGS divergence for both the A(m) and A(u) genomes in diploids and polyploids compared with other genomes of Triticum and Aegilops. The rate of evolution of the IGS is much greater than previously reported for the internal transcribed region of the rDNAs but the view that the IGS only gives random noise is rejected, the IGS sequences presented here reflecting the general evolutionary trends affecting the wheat genome as a whole.  相似文献   

10.
选取已定位的大麦1H染色体的STS标记NWG913为引物,在普通小麦(Tritium aestivum L.)及其4个可能的起源种乌拉尔图小麦(T.urartu T.)、栽培一粒小麦(T.monococcum.L)栽培二粒小麦(T.dicoccum S.)、方穗山羊草(Ae.squarrosa L.)上特异性扩增。扩增产物克隆测序后对其进行序列分析,由序列差异的程度来确定这几个物种之间的亲缘关系。实验结果表明,普通小麦(Tritium aestivum L.)的A基因组此段序列与乌拉尔图小麦(T.urartu T.)、栽培一粒小麦(T.monococcum L.)、栽培二粒小麦(T.dicoccum S.)A基因组此段序列完全相同;普通小麦的D基因组此段序列与方穗山羊草(Ae.squarrosa L.)也完全相同;普通小麦的B基因组此段序列和栽培二粒小麦B基因组此段序列有0.61%的差异。研究结果一方面对现有的普通小麦A、B、D基因组起源和进化理论给予了分子水平上的证明,同时也揭示了同一物种不同的基因组化进化速度存在差异。  相似文献   

11.
In vitro DNA:DNA hybridizations and hydroxyapatite thermal chromatography were employed to help identify the species ancestral to the B genome of the polyploid wheats. We hybridized 3H-Triticum aestivum DNA to the unlabeled DNAs of T. urartu, T. speltoides, T. sharonensis, T. bicorne, T. longissimum, and T. searsii, 3H-Labeled DNA of T. urartu was hybridized with the DNA of a synthetic tetraploid. AADD. The heteroduplex thermal stabilities indicated that T. searsii was most closely related to T. aestivum (ABD) and that the genome of T. urartu was more closely related to the A genome than the B genome. The degree of reassociation which may have occurred between the six diploid species and the D genome of T. aestivum was evaluated by hybridizing 3H-T. tauschii DNA with the DNAs of the diploids. The results indicated that T. urartu had the least sequence homology to T. tauschii, the D-genome donor lending additional support to the conclusion that T. urartu is related to the A genome. Thus, it is highly probable that T. searsii is the B-genome donor to the polyploid wheats or a major chromosome donor if the B genome is, in fact, polyphyletic in origin.  相似文献   

12.
This study reports the molecular characterization, polymorphism, and phylogenetic relationships of Triticum aestivum , T. dicoccoides , T. urartu , and T. monococcum ssp. boeoticum , obtained from different locations in Anatolia, using 33 primer combinations to generate amplified fragment length polymorphism (AFLP) patterns in 31 individual plant samples. The objectives of this work were to estimate the phylogenetic relationships between these species and to investigate the genetic distance as a result of ecological and climatic factors. The origin of the A genome of polyploid wheats is also discussed. Eight hundred and seventy-five AFLP fragments had polymorphic loci, 133 of which were unique to T. monococcum ssp. boeoticum , 66 were unique to T. urartu , and 141 were unique to T. dicoccoides . Analysis using the program POPGENE showed polymorphism levels of T. monococcum ssp. boeoticum , T. urartu , and T. dicoccoides of 42.63, 32.34, and 27.71%, respectively. No correlation between genetic distance and ecological or climatic factors was recorded in this study. Our results support the hypothesis that T. urartu is a diploid ancestor of T. dicoccoides and T. aestivum .  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society , 2007, 153 , 67–72.  相似文献   

13.
A reassessment of the origin of the polyploid wheats   总被引:1,自引:0,他引:1       下载免费PDF全文
Kimber G 《Genetics》1974,78(1):487-492
The diploid species that donated the A and D genomes to the polyploid wheats have been recognized for some time. New evidence indicates that Triticum speltoides cannot be the B genome donor to T. turgidum or T. aestivum. T. speltoides is probably homologous to the G genome of T. timopheevii. The donor of the B genome to T. turgidum and T. aestivum is currently unrecognized.  相似文献   

