首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary We have examined a method for oriented immobilization of photosynthetic membrane fragments on a solid surface by specific avidin-biotin interaction. Photosynthetic membrane fragments from the purple non-sulphur photosynthetic bacterium Rhodopseudomonas viridis, of which the H-subunit of the photosynthetic reaction centre was biotinylated, was immobilized on an avidin-adsorbed plate. Orientation of the immobilized membrane on the plastic plate was checked by an antisera binding assay that could react to the respective sides of the membrane: the H-subunit side was selectively adsorbed on the plate. Light-induced potential and current responses could be measured when the membrane immobilized on the SnO2-coated glass plate was dried and sandwiched with a counter electrode of Hg. The electrical response in the immobilized membrane was much improved in comparison with the control (membranes were simply adsorbed on the plate), supporting the idea that the membranes have an orientation on solid surfaces.Offprint requests to: M. Hara  相似文献   

2.
A vitamin B1 (thiamin)-sensitive electrode has been devised by combining an oxygen electrode with a yeast-containing membrane. The assembly was used for assaying thiamin at concentrations down to 10?11 gl?1. The analytical procedure developed should allow the measurement of 10–20 samples per hour. The performance of the yeast electrode was improved when alginate membranes reinforced with a nylon network were used. An apparatus for preparing such membranes is described together with a magnetic membrane holder facilitating handling of membranes in combination with electrodes.  相似文献   

3.
An amperometric biosensor was developed for determination of urea using electrodeposited rhodium on a polymer membrane and immobilized urease. The urease catalyzes the hydrolysis of urea to NH4+ and HCO3 ions and the liberated ammonia is catalytically and electrochemically oxidized by rhodium present in the rhodinized membrane on the Pt working electrode. Three types of rhodinized polymer membranes were prepared by varying the number of electrodeposition cycles: membrane 1 with 10 deposition cycles, membrane 2 with 40 cycles and membrane 3 with 60 cycles. The morphologies of the rhodinized membranes were investigated by scanning electron microscopy and the results showed that the deposition of rhodium was like flowers with cornices-like centers. The influence of the amount of electrodeposited rhodium over the electrode sensitivity to different concentrations of ammonia was examined initially based on the cyclic voltammetric curves using the three rhodium modified electrodes. The obtained results convincingly show that electrode with rhodinized membrane 1, which contain the lowest amount of electrodeposited rhodium is the most active and sensitive regarding ammonia. It was found that the anodic oxidation peak of ammonia to nitrogen occurs at 0.60 V. In order to study the performance of urease amperometric sensor for the determination of urea, experiments at constant potential (0.60 V) were performed. The current–time experiments were carried out with urease rhodinized membrane 1 (10 cycles). The amperometric response increased linearly up to 1.75 mM urea. The detection limit was 0.05 mM. The urea biosensor exhibited a high sensitivity of 1.85 μA mM−1 cm−2 with a response time 15 s. The Michaelis–Menten constant Km for the urea biosensor was calculated to be 6.5 mM, indicating that the immobilized enzyme featured a high affinity to urea. The urea sensor showed a good reproducibility and stability. Both components rhodium and urease contribute to the decreasing of the production cost of biosensor by avoiding the use of a second enzyme.  相似文献   

4.
Summary Laccase (p-diphenol, O2 oxido-reductase, E.C. 1.10.3.2) from Botrytis cinerea was immobilized in a gelatin support on an O2 sensing electrode. The enzyme was copolymerized with the inert protein using glutaraldehyde (1.25 % w/w) on the hydrophobic selective gas membrane of a pO2 sensor and this was covered with a Nuclepore polycarbonate microporous film (0.03 m). The enzyme electrode was used in a continuous-flow system to measure the concentration of a wide range of phenolic substrates. The measuring time of each sample was about 1.5 min including response and rinsing times. The electrode response was set for hydroquinone up to 0.8 mM with high reproducibility and less than 5 % error.The electrode response for hydroquinone concentration of 0.25 mM was stable with repeated use for at least 800 assays without significant loss of activity.  相似文献   

