共查询到20条相似文献,搜索用时 0 毫秒
1.
Interferon-gamma inhibits the intrahepatocytic development of malaria parasites in vitro 总被引:23,自引:0,他引:23
L Schofield A Ferreira R Altszuler V Nussenzweig R S Nussenzweig 《Journal of immunology (Baltimore, Md. : 1950)》1987,139(6):2020-2025
In this study, we examined the activity of recombinant interferon (IFN)-gamma against Plasmodium berghei exoerythrocytic forms (EEF) grown in vitro within the highly differentiated human hepatoma cell line HEPG2. We assayed the effect of IFN-gamma on parasite growth by DNA hybridization using a P. berghei specific DNA probe. The specific activity of IFN-gamma against EEF is very high, and depends upon the time of lymphokine addition. When IFN-gamma is added to HEPG2 cells containing intracellular EEF, 6 hr after sporozoite invasion, parasite DNA replication is inhibited by approximately 75% at 10(3) U/ml and 50% at 1 U/ml. This treatment can either abolish or greatly reduce the infectivity of EEF for mice. When added earlier, 3 hr after completion of sporozoite invasion, IFN-gamma inhibits parasite replication to an even greater degree. The highest levels of inhibition were obtained when IFN-gamma was added 6 hr prior to sporozoite invasion (100% inhibition at 10(2) U/ml, approximately 55% inhibition at 0.1 U/ml, and 17% inhibition at 0.001 U/ml). We found that HEPG2 cells express approximately 44,000 surface receptors for IFN-gamma. These data are consistent with the view that IFN-gamma exerts its antimalarial activity by binding to surface receptors on hepatocytes and inducing intracellular changes unfavorable for parasite development. Tryptophan starvation does not appear to be involved in this process. These findings also support the idea that IFN-gamma, released from immune T cells upon encountering sporozoite antigen, may be an important effector mechanism in sterile immunity to sporozoite challenge. 相似文献
2.
3.
Host cell invasion by malaria parasites 总被引:6,自引:0,他引:6
The complex life cycle of the malaria parasite includes three specialized invasive stages, distinct both in terms of their cellular architecture and in their choice of target host cell. Despite the dissimilarities between these forms, there are clear parallels in the manner by which they enter their respective host cells. Advances in the area of erythrocyte invasion by the malaria merozoite, outlined here by Chetan Chitnis and Mike Blackman and discussed at the Molecular Approaches to Malaria conference, Lorne, Australia, 2-5 February 2000, will undoubtedly impact on our understanding of mechanisms of cell entry by the other invasive forms. Similarly, recent progress in dissecting the functional role of surface proteins expressed by sporozoite and ookinete stages has provided fascinating insights into general aspects of invasion by all invasive stages of apicomplexan parasites. 相似文献
4.
Bicarbonate/chloride antiport in Vero cells: II. Mechanisms for bicarbonate-dependent regulation of intracellular pH 总被引:3,自引:0,他引:3
Sjur Olsnes Jannikke Ludt Tor Inge Tnnessen Kirsten Sandvig 《Journal of cellular physiology》1987,132(2):192-202
The rates of bicarbonate-dependent uptake and efflux of 22Na+ in Vero cells were studied and compared with the uptake and efflux of 36Cl-. Both processes were strongly inhibited by DIDS. Whereas the transport of chloride increased approximately ten-fold when the internal pH was increased over a narrow range around neutrality, the uptake of Na+ was much less affected by changes in pH. The bicarbonate-linked uptake of 22Na+ was dependent on internal Cl- but not on internal Na+. At a constant external concentration of HCO3-, the amount of 22Na+ associated with the cells increased when the internal concentration of HCO3- decreased and vice versa, which is compatible with the possibility that the ion pair NaCO3- is the transported species and that the transport is symmetric across the membrane. Bicarbonate inhibited the uptake of 36Cl- both in the absence and presence of Na+. At alkaline internal pH, HCO3- stimulated the efflux of 36Cl- from preloaded cells, while at acidic internal pH both Na+ and HCO3- were required to induce 36Cl- efflux. We propose a model for how bicarbonate-dependent regulation of the internal pH may occur. This model implies the existence of two bicarbonate transport mechanisms that, under physiological conditions, transport OH(-)-equivalents in opposite directions across the plasma membrane. 相似文献
5.
Malaria is one of the most debilitating and life threatening diseases in tropical regions of the world. Over 500 million clinical cases occur, and 2-3 million people die of the disease each year. Because Plasmodium lacks genuine glutathione peroxidase and catalase, the two major antioxidant enzymes in the eukaryotic cell, malaria parasites are likely to utilize members of the peroxiredoxin (Prx) family as the principal enzymes to reduce peroxides, which increase in the parasite cell due to metabolism and parasitism during parasite development. In addition to its function of protecting macromolecules from H(2)O(2), Prx has also been reported to regulate H(2)O(2) as second messenger in transmission of redox signals, which mediate cell proliferation, differentiation, and apoptosis. In the malaria parasite, several lines of experimental data have suggested that the parasite uses Prxs as multifunctional molecules to adapt themselves to asexual and sexual development. In this review, we summarize the accumulated knowledge on the Prx family with respect to their functions in mammalian cells and their possible function(s) in malaria parasites. 相似文献
6.
