首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Glutathione-S-transferase activity has been identified in the cytosol of human placenta. The specific activity measured is about 50% of that found in human liver. While some kinetic data have a close correspondence with those attributed to transferases of other sources, the molecular weight (60.000 daltons) and electric properties of this protein are unusual. The inhibitory effect of several non-substrate compounds suggests that also the placental Glutathione-S-transferase may play some role in detoxication of exogenous substances.  相似文献   

3.
4.
Cheng YH  Handwerger S 《Life sciences》2005,77(11):1263-1272
Corticotropin-releasing hormone (CRH) gene expression in human placental cells is induced by activation of the cyclic AMP and protein kinase C signal transduction pathways, but the role of the mitogen-activated kinase (MAPK) pathway is unknown. In this study, we showed that the MAPK inhibitor, PD098059, causes a dose-dependent inhibition of placental CRH gene expression. In contrast, overexpression of RAF in human choriocarcinoma JEG cells stimulates CRH promoter activity by 15-fold, and the stimulation is inhibited by 65% by co-transfection of the cells with a plasmid expressing a RAF dominant/negative protein. The stimulation by RAF was completely abolished by mutation of the cyclic AMP response element (CRE) in the proximal region of the CRH promoter. Taken together, these results strongly suggest that the MAPK signal transduction pathway plays a pivotal role in the regulation of CRH gene expression in human placenta, and that the CRE binding site in the proximal CRH promoter acts as a point of convergence for different signal transduction pathways in the regulation of CRH gene expression in placenta cells.  相似文献   

5.
6.
Elevated levels of homocysteine produce detrimental effects in humans but its role in preterm birth is not known. Here we used a mouse model of hyperhomocysteinemia to examine the relevance of homocysteine to preterm birth. The mouse carries a heterozygous deletion of cystathionine β-synthase (Cbs+/?). Gestational period was monitored in wild type and Cbs+/? female mice. Mouse uterine and placental tissues, human primary trophoblast cells, and human myometrial and placental cell lines were used to determine the influence of homocysteine on expression of specific genes in vitro. The activity of BKCa channel in the myometrial cell line was monitored using the patch-clamp technique. We found that hyperhomocysteinemia had detrimental effects on pregnancy and induced preterm birth in mice. Homocysteine increased the expression of oxytocin receptor and Cox-2 as well as PGE2 production in uterus and placenta, and initiated premature uterine contraction. A Cox-2 inhibitor reversed these effects. Gpr109a, a receptor for niacin, induced Cox-2 in uterus. Homocysteine upregulated GPR109A and suppressed BKCa channel activity in human myometrial cells. Deletion of Gpr109a in Cbs+/? mice reversed premature birth. We conclude that hyperhomocysteinemia causes preterm birth in mice through upregulation of the Gpr109a/Cox-2/PGE2 axis and that pharmacological blockade of Gpr109a may have potential in prevention of preterm birth.  相似文献   

7.
Cytochrome P450 and the associated iron-sulfur protein have been characterized in human placental mitochondria by means of optical absorbance difference spectrophotometry and electron paramagnetic resonance spectrometry. These two proteins occur in a molar ratio of about 1:1 in human placental mitochondria, and the cytochrome P450 appears to be that form involved in cholesterol side-chain cleavage. Pregnenolone formation from endogenous mitochondrial cholesterol, as measured by radioimmunoassay, follows a biphasic time-course similar to the situation in other steroidogenic tissues. The specific activity of cholesterol side-chain cleavage, and the specific contents of cytochrome P450 and the iron-sulfur protein in the mitochondria, are 2- to 3-fold higher at term than in the 1st and 2nd trimesters. When expressed in terms of the cytochrome P450 content, the rate of pregnenolone formation is high, suggesting that cholesterol side-chain cleavage in human placenta is in an activated state.  相似文献   

8.
9.
The degu Octodon degus is one of the very few members of caviomorph or hystricognath Rodentia that possesses a simply arranged chorioallantoic placenta without advanced lobulation. Therefore this species was used as a model to study regional development and growth processes of the placenta, based on the examination of 20 individuals by light and electron microscopy as well as by using markers for proliferation, trophoblast and endometrial stroma. The results were interpreted by comparison with other hystricognaths in the light of their evolutionary history. It was found that trophoblast derived from the trophospongium is essential for extension of the placenta including the labyrinth: extensive proliferation is restricted to trophoblast cells at the outer margin of the placenta and along internally directed, finger-tip like protrusions of fetal mesenchyme towards the labyrinth. This kind of placental development is regarded as part of the stem species pattern of hystricognaths, evolved more than 40 million years ago. It is indicated for the first time that the replenishment of the syncytiotrophoblast is similar to corresponding processes in the human placenta. In conclusion, the degu is a useful model for placental growth dynamics, particularly because of its simply arranged placental architecture, and may also serve as an animal model in comparison to human pregnancies.  相似文献   

