首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Local tissue temperature and blood perfusion rate were measured simultaneously to study thermoregulation in the canine prostate during transurethral radio-frequency (RF) thermal therapy. Thermistor bead microprobes measured interstitial temperatures and a thermal clearance method measured the prostatic blood perfusion rate under both normal and hyperthermic conditions. Increase in local tissue temperature induced by the RF heating increased blood perfusion throughout the entirety of most prostates. The onset of the initial increase in blood perfusion was sometimes triggered by a temporal temperature gradient at low tissue temperatures. When tissue temperature was higher than 41°C, however, the magnitude and the spatial gradient of temperature may play significant roles. It was found that the temperature elevation in response to the RF heating was closely coupled with local blood flow. The resulting decrease in or stabilization of tissue temperature suggested that blood flow might act as a negative feedback of tissue temperature in a closed control system. Results from this experiment provide insights into the regulation of local perfusion under hyperthermia. The information is important for accurate predictions of temperature during transurethral RF thermal therapy.  相似文献   

2.
Thermal therapy of benign prostatic hyperplasia requires accurate prediction of the temperature distribution induced by the heating within the prostatic tissue. In this study, the Pennes bioheat transfer equation was used to model the transient heat transfer inside the canine prostate during transurethral microwave thermal therapy. Incorporating the specific absorption rate of microwave energy in tissue, a closed-form analytical solution was obtained. Good agreement was found between the theoretical predictions and in-vivo experimental results. Effects of blood perfusion and the cooling at the urethral wall on the temperature rise were investigated within the prostate during heating. The peak intraprostatic temperatures attained by application of 5, 10, or 15 W microwave power were predicted to be 38 degrees C, 41 degrees C, and 44 degrees C. Results from this study will help optimize the thermal dose that can be applied to target tissue during the therapy.  相似文献   

3.
The sensitivity gain of ultrahigh field Magnetic Resonance (UHF-MR) holds the promise to enhance spatial and temporal resolution. Such improvements could be beneficial for cardiovascular MR. However, intracoronary stents used for treatment of coronary artery disease are currently considered to be contra-indications for UHF-MR. The antenna effect induced by a stent together with RF wavelength shortening could increase local radiofrequency (RF) power deposition at 7.0 T and bears the potential to induce local heating, which might cause tissue damage. Realizing these constraints, this work examines RF heating effects of stents using electro-magnetic field (EMF) simulations and phantoms with properties that mimic myocardium. For this purpose, RF power deposition that exceeds the clinical limits was induced by a dedicated birdcage coil. Fiber optic probes and MR thermometry were applied for temperature monitoring using agarose phantoms containing copper tubes or coronary stents. The results demonstrate an agreement between RF heating induced temperature changes derived from EMF simulations versus MR thermometry. The birdcage coil tailored for RF heating was capable of irradiating power exceeding the specific-absorption rate (SAR) limits defined by the IEC guidelines by a factor of three. This setup afforded RF induced temperature changes up to +27 K in a reference phantom. The maximum extra temperature increase, induced by a copper tube or a coronary stent was less than 3 K. The coronary stents examined showed an RF heating behavior similar to a copper tube. Our results suggest that, if IEC guidelines for local/global SAR are followed, the extra RF heating induced in myocardial tissue by stents may not be significant versus the baseline heating induced by the energy deposited by a tailored cardiac transmit RF coil at 7.0 T, and may be smaller if not insignificant than the extra RF heating observed under the circumstances used in this study.  相似文献   

4.
射频消融中温度场建立的探讨   总被引:1,自引:0,他引:1  
提出了建立在射频电流组织加热和热传导基础上的射频消融中温度场建立的理论模型,初步分析了血流对温度分布提影响,得出稳定后的温度场在径向的分布基本上与r及血流速度成反比;近场的温度场的建立过程的时间常数与血流速度成反比。  相似文献   