Nunes A Thathy V Bruderer T Sultan AA Nussenzweig RS Ménard R 《Molecular and cellular biology》1999,19(4):2895-2902
The recent advent of gene-targeting techniques in malaria (Plasmodium) parasites provides the means for introducing subtle mutations into their genome. Here, we used the TRAP gene of Plasmodium berghei as a target to test whether an ends-in strategy, i.e., targeting plasmids of the insertion type, may be suitable for subtle mutagenesis. We analyzed the recombinant loci generated by insertion of linear plasmids containing either base-pair substitutions, insertions, or deletions in their targeting sequence. We show that plasmid integration occurs via a double-strand gap repair mechanism. Although sequence heterologies located close (less than 450 bp) to the initial double-strand break (DSB) were often lost during plasmid integration, mutations located 600 bp and farther from the DSB were frequently maintained in the recombinant loci. The short lengths of gene conversion tracts associated with plasmid integration into TRAP suggests that an ends-in strategy may be widely applicable to modify plasmodial genes and perform structure-function analyses of their important products. 相似文献
7.
8.
Genetic recombination in malaria parasites 总被引:1,自引:0,他引:1
D Walliker 《Experimental parasitology》1989,69(3):303-309
9.
10.
Invasion of red blood cells by malaria parasites 总被引:22,自引:0,他引:22
The malaria parasite is the most important member of the Apicomplexa, a large and highly successful phylum of intracellular parasites. Invasion of host cells allows apicomplexan parasites access to a rich source of nutrients in a niche that is largely protected from host defenses. All Apicomplexa adopt a common mode of host-cell entry, but individual species incorporate unique features and utilize a specific set of ligand-receptor interactions. These adhesins ultimately connect to a parasite actin-based motor, which provides the power for invasion. While some Apicomplexa can invade many different host cells, the disease-associated blood-stage form of the malaria parasite is restricted to erythrocytes. 相似文献
11.
Malaria parasites enter red cells in a multi-step process involving attachment, membrane deformation, invagination and encapsulation. The molecular basis of red cell rigidity is examined by Geoff Pasvol and lain Wilson, and they discuss its effect on the efficiency of invasion by various Plasmodium spp. 相似文献
12.
Recent years have seen tremendous progress in our understanding of malaria parasite molecular biology. To a large extent, this progress follows significant developments in genetic, molecular and chemical tools available to study the malaria parasites and related Apicomplexa, in particular Toxoplasma gondii. One area of major advancement has been in understanding parasite host-cell invasion, a process that utilizes several essential molecular mechanisms that are conserved across the different lifecycle stages. Here, we summarize some of the most recent experimental data that shed light on the events underlying preparation and execution of malaria parasite invasion and how these insights might relate to the development of new antimalarial drugs. 相似文献
13.
The genetic manipulation of malaria parasites is a rapidly emerging technology that offers great promise for the investigation of many aspects of infection. Currently it is possible to transform avian, rodent, primate as well as human parasites, the latter three on a stable, drug selectable basis. This review focuses on the history of the development of the technology, current abilities and future perspectives. 相似文献
14.
Spatial distribution of factors that determine sporogonic development of malaria parasites in mosquitoes 总被引:10,自引:0,他引:10
Mosquitoes transmit malaria, but only a few species permit the complete development and transmission of the parasite. Also, only a fraction of the ingested parasites develop in the vector. The attrition occurs in different compartments during the parasite's complex developmental scheme in the insect. A number of factors, both physical and biochemical, that affect the development have been proposed or demonstrated. Each of these factors is located within a specific space in the insect. We have divided this space into six compartments, which are distinct in their biochemical and biophysical nature: Endoperitrophic space, Peritrophic matrix, Ectopretrophic space, Midgut epithelium, Haemocoel and Salivary gland. Because factors that influence a particular stage of parasite development share the same microenvironment within these compartments, they must be considered collectively to exploit them for designing effective transmission blocking strategies. In this article we discuss these factors according to their spatial location in the mosquito. 相似文献
15.
Doerig C Billker O Haystead T Sharma P Tobin AB Waters NC 《Trends in parasitology》2008,24(12):570-577
Protein kinases (PKs) play crucial roles in the control of proliferation and differentiation in eukaryotic cells. Research on protein phosphorylation has expanded tremendously in the past few years, in part as a consequence of the realization that PKs represent attractive drug targets in a variety of diseases. Activity in Plasmodium PK research has followed this trend, and several reports on various aspects of this subject were delivered at the Molecular Approaches to Malaria 2008 meeting (MAM2008), a sharp increase from the previous meeting. Here, the authors of most of these communications join to propose an integrated update of the development of the rapidly expanding field of Plasmodium kinomics. 相似文献
16.