14.
L Yan  M Bhave 《Génome》2001,44(4):582-588
The granule-bound starch (GBSS I, waxy protein) in Triticum timopheevii (AtAtGG) and T. zhukovskyi (AtAtAzAzGG) and a diagnostic section of the genes encoding GBSS-I from the Wx-TtA and Wx-G loci of T. timopheevii and the Wx-TtA, Wx-G, and Wx-TzA loci of T. zhukovskyi were investigated in this study. The waxy proteins in these two polyploid wheats could not be separated into distinct bands, in contrast to those in the T. turgidum (AABB)-T. aestivum (AABBDD) lineage. Alignment of sequences of the section covering exon4-intron4-exon5 of the various waxy genes led to the identification of gene-specific sequences in intron 4. The sequences specific to the Wx-TtA and Wx-G genes of T. timopheevii were different from those of the Wx-A1 gene and Wx-B1 genes of T. turgidum and T. aestivum. A surprising observation was that the Wx-TzA of T. zhukovskyi did not match with the Wx-TmA of T. monococcum, a putative donor of the Az genome, but matched unexpectedly and perfectly with the Wx-B1 gene on chromosome 4A, which is proposed to have translocated from the chromosome 7B of T. aestivum. The possible genetic mechanism explaining these observations is discussed.  相似文献   

15.
Thewaxy proteins encoded by the genomes A, B, and D in polyploid wheats and related diploid species were isolated by SDS-PAGE. The N-terminal amino acid sequences of mature proteins and V8 protease-induced fragments were determined. A total of five amino acid substitutions was detected in these sequences, which represent about 10% of the whole sequences of thewaxy proteins. A comparison of these sequences in polyploid wheats with those in related diploid species revealed the following: (i)waxy proteins encoded by the A genome of polyploid wheats were identical to that ofTriticum monococcum, (ii) thewaxy protein encoded by the B genome ofT. turgidum was identical to that ofT. searsii, but differed from those ofT. speltoides andT. longissimum by one amino acid substitution, (iii) thewaxy protein encoded by the B genome ofT. aestivum differed from that encoded by the B genome ofT. turgidum by one amino acid substitution, and (iv) thewaxy protein encoded by the D genome ofT. aestivum was identical to that ofT. tauschii.  相似文献   

16.
Wheat (Triticum aestivum) germ agglutinin represents a complex mixture of multiple isolectin forms. Upon ion exchange chromatography at pH 3.8, three isolectins can be separated, each of which is composed of two identical subunits. At pH 5.0, however, three additional isolectins can be distinguished, which are built up of two different subunits (heteromeric lectins). Evidence is presented that these heterodimers are normal constituents of the wheat embryo cells. Analyses of the isolectin patterns in extracts from Triticum monococcum, Triticum turgidum dicoccum and Triticum aestivum, provide evidence that each genome, either in simple or complex (polyploid) genomes, directs the synthesis of a single lectin subunit species. In addition, a comparison of the isolectin pattern in these wheat species of increasing ploidy level, made it possible to determine unequivocally the genome by which the individual lectin subunits in polyploid species are coded for. The possible use of lectins in studies on the origin of individual genoms in polyploid species is discussed.Abbreviations CL cereal lectin - PBS phosphate buffered saline - SP Sephadex sulfopropyl Sephadex - WGA wheat germ agglutinin  相似文献   

17.
Ma ZC  Wei YM  Yan ZH  Zheng YL 《Genetika》2007,43(11):1534-1541
To carry out the comparative analysis of alpha-gliadin genes on A genomes of diploid and polyploid wheats, 8 full-length alpha-gliadin genes, including 3 functional genes and 5 pseudogenes, were obtained from diploid wheats, among which 2, 2 and 4 alpha-gliadin genes were isolated from T. urartu, T. monococcum and T. boeoticum, respectively. The results indicated that higher number of alpha-gliadin pseudogenes have been present in diploid wheats before the formation of polyploid wheats. Amino acid sequence comparative analysis among 26 alpha-gliadin genes, including 16 functional genes and 10 pseudogenes, from diploid and polyploid wheats was conducted. The results indicated that all alpha-gliadins contained four coeliac toxic peptide sequences (i.e., PSQQ, QQQP, QQPY and QPYP). The polyglutamine domains are highly variable, and the second polyglutamine stretch is usually disrupted by the lysine or arginine residue at the fourth position. The unique domain I is the most conserved domain. There are 4 and 2 conserved cysteine residues in the unique domains I and II, respectively. Comparative analysis indicated that the functional alpha-gliadin genes from A genome are highly conserved, whereas the identity of pseudogenes in diploid wheats are higher than those in hexaploid wheats. Phylogenetic analysis indicated that all the analyzed functional alpha-gliadin genes could be clustered into two major groups, among which one group could be further divided into 5 subgroups. The origin of alpha-gliadin pseudogene and functional genes were also discussed.  相似文献   

