首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
Alterations in Ca2+ homeostasis and accumulation of misfolded proteins in the endoplasmic reticulum (ER) cause ER stress that ultimately leads to programmed cell death. Recent studies have shown that ER stress triggers programmed cell death via an alternative intrinsic pathway of apoptosis that, unlike the intrinsic pathway described previously, is independent of Apaf-1 and cytochrome c. In the present work, we have used a set of complementary approaches, including two-dimensional gel electrophoresis coupled with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry and nano-liquid chromatography-electrospray ionization mass spectrometry with tandem mass spectrometry, RNA interference, co-immunoprecipitation, immunodepletion of candidate proteins, and reconstitution studies, to identify mediators of the ER stress-induced cell death pathway. Our data identify two molecules, valosin-containing protein and apoptosis-linked gene-2 (ALG-2), that appear to play a role in mediating ER stress-induced cell death.  相似文献   

3.
4.
5.
Endoplasmic reticulum (ER) stress, implicated in various neurodegenerative processes, increases the level of intracellular Ca2+ and leads to activation of calpain, a Ca2+-dependent cysteine protease. We have shown previously that S-allyl-l-cysteine (SAC) in aged garlic extracts significantly protects cultured rat hippocampal neurons (HPNs) against ER stress-induced neurotoxicity. The neuroprotective effect of SAC was compared with those of the related antioxidant compounds, l-cysteine (CYS) and N-acetylcysteine (NAC), on calpain activity in HPNs and also in vitro. SAC, but not CYS or NAC, reversibly restored the survival of HPNs and increased the degradation of α-spectrin, a substrate for calpain, induced by tunicamycin, a typical ER stress inducer. Activities of μ- and m-calpains in vitro were also concentration dependently suppressed by SAC, but not by CYS or NAC. At submaximal concentration, although ALLN (5 pM), which blocks the active site of calpain, and calpastatin (100 pM), an endogenous calpain-inhibitor protein, additively inhibited μ-calpain activity in vitro in combination with SAC, the effect of PD150606 (25 μM), which prevents interaction of Ca2+ with the Ca2+-binding site of calpain, was unaffected by SAC. In contrast, SAC (1 mM) significantly reversed the effect of PD150606 at a concentration that elicited supramaximal inhibition (100 μM), but did not affect ALLN (1 nM)- and calpastatin (100 nM)-induced inhibition of μ-calpain activity. These results suggest that the protective effects of SAC against ER stress-induced neuronal cell death are not attributable to antioxidant activity, but to suppression of calpain through interaction with its Ca2+-binding site.  相似文献   

6.
Plasma cells (PC) are the effector cells of the humoral Ab response. Unlike other dedicated secretory cells, they exist as two populations with opposite cell fates: short-lived and long-lived PC. Upon transformation they lead to an incurable neoplasia called multiple myeloma. In this study we have explored the molecular mechanism of PC death. Our data show that their apoptotic pathway is unique among other hemopoietic cells inasmuch as neither the death receptors nor the mitochondria play the central role. PC apoptosis is initiated by activation of Bax at the endoplasmic reticulum membrane and subsequent activation of the endoplasmic reticulum-associated caspase-4 before the release of mitochondrial apoptogenic factors. Together, our observations indicate that the cardinal function of PC (i.e., Ig secretion) is also the cause of their death.  相似文献   

7.
Coupling endoplasmic reticulum stress to the cell death program   总被引:17,自引:0,他引:17  
The endoplasmic reticulum (ER) regulates protein synthesis, protein folding and trafficking, cellular responses to stress and intracellular calcium (Ca(2+)) levels. Alterations in Ca(2+) homeostasis and accumulation of misfolded proteins in the ER cause ER stress that ultimately leads to apoptosis. Prolonged ER stress is linked to the pathogenesis of several different neurodegenerative disorders. Apoptosis is a form of cell death that involves the concerted action of a number of intracellular signaling pathways including members of the caspase family of cysteine proteases. The two main apoptotic pathways, the death receptor ('extrinsic') and mitochondrial ('intrinsic') pathways, are activated by caspase-8 and -9, respectively, both of which are found in the cytoplasm. Recent studies point to the ER as a third subcellular compartment implicated in apoptotic execution. Here, we review evidence for the contribution of various cellular molecules that contribute to ER stress and subsequent cellular death. It is hoped that dissection of the molecular components and pathways that alter ER structure and function and ultimately promote cellular death will provide a framework for understanding degenerative disorders that feature misfolded proteins.  相似文献   