5.
The influence of organic and inorganic compounds of tin on the dynamic properties of liposome membranes obtained in the process of dipalmitoylphosphatidylcholine (DPPC) sonication in distilled water was investigated. This was carried out by means of the spin ESR probe method. The probes were selected in such a way as to penetrate different areas of the membrane (a TEMPO probe, 5-DOXYL stearic acid, 16-DOXYL stearic acid). Four compounds of tin were chosen: three organic ones, (CH3)4Sn, (C2H5)4Sn and (C3H7)3SnCl, and one inorganic one, SnCl2. The investigated compounds were added to a liposome dispersion, which was prepared prior to that. The concentration of the admixture was changed within the values from 0 to 10%-mole in proportion to DPPC. The studies indicated that the chlorides of tin display the highest activity in their interaction with liposome membranes. Since these compounds have ionic form in a water solution, the obtained result can mean that this form of admixture has a considerable influence on its activity. Furthermore, it was found that there is a slightly stronger influence of tin compounds with a longer hydrocarbon chain on changes in the probes’ spectroscopic parameters.  相似文献   

6.
The response of a polarographic oxygen electrode to a step change and to an exponential change in bulk oxygen concentration was studied theoretically and experimentally for the case where there is a significant liquid film resistance at the outerside of the membrane-covered electrode. The probe response has been described considering the start-up period of the concentration changes (the period of time that will elapse before the new concentration level is established and/or before the volumetric mass transfer coefficient kLa regains its steady-state value after the gas supply is opened to the fermentor). A linear change of the pertinent characteristics is assumed during this start-up period. It is shown that a substantial error could be introduced by neglecting the start-up period for cases frequently occurring in practice. In addition, the dependences of the probe response on the direct contact of bubbles with an electrode and on the fluid flow field around it were discussed.  相似文献   

7.
Alterations in fluidity of thylakoid membranes isolated from spinach chloroplasts in response to sodium bisulfite (NaHSO3), hydrogen peroxide (H2O2), sodium dodecyl sulfate (SDS), bovine serum albumin (BSA), and free linoleic acid (LA) were investigated by means of a fluorescence polarization study with 1,6-diphenyl-1,3,5-hexatriene as the fluorescence probe. A decrease in fluidity and an increase in microviscosity of membrane were caused by NaHSO3 and H2O2 treatment. In contrast, SDS and BSA were found to increase thylakoid membranes fluidity and decrease microviscosity, in which the corresponding correlation coefficients were −0.9995 to −0.9516 (SDS) and −0.9359 (BSA), respectively. No changes in thylakoid membranes fluidity induced by free LA were found until its concentration above 5 mM where the polarization value (P value) declined (increased fluidity). The results suggest that the changes in thylakoids membrane fluidity might depend on the characteristics, mechanism and extent of the interactions between membrane components and compounds added.  相似文献   

8.
A fluorescence method is presented for quantitatively analyzing exocytosis phenomena and monitoring their kinetics. The method is based on the particular properties of a hydrophobic fluorescent probe, 1-[4-(trimethylammonio)phenyl]-6-phenylhexa-1,3,5-triene (TMA-DPH) [Prendergast, F.G., Haugland, R.P., & Callahan, P.J. (1981) Biochemistry 20, 7333-7338; Kuhry, J.G., Fonteneau, P., Duportail, G., Maechling, C., & Laustriat, G. (1983) Cell Biophys. 5, 129-140; Kuhry, J.G., Duportail, G., Bronner, C., & Laustriat, G. (1985) Biochim. Biophys. Acta 845, 60-67]. When this probe is interacted with intact resting cells in aqueous suspensions, it labels solely the membranes that are in contact with the external medium and is incorporated into them according to a partition equilibrium; i.e., the amount of the probe incorporated is proportional to the available membrane surface. TMA-DPH is highly fluorescent in membranes and not at all in water. Thus, a measurement of the TMA-DPH fluorescence intensity provides a signal proportional to the membrane surface. In secretory cells, the membrane surface available for the probe is increased upon fusion of the membrane of the secretory granules with the cell plasma membranes, directly or via intergranule fusion. Thus, when these cells are stimulated, more TMA-DPH is incorporated than in resting cells since the probe is allowed to also interact with the granule membranes now connected with the external medium by pores. This process results in a proportional increase in the TMA-DPH fluorescence intensity. The response was found to be very rapid and able to follow accurately the exocytosis kinetics.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
We measured lipid lateral diffusion rates for a series of teratocarcinoma-derived and embryo-derived cell lines, using the technique of fluorescence photo-bleaching recovery with a fluorescent lipid probe, C16dil. The probe diffuses more rapidly in plasma membranes of embryonal carcinoma cells than in plasma membranes of teratocarcinoma-derived endodermal cell lines. When embryonal carcinoma cells are induced to differentiate by treatment with retinoic acid, diffusion constants of C16dil are reduced to levels typical of endoderm. These changes are paralleled by differences in membrane cholesterol content; membrane free cholesterol levels in embyronal carcinoma lines are approximately half those found in endodermal lines, and are markedly increased upon retinoic-acid-induced differentiation.  相似文献   