18.
The origin of polyploid wheat genomes has been the subject of numerous studies and is the key problem in wheat phylogeny. Different diploid species have been supposed to donate genomes to tetraploid and hexaploid wheat species. To shed light on phylogenetic relationships between the presumable A genome donors and hexaploid wheat species we have applied a new approach: the comparison of defensins from diploid Triticum species, Triticum boeoticum Boiss. and Triticum urartu Thum. ex Gandil., with previously characterized Triticum kiharae defensins [T.I. Odintsova et al., Biochimie 89 (2007) 605-612]. Defensins were isolated by acidic extraction of seeds followed by three-step chromatographic separation. Isolated defensins were identified by molecular masses using MALDI-TOF mass spectrometry and N-terminal sequencing. For the first time, we have shown that T. urartu defensins are more similar to those of the hexaploid wheat than T. boeoticum defensins, although variation among samples collected in different regions of the world was revealed. Our results clearly demonstrate that T. urartu of the Asian origin contributed the A genome to polyploid wheat species.  相似文献   

19.
The origin of modern wheats involved alloploidization among related genomes. To determine if Aegilops speltoides was the donor of the B and G genomes in AABB and AAGG tetraploids, we used a 3-tiered approach. Using 70 amplified fragment length polymorphism (AFLP) loci, we sampled molecular diversity among 480 wheat lines from their natural habitats encompassing all S genome Aegilops, the putative progenitors of wheat B and G genomes. Fifty-nine Aegilops representatives for S genome diversity were compared at 375 AFLP loci with diploid, tetraploid, and 11 nulli-tetrasomic Triticum aestivum wheat lines. B genome-specific markers allowed pinning the origin of the B genome to S chromosomes of A. speltoides, while excluding other lineages. The outbreeding nature of A. speltoides influences its molecular diversity and bears upon inferences of B and G genome origins. Haplotypes at nuclear and chloroplast loci ACC1, G6PDH, GPT, PGK1, Q, VRN1, and ndhF for approximately 70 Aegilops and Triticum lines (0.73 Mb sequenced) reveal both B and G genomes of polyploid wheats as unique samples of A. speltoides haplotype diversity. These have been sequestered by the AABB Triticum dicoccoides and AAGG Triticum araraticum lineages during their independent origins.  相似文献   

20.
Common wheat ( Triticum aestivum L.) is an allohexaploid, consisting of three different genomes (Au, B and D ) which are genetically closely related. Genomic DNA of the three possible genome donors, T. urartu Thum., Aegilops speltoides Tausch and Ae. tauschii Coss.,were employed as probes to hybridize with the diploid genomic DNA digested by Eco RⅠand Hin dⅢ respectively. Both the hybridization strength and band patterns among the genomes would be good indicators of genome relationships. Combining distr ibution data of some repetitive DNA sequences cloned from T. urartu in the three genomes, the authors draw a conclusion that Au and D are more closely related to each other than either one to the B genome. Genomic in situ hybridization (GISH) of T. aestivum cv. Chinese Spring with genomic DNA probes of the three diploid progenitors respectively indicated that the three genomes could be discriminated clearly via GISH. The signals on the chromosomes of Au and D genomes were even. However, when Ae. speltoides DNA was used as probe, there were very strong cross hybridization and the signals condensed on some areas of the metaphasic chromosomes. In the interphase nucleus, the chromatin of B genome dispersed on the same region and the signals on the homologous chromosomes distributed symmetrically. Rich repetitive DNA sequences in B genome, especially the tandem repetitives, perhaps take an important role for the formation of the special hybridization pattern. The main difference between B and the other two genomes probably is in the repetitive DNA sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号