8.
Inability to meet protein folding demands within the endoplasmic reticulum (ER) activates the unfolded protein response (UPR), a signaling pathway with both adaptive and apoptotic outputs. While some secretory cell types have a remarkable ability to increase protein folding capacity, their upper limits can be reached when pathological conditions overwhelm the fidelity and/or output of the secretory pathway. Irremediable 'ER stress' induces apoptosis and contributes to cell loss in several common human diseases, including type 2 diabetes and neurodegeneration. Researchers have begun to elucidate the molecular switches that determine when ER stress is too great to repair and the signals that are then sent from the UPR to execute the cell.  相似文献   

9.
Srinivasan K  Sharma SS 《Life sciences》2012,90(3-4):154-160
AimsThe role of nitric oxide (NO) and endoplasmic reticulum (ER) stress has been implicated in the pathogenesis of cerebral ischemic/reperfusion (I/R) injury and diabetes. The aim of the study was to investigate the neuroprotective potential of 3-bromo-7-nitroindazole (3-BNI), a potent and selective neuronal nitric oxide synthase (nNOS) inhibitor against ER stress and focal cerebral I/R injury associated with comorbid type 2 diabetes in-vivo.Main methodsType 2 diabetes was induced by feeding high-fat diet and streptozotocin (35 mg/kg) treatment in rats. Focal cerebral ischemia was induced by 2 h middle cerebral artery occlusion (MCAO) followed by 22 h of reperfusion. Immunohistochemistry and western blotting methods were employed for the detection and expression of ER stress/apoptosis markers [78 kDa glucose regulated protein (GRP78) and CCAAT/enhancer binding protein homologous protein (CHOP)]. TUNEL assay for DNA fragmentation was also performed.Key findingsThe diabetic rats subjected to cerebral I/R had prominent neurological damage and functional deficits compared with sham-operated rats. Massive DNA fragmentation was observed in ischemic penumbral region of diabetic brains. Concomitantly, the enhanced immunoreactivity and expression of ER stress/apoptosis markers were noticed. 3-BNI (30 mg/kg, i.p.) treatment significantly inhibited the cerebral infarct, edema volume and improved functional recovery of neurological deficits. The neuroprotection was further evident by lesser DNA fragmentation with a concomitant reduction of GRP78 and CHOP.SignificanceThe study demonstrates the neuroprotective potential of 3-BNI in diabetic stroke model which may be partly due to inhibition of ER stress pathway involving CHOP.  相似文献   

10.
We investigated the role of an endoplasmic reticulum stress-associated protein, CHOP/GADD153, after NMDA-induced mouse retinal damage. After injection of NMDA into the vitreous, TUNEL-positive cells were detected in the retinal ganglion cell layer (GCL) and inner nuclear layer (INL) at 6 h after NMDA injection, and these gradually increased in number up to 24 h. Analysis by real-time RT-PCR revealed that CHOP mRNA was induced by about 3-fold, at 2 h after NMDA injection. Immunoreactivity for the CHOP protein was intense in cells of the GCL following NMDA treatment. Immunoblot analysis showed that NMDA injection increased the expression of CHOP protein in the retina. Compared with wild-type mice, CHOP/ mice were more resistant to NMDA-induced retinal cell death as determined by TUNEL assay. At 7 days after NMDA treatment, the thickness of the inner plexiform layer and INL were larger in CHOP/ mice than in wild-type mice. The number of residual cells in the GCL following NMDA treatment was significantly higher in CHOP/ mice than in wild-type mice. In conclusion, CHOP is induced in mouse retina by NMDA treatment, and CHOP/ mice are more resistant to NMDA-induced retinal damage, suggesting that CHOP plays an important role in NMDA-induced retinal cell death.  相似文献   