10.
Secretory phospholipase A2 exhibits much greater activity toward apoptotic versus healthy cells. Various plasma membrane changes responsible for this phenomenon have been proposed, including biophysical alterations described as “membrane fluidity” and “order.” Understanding of these membrane perturbations was refined by applying studies with model membranes to fluorescence measurements during thapsigargin-induced apoptosis of S49 cells using probes specific for the plasma membrane: Patman and trimethylammonium-diphenylhexatriene. Alterations in emission properties of these probes corresponded with enhanced susceptibility of the cells to hydrolysis by secretory phospholipase A2. By applying a quantitative model, additional information was extracted from the kinetics of Patman equilibration with the membrane. Taken together, these data suggested that the phospholipids of apoptotic membranes display greater spacing between adjacent headgroups, reduced interactions between neighboring lipid tails, and increased penetration of water among the heads. The phase transition of artificial bilayers was used to calibrate quantitatively the relationship between probe fluorescence and the energy of interlipid interactions. This analysis was applied to results from apoptotic cells to estimate the frequency with which phospholipids protrude sufficiently at the membrane surface to enter the enzyme's active site. The data suggested that this frequency increases 50–100-fold as membranes become susceptible to hydrolysis during apoptosis.  相似文献   

11.
Pulping and papermaking generate large amounts of waste in the form of lignosulfonates which have limited valorized applications so far. Herein, we report a novel lignosulfonate‐based nanofiltration membrane, prepared by using polyethylenimine (PEI) and sodium lignosulfonate (SL) via a layer‐by‐layer (LbL) self‐assembly. As a low‐cost and renewable natural polyelectrolyte, SL is selected to replace the synthetic polyelectrolyte commonly used in the conventional LbL fabrication for composite membranes. The prepared LbL (PEI/SL)7 membranes were crosslinked by glutaraldehyde (GA) to obtain (PEI/SL)7‐GA membranes with compact selective layer. We characterized (PEI/SL)7 and (PEI/SL)7‐GA membranes to study the chemical compositions, morphologies, and surface hydrophilicity. To improve the nanofiltration performances of the (PEI/SL)7‐GA membranes for water desalination, we investigated the effects of the crosslinking time, GA concentration and the NaCl supporting electrolyte on membrane structure and performance. The optimized (PEI/SL)7‐GA membrane exhibited a permeating flux up to 39.6 L/(m2·h) and a rejection of 91.7% for the MgSO4 aqueous solution 2.0 g/L concentration, showing its promising potential for water desalination. This study provides a new approach to applying the underdeveloped lignin‐based biomass as green membrane materials for water treatment.  相似文献   

12.
1-ANILINO-8-NAPHTHALENE sulphonate (ANS) has been widely used to probe protein1 and membrane2 structures. It is weakly fluorescent when dissolved in water, but in hydrophobic surroundings ANS becomes intensely fluorescent. When biological membranes are exposed to ANS the probe is taken up into the hydrophobic core of the membrane; the location and the microenvironment of the probe can be studied by fluorescent spectroscopy and by X-ray diffraction3.  相似文献   

13.
《Biophysical journal》2020,118(4):873-884
Voltage-dependent potassium (Kv) channels play a fundamental role in neuronal and cardiac excitability and are potential therapeutic targets. They assemble as tetramers with a centrally located pore domain surrounded by a voltage-sensing domain (VSD), which is critical for sensing transmembrane potential and subsequent gating. Although the sensor is supposed to be in “Up” conformation in both n-octylglucoside (OG) micelles and phospholipid membranes in the absence of membrane potential, toxins that bind VSD and modulate the gating behavior of Kv channels exhibit dramatic affinity differences in these membrane-mimetic systems. In this study, we have monitored the structural dynamics of the S3b-S4 loop of the paddle motif in activated conformation of KvAP-VSD by site-directed fluorescence approaches, using the environment-sensitive fluorescent probe 7-nitrobenz-2-oxa-1,3-diazol-4-yl-ethylenediamine (NBD). Emission maximum of NBD-labeled loop region of KvAP-VSD (residues 110–117) suggests a significant change in the polarity of local environment in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1′-rac-glycerol) membranes compared to OG micelles. This indicates that S3b-S4 loop residues might be partitioning to membrane interface, which is supported by an overall increased mean fluorescence lifetimes and significantly reduced water accessibility in membranes. Further, the magnitude of red edge excitation shift (REES) supports the presence of restricted/bound water molecules in the loop region of the VSD in micelles and membranes. Quantitative analysis of REES data using Gaussian probability distribution function clearly indicates that the sensor loop has fewer discrete equilibrium conformational states when reconstituted in membranes. Interestingly, this reduced molecular heterogeneity is consistent with the site-specific NBD polarization results, which suggest that the membrane environment offers a relaxed/dynamic organization for most of the S3b-S4 loop residues of the sensor. Overall, our results are relevant for understanding toxin-VSD interaction and gating mechanisms of Kv channels in membranes.  相似文献   