5.
目的:探讨经尿道等离子电切术治疗前列腺增生的临床效果和安全性。方法:选取2013 年1 月-2014 年1 月在我院就诊的 前列腺增生患者64 例,并将其随机分为经尿道前列腺等离子体双极电切术(PKRP)组和经尿道前列腺电切术(TURP)组,每组各 32 例。PKRP组患者使用经尿道前列腺等离子体双极电切术治疗,TURP 组患者使用经尿道前列腺电切术治疗,术后观察和比较 两组患者的临床疗效及并发症的发生情况。结果:与TURP组比较,PKRP 组的手术时间显著延长,术中出血量明显减少,导尿管 留置时间、住院时间均显著缩短,腺体切除量明显增加,差异具有统计学意义(P<0.05)。术后,两组的IPSS、QOL、RUV和Qmax 均 较术前显著改善(P<0.05),且PKRP 组患者的IPSS、QOL、RUV均显著低于TURP 组,而Qmax 明显高于TURP 组,差异具有统计 学意义(P<0.05)。两组的不良反应包括前列腺电切综合征、暂时性尿失禁、迟发性出血和尿道狭窄,PKRP组的总发生率显著低于 TURP 组,差异具有统计学意义(P<0.05)。结论:PKRP 治疗前列腺增生的临床效果优于TURP,患者恢复快,并发症发生率低,值 得临床合理选用。  相似文献   

6.
To examine the biological effects of radio frequency (RF) electromagnetic fields in vitro, we have examined the fundamental cellular responses, such as cell growth, survival, and cell cycle distribution, following exposure to a wide range of specific absorption rates (SAR). Furthermore, we compared the effects of continuous and intermittent exposure at high SARs. An RF electromagnetic field exposure unit operating at a frequency of 2.45 GHz was used to expose cells to SARs from 0.05 to 1500 W/kg. When cells were exposed to a continuous RF field at SARs from 0.05 to 100 W/kg for 2 h, cellular growth rate, survival, and cell cycle distribution were not affected. At 200 W/kg, the cell growth rate was suppressed and cell survival decreased. When the cells were exposed to an intermittent RF field at 300 W/kg(pk), 900 W/kg(pk) and 1500 W/kg(pk) (100 W/kg(mean)), no significant differences were observed between these conditions and intermittent wave exposure at 100 W/kg. When cells were exposed to a SAR of 50 W/kg for 2 h, the temperature of the medium around cells rose to 39.1 degrees C, 100 W/kg exposure increased the temperature to 41.0 degrees C, and 200 W/kg exposure increased the temperature to 44.1 degrees C. Exposure to RF radiation results in heating of the medium, and the thermal effect depends on the mean SAR. Hence, these results suggest that the proliferation disorder is caused by the thermal effect.  相似文献   

7.
We have investigated magnetic induction heating techniques for achieving normal tissue hyperthermia in a beagle dog model to clarify the physics and physiology of "regional heating," to develop an animal model of regional heating in humans, and to develop a method of rapid regional heating in dogs for a normal visceral tissue toxicity study. Heating was done with a concentric coil or a coaxial pair of coils applied to the abdominal region, and with or without surface cooling blankets in each case. Thermometers were placed at multiple visceral and subcutaneous sites including an intraarterial thermocouple at the aortic arch level. With either electrode arrangement and no surface cooling, whole-body hyperthermia ( WBH ) at 42 degrees C was produced within 30 to 55 min with 250 W applied power; the 42 degrees C state could be maintained with 40 to 60 W of power. Thermal gradients in these cases reflected nonuniform power deposition superimposed upon arterial temperature elevation. With surface cooling blankets added, systemic heating was significantly reduced, and temperature gradients again reflected the nonuniform power deposition. Regional heating in a dog produces WBH unless sufficient surface cooling is used to provide a heat dissipation rate balancing the heat absorption rate; this latter case best models the use of inductive techniques in humans. The coaxial pair of coils, without surface cooling, produced rapid WBH and the visceral temperature maximum and minimum were within Tesoph + 0.21 degrees C and Tesoph - 0.07 degrees C, respectively (95% confidence index; Tesoph = esophageal temperature). This is an appropriate technique for the proposed toxicity study.  相似文献   