11.
12.
Accumulation of abnormal proteins occurs in many neurodegenerative diseases including Huntington's disease (HD). However, the precise role of protein aggregation in neuronal cell death remains unclear. We show here that the expression of N-terminal huntingtin proteins with expanded polyglutamine (polyQ) repeats causes cell death in neuronal PC6.3 cell that involves endoplasmic reticulum (ER) stress. These mutant huntingtin fragment proteins elevated Bip, an ER chaperone, and increased Chop and the phosphorylation of c-Jun-N-terminal kinase (JNK) that are involved in cell death regulation. Caspase-12, residing in the ER, was cleaved in mutant huntingtin expressing cells, as was caspase-3 mediating cell death. In contrast, cytochrome-c or apoptosis inducing factor (AIF) was not released from mitochondria after the expression of these proteins. Treatment with salubrinal that inhibits ER stress counteracted cell death and reduced protein aggregations in the PC6.3 cells caused by the mutant huntingtin fragment proteins. Salubrinal upregulated Bip, reduced cleavage of caspase-12 and increased the phosphorylation of eukaryotic translation initiation factor-2 subunit-alpha (eIF2alpha) that are neuroprotective. These results show that N-terminal mutant huntingtin proteins activate cellular pathways linked to ER stress, and that inhibition of ER stress by salubrinal increases cell survival. The data suggests that compounds targeting ER stress may be considered in designing novel approaches for treatment of HD and possibly other polyQ diseases.  相似文献   

13.
Sorafenib is a multikinase inhibitor that induces apoptosis in human leukemia and other malignant cells. Recently, we demonstrated that sorafenib diminishes Mcl-1 protein expression by inhibiting translation through a MEK1/2-ERK1/2 signaling-independent mechanism and that this phenomenon plays a key functional role in sorafenib-mediated lethality. Here, we report that inducible expression of constitutively active MEK1 fails to protect cells from sorafenib-mediated lethality, indicating that sorafenib-induced cell death is unrelated to MEK1/2-ERK1/2 pathway inactivation. Notably, treatment with sorafenib induced endoplasmic reticulum (ER) stress in human leukemia cells (U937) manifested by immediate cytosolic-calcium mobilization, GADD153 and GADD34 protein induction, PKR-like ER kinase (PERK) and eukaryotic initiation factor 2alpha (eIF2alpha) phosphorylation, XBP1 splicing, and a general reduction in protein synthesis as assessed by [35S]methionine incorporation. These events were accompanied by pronounced generation of reactive oxygen species through a mechanism dependent upon cytosolic-calcium mobilization and a significant decline in GRP78/Bip protein levels. Interestingly, enforced expression of IRE1alpha markedly reduced sorafenib-mediated apoptosis, whereas knockdown of IRE1alpha or XBP1, disruption of PERK activity, or inhibition of eIF2alpha phosphorylation enhanced sorafenib-mediated lethality. Finally, downregulation of caspase-2 or caspase-4 by small interfering RNA significantly diminished apoptosis induced by sorafenib. Together, these findings demonstrate that ER stress represents a central component of a MEK1/2-ERK1/2-independent cell death program triggered by sorafenib.  相似文献   

14.
Shiga toxins (Stxs) are a family of cytotoxic proteins that lead to the development of bloody diarrhea, hemolytic-uremic syndrome, and central nervous system complications caused by bacteria such as S. dysenteriae, E. coli O157:H7 and E. coli O104:H4. Increasing evidence indicates that macroautophagy (autophagy) is a key factor in the cell death induced by Stxs. However, the associated mechanisms are not yet clear. This study showed that Stx2 induces autophagic cell death in Caco-2 cells, a cultured line model of human enterocytes. Inhibition of autophagy using pharmacological inhibitors, such as 3-methyladenine and bafilomycin A1, or silencing of the autophagy genes ATG12 or BECN1 decreased the Stx2-induced death in Caco-2 cells. Furthermore, there were numerous instances of dilated endoplasmic reticulum (ER) in the Stx2-treated Caco-2 cells, and repression of ER stress due to the depletion of viable candidates of DDIT3 and NUPR1. These processes led to Stx2-induced autophagy and cell death. Finally, the data showed that the pseudokinase TRIB3-mediated DDIT3 expression and AKT1 dephosphorylation upon ER stress were triggered by Stx2. Thus, the data indicate that Stx2 causes autophagic cell death via the ER stress pathway in intestinal epithelial cells.  相似文献   