10.
F L Bellino  J O Lobo 《Steroids》1987,50(1-3):73-87
Estrogen synthetase (aromatase) is present in large amounts in human term placenta. However, the localization of aromatase within the cellular structure of the placental villus is obscure. By immunocytochemical techniques using antibodies that separately recognize each component of the aromatase cytochrome P-450 enzyme system, the fraction of term placental trophoblast cells in primary culture expressing each aromatase component antigen increased from 20% in fresh mononucleated cells to about 65% for multinucleated giant cells after 72 h. In contrast, about 80% of human choriocarcinoma cells in continuous culture (JAr line) expressed each aromatase component antigen. The fraction of trophoblast cells in primary culture containing human chorionic gonadotropin increased from about 14% in fresh mononucleated cells to about 45% after 72 h and was about 30% in the choriocarcinoma cells. Fibroblast cells in culture, derived from trypsin-treated placental villi, contained aromatase activity, albeit much lower than term placental trophoblast cells. Aromatase specific activity in these placental fibroblasts did not change following growth with dibutyryl cAMP plus theophylline for 72 h.  相似文献   

11.
Notch proteins are a transmembrane receptor family that is structurally and functionally conserved from worms to humans. The mammalian family of Notch proteins consists of several genes encoding Notch receptors and related Notch ligands. Notch signaling is involved in different aspects of the cell-fate decision tree: differentiation, proliferation, and apoptosis. These three processes are finely regulated in human placenta in order to allow a successful pregnancy and correct fetal growth. Notch and its ligands also participate in vascular remodeling and stabilization. Vasculogenesis and blood regulation are of importance in the human placenta for normal fetal development and growth; any disorder of these systems leads to preeclampsia. Drawing on this background, we have investigated the expression of Notch-1, Notch-4, and Jagged-1, together with two members related to the Notch pathway in angiogenesis: VEGF and p21. Normal and preeclamptic human placentas have been evaluated by immunohistochemistry. In preeclamptic samples, a down-regulation of Notch pathway members occurs with a weak/moderate expression of the Notch protein members in all components of placenta compared with physiological placentas that, at term, exhibit the strong expression of Jagged-1 and a moderate expression of both Notch-1 and Notch-4 in all compartments of the placental villi. Moreover, preeclamptic samples also reveal a down-regulation of VEGF expression, together with a moderate nuclear expression of p21Cip1 in the syncytiotrophoblast, cytotrophoblast, and endothelial cells. This down-regulation of VEGF in preeclamptic placentas, in turn, probably decreases Notch protein expression in placental compartments and in endothelial cells and could offer an ethiopathogenetic explanation for the onset of this pathology.  相似文献   

12.
Samples of tRNA isolated from the cell sap of full-term human placenta were found to have a low capacity for accepting amino acids in the presence of partially purified synthetase preparations made from placental or rat liver cell sap. Gel electrophoresis of placental tRNA showed that part of this could be accounted for by gross degradation. The proportion of chargeable tRNA carrying amino acids was estimated by periodate oxidation followed by stripping and then charging with labeled amino acids. Only 50% of chargeable placental tRNA was in the charged state when isolated, whereas 87% of freshly isolated rat liver tRNA was found to be charged with amino acids. A fraction from placental cell sap was shown to have tRNA nucleotidyltransferase activity. When placental tRNA was incubated with this fraction and [3H]ATP or [3H]CTP, ATP was incorporated into about 12% of the tRNA molecules and CTP into 5-7%. When rat liver tRNA was used in place of placental tRNA, [3H]ATP was incorporated into less than 5% of the tRNA molecules. By using snake-venom diesterase over short periods of incubation, it was confirmed that the ATP had been incorporated terminally as AMP into the placental tRNA. These observations show that, in contrast to rat liver tRNA, tRNA prepared from human placenta is poorly charged with amino acids, many of the molecules lack the acceptor trinucleotide and there is extensive degradation beyond this stage.  相似文献   