8.
A method for comparing the relative abilities of different hyperthermia heating modalities to properly heat tumors has been developed using solutions of the bio-heat transfer equation. A single measure, the range of absorbed powers that gives acceptable tissue temperature distributions, is used to characterize the ability of a given heating technique to heat a given tumor. An acceptable tissue temperature distribution is one for which (a) the temperatures in the coolest regions of the tumor are above a minimum therapeutic value, (b) the temperatures in the hottest regions of the tumor do not exceed a maximum clinically acceptable value, and (c) the normal tissue temperatures do not exceed maximum clinically acceptable levels. This measure can be interpreted directly in clinical terms as the range of power settings on the power indicator of a heating device for which acceptable tumor heatings will occur. This paper describes the basis of the method and investigates the role of tumor blood perfusion patterns in determining the size of the acceptable power range. Three tumor perfusion patterns are investigated: uniform tumor perfusion, a concentric annulli perfusion model in which the tumor consists of a necrotic core surrounded by two concentric layers of increased perfusion, and a random perfusion distribution model. The results show that, in general, the uniform and annular perfusion models serve as bracketing case patterns. That is, they give acceptable power range values that are upper and lower limits of the acceptable power ranges obtained for the random perfusion patterns. The method is applied to heating patterns that simulate those obtained from a variety of different available heating techniques, and it is found to be valid for all cases studied. The role of normal tissue limiting conditions is also investigated.  相似文献   

9.
Human papillomavirus deoxyribonucleic acid was detected in prostate tissue from patients with benign prostatic hyperplasia or prostatic carcinoma. Radiolabelled genomic probes, specific for the sexually transmitted human papillomavirus types 16 and 18, were used to detect viral genomic sequences in prostate DNA samples analyzed by the Southern blot technique. Viral sequences were identified in DNA from 7 of 16 prostate samples including both hyperplastic and carcinoma tissues and including tissues obtained by transurethral resection or suprapubic prostatectomy. These data indicate that the prostate gland can be infected with human papillomavirus and imply that the prostate may act as a reservoir for the sexual transmission of papillomavirus via seminal fluid. The detection of both episomal and integrated viral DNA sequences in prostate tissue may have important implications for the etiology of prostate disease.  相似文献   

10.
PurposeTo simulate radiofrequency (RF) burns that frequently occur at skin–skin and skin–bore wall contact points.MethodsRF burn injuries (thumb–thigh and elbow–bore wall contacts) that typically occur on the lateral side of the body during 1.5 T magnetic resonance imaging (MRI) scans were simulated using a computational human model. The model was shifted to investigate the influence of the position of the patient in an MRI scanner. The specific absorption rate (SAR), electric field, and temperature were mapped.ResultsRegarding the contact points located near the edge of the birdcage transmission coil, under the allowable maximum RF power exposure i.e., the average whole-body SAR at the safety limit value (2 W/kg), the 10-g-tissue-averaged SAR (SAR10g) at those points significantly increased for both the thumb–thigh (180 W/kg) and elbow–bore wall (48 W/kg) cases. Both values significantly exceeded the highest safety limit of the partial-body SAR (10 W/kg). The electric field, the square of which is proportional to SAR, was remarkably high near the edge of the birdcage transmission coil. The peak SAR10g for each injury case was associated with contact-point peak temperatures that reached 52 °C at approximately 1 min following RF exposure onset; a 1-min period of exposure to this temperature causes a first-degree burn.ConclusionsWe demonstrated high heat generation in RF burn injury cases in silico. The RF heating occurring on the lateral side of the body was strongly dependent on the electric field distribution, which is dominantly determined by an RF transmission coil.  相似文献   

11.
Radiofrequency (RF) ablation using high-frequency current has become an important treatment method for patients with non-resectable liver tumors. Tumor recurrence is associated with tissue cooling in the proximity of large blood vessels. This study investigated the influence of blood flow rate on tissue temperature and lesion size during monopolar RF ablation at a distance of 10 mm from single 4- and 6-mm vessels using two different approaches: 1) an ex vivo blood perfusion circuit including an artificial vessel inserted into porcine liver tissue was developed; and 2) a finite element method (FEM) model was created using a novel simplified modeling technique for large blood vessels. Blood temperatures at the inflow/outflow of the vessel and tissue temperatures at 10 and 20 mm from the electrode tip were measured in the ex vivo set-up. Tissue temperature, blood temperature and lesion size were analyzed under physiological, increased and reduced blood-flow conditions. The results show that changes in blood flow rate in large vessels do not significantly affect tissue temperature and lesion size far away from the vessel. Monopolar ablation could not produce lesions surrounding the vessel due to the strong heat-sink effect. Simulated tissue temperatures correlated well with ex vivo measurements, supporting the FEM model.  相似文献   