15.
Accumulation of misfolded proteins and alterations in Ca2+ homeostasis in the endoplasmic reticulum (ER) causes ER stress and leads to cell death. However, the signal-transducing events that connect ER stress to cell death pathways are incompletely understood. To discern the pathway by which ER stress-induced cell death proceeds, we performed studies on Apaf-1(-/-) (null) fibroblasts that are known to be relatively resistant to apoptotic insults that induce the intrinsic apoptotic pathway. While these cells were resistant to cell death initiated by proapoptotic stimuli such as tamoxifen, they were susceptible to apoptosis induced by thapsigargin and brefeldin-A, both of which induce ER stress. This pathway was inhibited by catalytic mutants of caspase-12 and caspase-9 and by a peptide inhibitor of caspase-9 but not by caspase-8 inhibitors. Cleavage of caspases and poly(ADP-ribose) polymerase was observed in cell-free extracts lacking cytochrome c that were isolated from thapsigargin or brefeldin-treated cells. To define the molecular requirements for this Apaf-1 and cytochrome c-independent apoptosis pathway further, we developed a cell-free system of ER stress-induced apoptosis; the addition of microsomes prepared from ER stress-induced cells to a normal cell extract lacking mitochondria or cytochrome c resulted in processing of caspases. Immunodepletion experiments suggested that caspase-12 was one of the microsomal components required to activate downstream caspases. Thus, ER stress-induced programmed cell death defines a novel, mitochondrial and Apaf-1-independent, intrinsic apoptotic pathway.  相似文献   

16.
17.
Roles of CHOP/GADD153 in endoplasmic reticulum stress   总被引:1,自引:0,他引:1  
Endoplasmic reticulum (ER) is the site of synthesis and folding of secretory proteins. Perturbations of ER homeostasis affect protein folding and cause ER stress. ER can sense the stress and respond to it through translational attenuation, upregulation of the genes for ER chaperones and related proteins, and degradation of unfolded proteins by a quality-control system. However, when the ER function is severely impaired, the organelle elicits apoptotic signals. ER stress has been implicated in a variety of common diseases such as diabetes, ischemia and neurodegenerative disorders. One of the components of the ER stress-mediated apoptosis pathway is C/EBP homologous protein (CHOP), also known as growth arrest- and DNA damage-inducible gene 153 (GADD153). Here, we summarize the current understanding of the roles of CHOP/GADD153 in ER stress-mediated apoptosis and in diseases including diabetes, brain ischemia and neurodegenerative disease.  相似文献   

18.
Midazolam is a sedative used by patients with mechanical ventilation. However, the potential clinical value is not fully explored. In this report, we made use of a neuroblastoma-spinal cord hybrid motor neuron-like cell line NSC34, and elucidated the potential role of Midazolam on these cells under the insult of oxidative stress. We found the protective effect of Midazolam on motor neurons against cytotoxicity induced by the combination of oligomycin A and rotenone (O/R) or phenylarsine oxide. The characteristics of apoptosis, such as the ratio of TUNEL+ cells or the expression level of cleaved Caspase-3, was decreased by 22 or 45% in the presence of Midazolam. Furthermore, this effect was correlated with the JNK-ERK signaling pathway. Either phosphorylation of ERK or JNK was positively or negatively modulated with the treatment of Midazolam in NSC34 cells attacked by reactive oxygen species. Meanwhile, inhibition or activation of the JNK-ERK pathway regulated the protective effect of Midazolam on NSC34 cells with oxidative stress insult. Collectively, this study elucidated a previously unidentified clinical effect of Midazolam, and put forward the great promise that Midazolam may be considered as a potential candidate to the treatment of motor neuron disease.  相似文献   

19.
20.
Curcumin from the rhizome of the Curcuma longa plant has been noted for its chemo-preventative and chemo-therapy activities, and it inhibits the growth of many types of human cancer cell lines. In this study, the mechanisms of cell death involved in curcumin-induced growth inhibition, including cell cycle arrest and induction of apoptosis in human tongue cancer SCC-4 cells, were investigated. Herein, we observed that curcumin inhibited cell growth of SCC-4 cells and induced cell death in a dose-dependent manner. Treatment of SCC-4 cells with curcumin caused a moderate and promoted the G(2) /M phase arrest, which was accompanied with decreases in cyclin B/CDK1 and CDC25C protein levels. Moreover, curcumin significantly induced apoptosis of SCC-4 cells with a decrease of the Bcl-2 level, reduction of mitochondrial membrane potential (ΔΨ(m) ), and promoted the active forms of caspase-3. Curcumin also promoted the releases of AIF and Endo G from the mitochondria in SCC-4 cells by using confocal laser microscope. Therefore, we suggest that curcumin induced apoptosis through a mitochondria-dependent pathway in SCC-4 cells. In addition, we also found that curcumin-induced apoptosis of SCC-4 cells was partly through endoplasmic reticulum stress. In conclusion, curcumin increased G(2) /M phase arrest and induced apoptosis through ER stress and mitochondria-dependent pathways in SCC-4 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号