13.
14.
Supply of lipids from the mother is essential for fetal growth and development. In mice, disruption of yolk sac cell secretion of apolipoprotein (apo) B-containing lipoproteins results in embryonic lethality. In humans, the yolk sac is vestigial. Nutritional functions are instead established very early during pregnancy in the placenta. To examine whether the human placenta produces lipoproteins, we examined apoB and microsomal triglyceride transfer protein (MTP) mRNA expression in placental biopsies. ApoB and MTP are mandatory for assembly and secretion of apoB-containing lipoproteins. Both genes were expressed in placenta and microsomal extracts from human placenta contained triglyceride transfer activity, indicating expression of bioactive MTP. To detect lipoprotein secretion, biopsies from term placentas were placed in medium with [(35)S]methionine and [(35)S]cysteine for 3-24 h. Upon sucrose gradient ultracentrifugation of the labeled medium, fractions were analyzed by apoB-immunoprecipitation. (35)S-labeled apoB-100 was recovered in d approximately 1.02-1.04 g/ml particles (i.e. similar to the density of plasma low density lipoproteins). Electron microscopy of negatively stained lipoproteins secreted from placental tissue showed spherical particles with a diameter of 47 +/- 10 nm. These results demonstrate that human placenta expresses both apoB and MTP and consequently synthesize and secrete apoB-100-containing lipoproteins. Placental lipoprotein formation constitutes a novel pathway of lipid transfer from the mother to the developing fetus.  相似文献   

15.
Polyamine synthesis from proline in the developing porcine placenta   总被引:1,自引:0,他引:1  
Polyamines (putrescine, spermidine, and spermine) are essential for placental growth and angiogenesis. However, little is known about polyamine synthesis in the porcine placenta during conceptus development. The present study was conducted to test the hypothesis that arginine and proline are the major sources of ornithine for placental polyamine production in pigs. Placentae, amniotic fluid, and allantoic fluid were obtained from gilts on Days 20, 30, 35, 40, 45, 50, 60, 90, and 110 of the 114-day gestation (n = 6 per day). Placentae as well as amniotic and allantoic fluids were analyzed for arginase, proline oxidase, ornithine aminotransferase (OAT), ornithine decarboxylase (ODC), proline transport, concentrations of amino acids and polyamines, and polyamine synthesis using established radiochemical and chromatographic methods. Neither arginase activity nor conversion of arginine into polyamines was detected in the porcine placenta. In contrast, both proline and ornithine were converted into putrescine, spermidine, and spermine in placental tissue throughout pregnancy. The activities of proline oxidase, OAT, and ODC as well as proline transport, polyamine synthesis from proline, and polyamine concentrations increased markedly between Days 20 and 40 of gestation, declined between Days 40 and 90 of gestation, and remained at the reduced level through Day 110 of gestation. Proline oxidase and OAT, but not arginase, were present in allantoic and amniotic fluids for the production of ornithine (the immediate substrate for polyamine synthesis). The activities of these two enzymes as well as the concentrations of ornithine and total polyamines in fetal fluids were highest at Day 40 but lowest at Days 20, 90, and 110 of gestation. These results indicate that proline is the major amino acid for polyamine synthesis in the porcine placenta and that the activity of this synthetic pathway is maximal during early pregnancy, when placental growth is most rapid. Our novel findings provide a new base of information for future studies to define the role of proline in fetoplacental growth and development.  相似文献   

16.
Signaling by fibroblast growth factor (FGF) is essential is for trophoblast stem (TS) cells and preimplantation embryos. FGF4 provides essential signaling, but the expression of the complete set of 23 FGF family members has not been analyzed. Here, semi-quantitative RT-PCR and microarray analyses were used to define expression of all FGF ligand mRNA. RT-PCR was done for developmentally important FGF subfamilies, FGF10/FGF22 and FGF8/FGF17/FGF18 as well as FGF11. FGF4 and FGF18 are detected at highest levels by RT-PCR and microarrays. FGF10 was detected at low levels in both assays. FGF11 was detected at moderate levels by microarray, but not by RT-PCR. FGF17 was detected at low levels by array and moderate levels by RT-PCR. FGF8 and FGF22 were detected by RT-PCR, but not by microarrays during late cleavage divisions. FGF8, FGF5, and FGF9 were detected in the oocyte by microarray. FGF2, FGF3, and FGF7 were not detected by RT-PCR or microarrays and FGF13, FGF14, and FGF23 were not detected by microarray. Since a major role of FGF is to maintain TS cells, we tested human and mouse placental cell lines and early gestation human placenta for expression of FGF ligands. Expression in mouse TS cells was compared with preimplantation embryos, and human placental cell line expression was compared with human placenta, to infer which ligands are expressed in placental lineage vs. other cell lineages. The data suggest that human and mouse placenta share FGF18 and its high expression suggests preimplantation and early placental function.  相似文献   