17.
Manca N Viani I Perandin F Piccolo G Calderaro A Galati L Ricci L Dettori G Turano A Chezzi C 《The new microbiologica》2000,23(3):339-346
The present study evaluates the sensitivity, specificity and usefulness of a PCR method with Southern blot hybridization to detect malaria parasites in blood samples from subjects with a suspect clinical diagnosis of malaria imported to Italy. Plasmodia were detected by PCR using a genus-specific primer-set corresponding to the sequences common to P. falciparum, P. vivax, P. malariae and P. ovale, as described by Arai (Arai et al., Nucleosides Nucleotides, 1994, 13, 1363-1364) and Kimura (Kimura et al., Journal of Clinical Microbiology, 1995, 33, 2342-2346). In addition, four distinct tandemly repetitive species-specific probes, described by Kawai (Kawai et al., Analytical Biochimestry, 1993, 209, 63-69), were synthesized to specifically detect the four malaria parasites species by Southern blot hybridization. Fifteen blood samples from 12 patients (7 with malaria) were tested and the genus-specific PCR method showed a sensitivity of 100% and a specificity of 100%, when compared to microscopy, in detecting malaria parasites in the tested blood samples. Fourteen samples (nine were positive and five negative by PCR) were confirmed by Southern blot, whereas only one P. vivax positive sample was not hybridized with the species-specific probes. We conclude that this PCR method with Southern blot hybridization may be useful in detecting malaria parasites in patients with malaria imported to Italy. 相似文献
18.
Tim J. C. Anderson Jeff T. Williams Shalini Nair Daniel Sudimack Marion Barends Anchalee Jaidee Ric N. Price Fran?ois Nosten 《Proceedings. Biological sciences / The Royal Society》2010,277(1693):2531-2540
Malaria parasites vary in phenotypic traits of biomedical or biological interest such as growth rate, virulence, sex ratio and drug resistance, and there is considerable interest in identifying the genes that underlie this variation. An important first step is to determine trait heritability (H2). We evaluate two approaches to measuring H2 in natural parasite populations using relatedness inferred from genetic marker data. We collected single-clone Plasmodium falciparum infections from 185 patients from the Thailand–Burma border, monitored parasite clearance following treatment with artemisinin combination therapy (ACT), measured resistance to six antimalarial drugs and genotyped parasites using 335 microsatellites. We found strong relatedness structure. There were 27 groups of two to eight clonally identical (CI) parasites, and 74 per cent of parasites showed significant relatedness to one or more other parasites. Initially, we used matrices of allele sharing and variance components (VC) methods to estimate H2. Inhibitory concentrations (IC50) for six drugs showed significant H2 (0.24 to 0.79, p = 0.06 to 2.85 × 10−9), demonstrating that this study design has adequate power. However, a phenotype of current interest—parasite clearance following ACT—showed no detectable heritability (H2 = 0–0.09, ns) in this population. The existence of CI parasites allows the use of a simple ANOVA approach for quantifying H2, analogous to that used in human twin studies. This gave similar results to the VC method and requires considerably less genotyping information. We conclude (i) that H2 can be effectively measured in malaria parasite populations using minimal genotype data, allowing rational design of genome-wide association studies; and (ii) while drug response (IC50) shows significant H2, parasite clearance following ACT was not heritable in the population studied. 相似文献
19.
Malaria, caused by the apicomplexan parasite Plasmodium, still represents a major threat to human health and welfare and leads to about one million human deaths annually. Plasmodium is a rapidly multiplying unicellular organism undergoing a complex developmental cycle in man and mosquito - a life style that requires rapid adaptation to various environments. In order to deal with high fluxes of reactive oxygen species and maintain redox regulatory processes and pathogenicity, Plasmodium depends upon an adequate redox balance. By systematically studying the subcellular localization of the major antioxidant and redox regulatory proteins, we obtained the first complete map of redox compartmentation in Plasmodium falciparum. We demonstrate the targeting of two plasmodial peroxiredoxins and a putative glyoxalase system to the apicoplast, a non-photosynthetic plastid. We furthermore obtained a complete picture of the compartmentation of thioredoxin- and glutaredoxin-like proteins. Notably, for the two major antioxidant redox-enzymes--glutathione reductase and thioredoxin reductase--Plasmodium makes use of alternative-translation-initiation (ATI) to achieve differential targeting. Dual localization of proteins effected by ATI is likely to occur also in other Apicomplexa and might open new avenues for therapeutic intervention. 相似文献