14.
The various experimental approaches and octadecyl rhodamine B chloride (R18) assay's capability to meet the criteria for examining the Ca2+dependent synaptic vesicles (SVs) fusion with target membranes have been investigated. The existence of at least two simultaneous processes one of which attributed to real Ca2+-dependent membrane fusion, while another is considered to be non-specific probe transfer has been shown. The differences in response to temperature changes were found for R18 fluorescence dequenching upon stimulation of membrane fusion or nonspecific probe transfer. The temperature dependences of the probe dequenching rate were the same for heterotypic and homotypic membrane systems and increased with the temperature growth. The combination of R18 fluorescence studies with the data obtained by dynamic light scattering (DLS) offers a unique opportunity for the determination of SVs aggregation and the membrane fusion. The cholesterol content of the synaptosomal plasma membrane was modulated by methyl-β-cyclodextrin (MCD). The MCD molecule has proven to bind directly the membrane cholesterol and interact with lipophilic probe R18 that affects its fluorescence. The obvious distinctions in probe dequenching due to the membrane mixing or the MCD effect were observed. The cholesterol depletion from the synaptosomal plasma membranes was found to inhibit the process of Ca2+-induced membrane fusion with SVs. Thus, the manipulations with conditions of R18 probe dequenching at the model conditions, specific for the Ca2+-triggered fusion steps of regulated exocytosis, allowed us to determine the relative contribution of probe transfer and genuine membrane fusion to the overall fluorescence signal.  相似文献   

15.
The structures of rat liver and heart plasma membranes were studied with the 5-nitroxide stearic acid spin probe, I(1 2,3). The polarity-corrected order parameters (S) of liver and heart plasma membranes were independent of probe concentration only if experimentally determined low I(1 2,3)/lipid ratios were employed. At higher probe/lipid ratios, the order parameters of both membrane systems decreased with increasing probe concentration, and these effects were attributed to enhanced nitroxide radical interactions. Examination of the temperature dependence of approximate and polarity-corrected order parameters indicated that lipid phase separations occur in liver (between 19° and 28°C) and heart (between 21° and 32°C) plasma membranes. The possibility that a wide variety of membrane-associated functions may be influenced by these thermotropic phase separations is considered. Addition of 3.9 mM CaCl2 to I(1 2,3)-labeled liver plasma membrane decreased the fluidity as indicated by a 5% increase in S at 37°C. Similarly, titrating I(1 2,3)-labeled heart plasma membranes with either CaCl2 or LaCl3 decreased the lipid fluidity at 37°C, although the magnitude of the La3+ effect was larger and occurred at lower concentrations than that induced by Ca2+; addition of 0.2 mM La3+ or 3.2 mM Ca2+ increased S by approximately 7% and 5%, respectively. The above cation effects reflected only alterations in the membrane fluidity and were not due to changes in probe–probe interactions. Ca2+ and La3+ at these concentrations decrease the activities of such plasma membrane enzymes as Na+, K+-ATPase and adenylyl cyclase, and it is suggested that the inhibition of these enzymes may be due in part to cation-mediated decreases in the lipid fluidity.  相似文献   

16.
Studies have been made on the temperature dependence of both the hydraulic conductivity, Lp, and the THO diffusion coefficient, ω, for a series of cellulose acetate membranes (CA) of varying porosity. A similar study was also made of a much less polar cellulose triacetate membrane (CTA). The apparent activation energies, Ea, for diffusion across CA membranes vary with porosity, being 7.8 kcal/mole for the nonporous membrane and 5.5 kcal/mole for the most porous one. Ea for diffusion across the less polar CTA membrane is smaller than Ea for the CA membrane of equivalent porosity. Classical viscous flow, in which the hydraulic conductivity is inversely related to bulk water viscosity, has been demonstrated across membranes with very small equivalent pores. Water-membrane interactions, which depend upon both chemical and geometrical factors are of particular importance in diffusion. The implication of these findings for the interpretation of water permeability experiments across biological membranes is discussed.  相似文献   