12.
Biological effects in the microwave band of the radiofrequency (RF) spectrum are thermally mediated. For acute high-power microwave exposures, these effects will depend on transient time-temperature histories within the tissue. In this article, we summarize the transient temperature response of rats exposed to RF energy emanating from an open-ended rectangular waveguide. These exposures produced specific absorption rates of approximately 36 and 203 W/kg in the whole body and brain, respectively. We then use the experimentally measured thermal data to infer the baseline perfusion rate in the brain and modify a custom thermal modeling tool based upon these findings. Finally, we compare multi-physics simulations of rat brain temperature against empirical measurements in both live and euthanized subjects and find close agreement between model and experimentation. This research revealed that baseline brain perfusion rates in rat subjects could be larger than previously assumed in the RF thermal modeling literature, and plays a significant role in the transient thermal response to high-power microwave exposures. © 2021 Bioelectromagnetics Society.  相似文献   

13.
Knowledge of tissue thermal transport properties is imperative for any therapeutic medical tool which employs the localized application of heat to perfused biological tissue. In this study, several techniques are proposed to measure local tissue thermal diffusion by heating with a focused ultrasound field. Transient as well as near steady-state heat inputs are discussed and examined for their suitability as a measurement technique for either tissue thermal diffusivity or perfusion rate. It is shown that steady-state methods are better suited for the measurement of perfusion; however the uncertainty in the perfusion measurement is directly related to knowledge of the tissue's intrinsic thermal diffusivity. Results are presented for a transient thermal pulse technique for the measurement of the thermal diffusivity of perfused and nonperfused tissues, in vitro and in vivo. Measurements conducted in plexiglas, animal muscle, kidney and brain concur with tabulated values and show a scatter from 5-15 percent from the mean; measurements made in perfused muscle and brain compare well with the nonperfused values. An estimate of the error introduced by the effect of perfusion shows that except for highly perfused kidney tissue the effect of perfusion is less than the experimental scatter. This validation of the tissue heat transfer model will allow its eventual extension to the simultaneous measurement of local tissue thermal diffusivity and perfusion.  相似文献   

14.
15.
We consider the thermal response of the body to radiofrequency (RF) energy, with emphasis on partial-body exposure, to assess potential thermal hazards. The thermal analysis is based on Pennes' bioheat equation. In this model, the thermal response is governed by two time constants. One (τ1) pertains to heat convection by blood flow and is (for physiologically normal perfusion rates) on the order of 3 min. The second (τ2) characterizes heat conduction, and varies as the square of a distance that characterizes the spatial extent of the heating. We examine three idealized cases. The first is a region of tissue with an insulated surface, subject to irradiation with an exponentially decreasing SAR, which models a large surface area of tissue exposed to microwaves. The second is a region of tissue in contact with a hemispherical electrode that passes current into it, which models exposure from contact with a conductor. The third is a region of tissue with an insulated surface, subject to heating from a dipole located close to it. In all three cases, we estimate the maximum steady-state temperature increase as a function of the relevant electrical and thermal parameters and the thresholds for thermal hazard. We conclude that thermal models are a potentially fruitful but underutilized means of analyzing thermal hazards from RF fields. A quantitative analysis of such hazards enables the development of data-based uncertainty factors, which can replace arbitrary “safety factors” in developing exposure limits. Finally, we comment on the need to marry quantitative modeling of data and risk assessment, and to incorporate contemporary approaches to risk assessment into RF standards development. Bioelectromagnetics 20:52–63, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

16.
Absorption of power in large body volumes can occur with some approaches used for hyperthermia treatment of cancer. A systemic heat absorption rate exceeding the heat dissipation rate can lead to systemic temperature elevation that limits the magnitude and duration of application of power and hence the degree of preferential tumor temperature rise. We describe a hyperthermia approach consisting of regional electromagnetic power absorption and extracorporeal blood cooling with regulation of both systemic heat absorption and dissipation rates ("balanced heat transfer"). A test of this approach in five dogs with nonperfused tumor models demonstrated intratumoral temperatures greater than 42 degrees C, while systemic temperature remained at 33 degrees C and visceral temperatures within the heated region equilibrated between 33 and 42 degrees C. Solutions of the bioheat transfer equation were obtained for a simplified model with a tumor perfusion rate lower than surrounding normal tissue perfusion rate. In this model, the use of arterial blood temperatures less than 37 degrees C allowed higher power densities to be used, for given normal tissue temperatures, than when arterial temperature was greater than or equal to 37 degrees C. As a result, higher intratumoral temperatures were predicted. Control of arterial blood temperature using extracorporeal cooling may thus (1) limit systemic temperature rise produced by regional heating devices and (2) offer a means of improving intratumoral temperature elevations.  相似文献   