17.
Sharma L  Kaur J  Shukla G 《PloS one》2012,7(3):e32694
Placental malaria is a common clinical complication during pregnancy and is associated with abortion, premature delivery, intrauterine growth retardation and low birth weight. The present study was designed to delineate the underlying mechanism of placental pathology during malarial infection with special reference to oxidative stress and apoptosis. Experimentally, pregnant BALB/c mice were infected with Plasmodium berghei infected red blood cells on gestation day 10. The presence of malarial infection in placenta was confirmed by histopathological studies. It was observation that infected placenta had plugged placental sinusoids with parasitized red blood cells and malarial pigments. Interestingly, we found significant increase in the level of malondialdehyde, the index of oxidative stress and decreased activity of catalase, the antioxidant in infected placenta. Furthermore, in infected placenta the oxidative stress mediated apoptosis was determined by DNA fragmentation assay, ethidium bromide/acridine orange staining and caspase activity. It was observed that oxidative stress begin after second day of malarial infection. Interestingly, it was observed that there was down regulation of anti-apoptotic protein Bcl-2 and up regulation of pro-apoptotic protein Bax in infected placenta, suggesting the involvement of mitochondrial pathway of apoptosis which was further confirmed by activation of caspase 9. However, no change in the expression of Fas gene and caspase 8 activity, indicated the absence of death receptor pathway. Thus, it can be concluded that the placental pathology during malarial infection is mediated by mitochondrial pathway of apoptosis occurring due to augmented lipid peroxidation which may in turn jeopardise the materno-fetal relationship.  相似文献   

18.
The role of fat metabolism during human pregnancy and in placental growth and function is poorly understood. Mitochondrial fatty acid oxidation disorders in an affected fetus are associated with maternal diseases of pregnancy, including preeclampsia, acute fatty liver of pregnancy, and the hemolysis, elevated liver enzymes, and low platelets syndrome called HELLP. We have investigated the developmental expression and activity of six fatty acid beta-oxidation enzymes at various gestational-age human placentas. Placental specimens exhibited abundant expression of all six enzymes, as assessed by immunohistochemical and immunoblot analyses, with greater staining in syncytiotrophoblasts compared with other placental cell types. beta-Oxidation enzyme activities in placental tissues were higher early in gestation and lower near term. Trophoblast cells in culture oxidized tritium-labeled palmitate and myristate in substantial amounts, indicating that the human placenta utilizes fatty acids as a significant metabolic fuel. Thus human placenta derives energy from fatty acid oxidation, providing a potential explanation for the association of fetal fatty acid oxidation disorders with maternal liver diseases in pregnancy.  相似文献   

19.
Cholinesterasic activity of umbilical cord (tissue), completely bloodless, is exclusively due to pseudocholinesterase. Cholinesterase is more active in placenta than in cord; it is an acetylcholinesterase at 80 per cent. Both forms coexist, about equally, in amniotic membrane. A considerable arylesterasic activity is proved in cord, placenta and membrane, the greatest activity being in placenta. Comparing the greater activity in maternal plasma and cord blood's plasma to the very weak activity in amniotic fluid, it is possible to think that cork, membrane, placenta and also amniotic fluid pseudocholinesterase and arylesterase, come from plasma. On the contrary, placental acetylcholinesterase seems original and probably is the source of this enzyme activity in amniotic fluid.  相似文献   

20.
In the present study, we describe a new method of isolation and culture of human villous and extravillous trophoblasts from term placenta. The cultivation of trypsinized placental villous tissue explants, followed by the isolation of cells from outgrowth islets allows for obtaining a cytotrophoblast subpopulation that is free from contamination by other cell types. Compared to other methods, our protocol is mild, simple and effective, does not request costly reagents and provides isolation of the mononuclear cytotrophoblast cell populations free from contamination by other types of placental cells. The isolated cells proliferated and formed a pleomorphic monolayer, where cells fused into a small number of binuclear or polynuclear syncytiotrophoblasts. Isolated cytotrophoblast cells expressed the specific epithelial intermediate filament cytokeratin 7 (CK7), the epithelium-specific cell–cell adhesion molecule E-cadherin and were CD9-, CD45- and vimentin-negative. Cyto- and syncytiotrophoblasts obtained by this method can be used as a model or tool for the fundamental research of differentiation and function of human placental cells, and can provide a new understanding of drug distribution in placenta. Their combination with other in vitro cell models can be useful for studying a variety of other aspects concerning placental functions, which will provide new knowledge for understanding immunology, endocrinology and development of placenta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号