17.
Summary Osmotic water permeability of the apical membrane of toad urinary epithelium is increased greatly by vasopressin (VP) and is associated with exocytic addition of granules and aggrephores at the apical surface. To determine the physiological role of granule exocytosis, we measured the osmotic water permeability and membrane fluidity of isolated granules, surface membranes and microsomes prepared from toad bladder in the presence and absence of VP.P f was measured by stopped-flow light scattering and membrane fluidity was examined by diphenylhexatriene (DPH) fluorescence anisotropy. In response to a 75mm inward sucrose gradient, granule size decreased with a single exponential time constant of 2.3±0.1 sec (sem, seven preparations, 23°C), corresponding to aP f of 5×10–4 cm/sec; the activation energy (E a ) forP f was 17.6±0.8 kcal/mole. Under the same conditions, the volume of surface membrane vesicles decreased biexponentially with time constants of 0.13 and 1.9 sec; the fast component comprised 70% of the signal. Granule, surface membrane and microsome time constants were unaffected by VP. However, in surface membranes, there was a small decrease (6±2%) in the fraction of surface membranes with fast time constant. DPH anisotropies were 0.253 (granules), 0.224 (surface membrane fluidity is remarkably lower than that of surface and microsomal membranes, and (4) rapid water transport occurs in surface membrane vesicles. The unique physical properties of the granule suggests that apical exocytic addition of granule membrane may be responsible for the low water permeability of the unstimulated apical membrane.  相似文献   

18.
Urease was immobilized on the plasma-aminated surface of a hyfrophobic poly(propylene) (PP) membrane. This membrane, with urease matrix on one side while maintaining its original hydrophobic property on the other, was used to construct the urea sensor. The new urea sensors had response sensitivities ranged from 19 mV/decade to 30 mV/decade depending on the conditions of the plasma reaction. The enzyme electrode using single membrane gave a shorter response time as compared to the corresponding conventional electrode employing two seperate PP membranes. The sensitivity of the enzyme electrode increased with increasing buffer pH and reached a maximal level (40 mV/decade) at pH 7.6. The response sensitivity of the electrode was not affected by the change of buffer strength. Deamination of the plasma-modified hydrophobic PP membrane did not occur in aqueous environment judging from the stability of the urea electrode up to 12 days of operation. (c) 1992 John Wiley & Sons. Inc.  相似文献   

19.
The binding of lipophilic ions to the membrane of envelope vesicles from Halobacterium halobium was examined. The lipophilic ions used constitute a homologous series of (Phe)3-P+-(CH2)n-CH3 (n = 0–5) and tetraphenylphosphonium (TPP+). In the absence of membrane potential, the binding of probes to the membrane was measured. For the probes of n = 0 and n = 1, and for TPP+, binding followed the Langmuir adsorption isotherm. For other probes, analysis revealed the presence of two, high- and low-affinity, binding sites. Upon illumination, which generated the membrane potential, the probe molecules were accumulated into the vesicles. If we ignore the membrane-potential-dependent binding of the probe molecules, the estimated values are larger when the probe used is more hydrophobic. We have tested some models describing the amount of probe bound on membranes in terms of concentration of free probe inside and outside the vesicles. No model has fulfilled the criterion of valid estimation that the membrane potentials estimated are independent of probes used. An experimental method for the estimation of true membrane potential is proposed. Effects of tetraphenylboron on the estimation of membrane potential and on the transport rate of phosphonium cations were examined.  相似文献   

20.
Abstract

The composition of membranes containing acetylcholine receptor was altered in order to examine the possible role of lipids in receptor function. Polyethylene glycol was used to fuse AcChR-rich membranes with an excess of lipid vesicles of defined composition. By this procedure, the cholesterol composition was reduced to as little as 20% of that found in native membranes. Using a TI+ flux assay it was possible to measure receptor function in such altered membrane environments. The apparent Kd for carbamylcholine was found to decrease as the cholesterol content was reduced. This result was confirmed by measuring the agonist-induced fluorescence change of the covalently attached probe, 4-[N-(iodoacetoxy)-ethyl-N-methyl] amino-7-nitrobenz-2-oxa-1,3-diazole. When the phospholipid composition was manipulated by membrane fusion, ion flux was found to be optimal when the lipid composition resembled that of native receptor membranes. These results indicate that membrane lipids potentially play a role in the regulation of acetylcholine receptor function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号