17.
The neutral-gas temperature in a low-pressure (50 Pa) capacitive RF discharge in a CF4+O2 mixture is determined from the heating kinetics of a gallium arsenide single crystal, which is chemically inert to any radicals in a fluorine-containing plasma. Experimental methods are discussed that make it possible to confirm the absence of heat sources capable of additional heating of the calorimeter in the discharge. The features and applicability limits of the method of non-steady-state gas thermometry in a weakly ionized nonequilibrium plasma are discussed. The method proposed is compared with conventional steady-state methods based on measurements of the established temperature of a thermal probe in the discharge. Temperature scanning makes it possible to study dependences that cannot be investigated by steady-state methods, in particular, the temperature dependence of the calorimeter heating power, which is very important for diagnosing the processes of plasma-surface heat transfer.  相似文献   

18.
Because exposure to microwave fields at the resonant frequency may generate heat deep in the body, hyperthermia may result. This problem has been examined in an animal model to determine both the thresholds for response change and the steady-state thermoregulatory compensation for body heating during exposure at resonant (450 MHz) and supra-resonant (2,450 MHz) frequencies. Adult male squirrel monkeys, held in the far field of an antenna within an anechoic chamber, were exposed (10 min or 90 min) to either 450-MHz or 2,450-MHz CW fields (E polarization) in cool environments. Whole-body SARs ranged from 0-6 W/kg (450 MHz) and 0-9 W/kg (2,450 MHz). Colonic and several skin temperatures, metabolic heat production, and evaporative heat loss were monitored continuously. During brief RF exposures in the cold, the reduction of metabolic heat production was directly proportional to the SAR, but 2,450-MHz energy was a more efficient stimulus than was the resonant frequency. In the steady state, a regulated increase in deep body temperature accompanied exposure at resonance, not unlike that which occurs during exercise. Detailed analyses of the data indicate that temperature changes in the skin are the primary source of the neural signal for a change in physiological interaction processes during RF exposure in the cold.  相似文献   

19.
The radiometric temperature measurement included in a commercial device for transurethral microwave thermotherapy (TUMT) of the prostate was investigated utilizing both phantom experiments and computer simulations. Two finite element (FE) models were developed. One is in part based on the experimental results, and serves as a complement to the experiments, while the other describes a perfused tissue situation for which the hybrid bio-heat equation was used to model the thermal effects of blood perfusion. The aim of the study was to investigate how the radiometric thermometer is affected by the temperature close to the antenna, and to analyze the relation between blood perfusion, temperature distribution and radiometric temperature measurement. It was found that the radiometric temperature was affected to a greater extent by the temperature very close to the antenna, in contrast to what has been expected in previous studies. The blood perfusion was found to mainly affect the temperature distribution outside the maximum temperature (located 2-3 mm outside the cooled catheter). Thus, the relation between the radiometric temperature and the temperature in the treated area is relatively weak.  相似文献   

20.
目的:探讨钬激光和经尿道电切术治疗老年高血压伴前列腺增生的疗效和安全性。方法:回顾性分析2011年1月-2013年1月我科收治的48例患者的临床资料,随机分为两组,每组24例,分别采用经尿道前列腺电切术和激光切除术治疗。观察两组手术时间、术中出血量、住院时间、IPSS和QOL评分及血压变化情况。分别于手术前后应用经直肠超声测量患者前列腺厚度,根据球形体积公式估算前列腺重量。结果:钬激光组手术时间、术中出血量、住院时间明显低于电切组,差异具有统计学意义(P0.05);钬激光组术后前列腺重量、IPSS评分、QOL评分及血压均低于电切组,差异具有统计学意义(P0.05)。结论:经尿道钬激光切除术治疗伴高血压的老年前列腺增生患者安全有效,可在临床推广。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号