首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A pair of novel chiral dimeric ruthenium(II) complexes [ΔΔ-, ΛΛ-Ru(bpy)2(btpb)Ru(bpy)2]4+ (1; btpb=2,2-bis(1,2,4-triazino[5,6-f]phenanthren-3-yl)-4,4-bipyridine) have been synthesized and characterized by electrospray mass spectra, 1H NMR, UV-Vis and circular dichroism spectra. Binding behaviors of the complexes with calf thymus DNA have been investigated by absorption spectra and viscosity measurements. The electronic absorption spectrum of ΔΔ-1 at 505.5 nm exhibits hypochromism of about 8.4% and bathochromism of 2.5 nm; ΛΛ-1 at 500.0 nm exhibits hypochromism of about 9.1% and bathochromism of 4.5 nm, respectively. The experiments suggest that ΔΔ-1 and ΛΛ-1 may be bound to DNA by non-intercalating binder.  相似文献   

2.
Monobridged-dinuclear platinum(II) complexes, where the bridging ligand is 4,4′-dipyrazolylmethane, have been prepared for use as potential anticancer agents. The complexes synthesized include [{cis-PtCl2(NH3)}2(μ-dpzm)], [{trans-PtCl2(Me2SO)}2(μ-dpzm)] and [{cis-PtCl2(Me2SO)}2(μ-dpzm)]. The characterization of these complexes is based on microanalytical, IR and 1H NMR data.  相似文献   

3.
The concentration of the ruthenium-based label is determined from the rate of hydrogen peroxide production elicited by photolysis. Electron transfer quenching of the photoexcited label by methyl viologen (1,1′-dimethyl-4,4′-bipyridinium dication, MV2+) and/or oxygen in the presence of EDTA generates hydrogen peroxide. Both flow injection and direct photolysis techniques were tested, with the latter showing better results. Direct photolysis is more sensitive, faster, requires only a 20 μl sample volume, uses only 30 mW laser power and shows a smaller background. The presence of 5% normal human serum in the sample did not interfere with the measurements. Linear calibration curves were obtained in the nanomolar concentration range for goat antimouse antibody labeled with the ruthenium complex. The determination of membrane-surface-bound labeled IgG is accomplished by direct photolysis of a membrane that covers a platinum microelectrode.  相似文献   

4.
The P,P′diphenylmethylenediphosphinic acid (H2pcp) reacts with Co(ClO4)2 · 6H2O and 4,4′-bipyridine to give a mixture of two polymeric isomers of formula [Co(pcp)(bipy)0.5(H2O)2], {red (1) and pink (2)} and the new violet hybrid [Co(Hpcp)2] (3). The pure red and violet species have been obtained by the reaction of H2pcp with Co(CH3COO)2 · 4H2O and bipy or with Co(ClO4)2 · 6H2O, respectively. The analogous reaction of Ni(CH3COO)2 · 4H2O or Ni(ClO4)2 · 6H2O with H2pcp and bipy affords only the [Ni(pcp)(bipy)0.5(H2O)2] species (4). The two cobalt isomers present different structural arrangements. Whereas the red isomer (1) shows an undulated 2D layered structure, the pink one (2) forms an infinite monodimensional strand. Both the architectures extend to higher dimensions through hydrogen bonding interactions. The nickel derivative is isomorphous with the red cobalt isomer. The violet [Co(Hpcp)2] (3), which is isomorphous with the complexes of the reported series [M(Hpcp)2], M = Ca(II), Mg(II), presents a monodimensional polymeric structure. Compounds 1 and 4 show a very similar thermal behaviour, the two water molecules being lost in the temperature range 25-150 and 160-320 °C, respectively. Temperature dependent X-ray powder diffractometry (TDXD) has been performed on compound 1 in order to follow the structural transformations that occur during the heating process.  相似文献   

5.
Two new coordination polymers [Cd(dps)2Cl2] (1) and [Co(dps)2(H2O)2]·(abs)2(H2O)2 (2) (dps = 4, 4′-dipyridylsulfide, Habs = 4-amino benzenesulfonic acid) have been synthesized under similar conditions and characterized by elemental analysis, fluorescence spectra and single crystal X-ray diffraction. Compound 1 displays a dps-bridged 2D puckered, grid-like layer, which is further linked by C-H?Cl hydrogen bonds to form a 3D supramolecular architecture. Compound 2 shows a dps-bridged double-stranded chain structure, which is extended by N-H?O and O-H?O hydrogen bonds generating a 3D network. Solid-state fluorescence results reveal that both complexes can emit strong emission bands, at 467 nm and 518 nm for 1 and 344 nm for 2, respectively. Magnetic measurements show that there are weak antiferromagnetic interactions between the adjacent Co(II) ions in 2.  相似文献   

6.
The unique ligands of [Ru(bipy)2(bpda)](PF6)2 (1, BPDA=1,1′-biphenyl-2,2′-diamine) and [Ru(bipy)2(dabipy)](PF6)2 (2, DABIPY=3,3′-diamino-2,2′-bipyridine) are atropisomeric (exhibit hindered rotation about the sigma bonds that connect the two aromatic groups), so the complexes are diasteromeric with conformation isomers possible for the atropisomeric ligands and configurational isomers possible at the metal centers. Only one diastereomer is observed in the solid-state in both cases. The seven- (1) and five-membered (2) chelate ring of dabipy and bpda (the ligand is bound through its pyridyl groups) ligands are δ when the configuration at the metal is Δ. No evidence for atropisomerization is found in solution. For 1, we conclude bpda binds stereospecifically; however, the atropisomerization barrier of dabipy may be sufficiently low for 2 to preclude the observation of diastereomers by low-temperature NMR spectroscopy.  相似文献   

7.
4,4′-Methylenebis-(2-chloroaniline) (MOCA) is used in the manufacture of polyurethane. The IARC classifies MOCA as a probable human carcinogen. Suggested changes to guidelines for health surveillance of MOCA-exposed workers in Australia include a reduction in acceptable levels of urinary MOCA to below 15 μmol/mol creatinine. Twelve male workers aged 24 and 42 years were recruited into this study from four work locations where MOCA is used. Exfoliated urothelial cells from prework urine samples on a midweek work day were assessed for micronucleus (MN) frequencies. Postwork urine samples were analysed for total MOCA. Blood samples collected on the same day were cultured for 96 h and cytochalasin-B-blocked cells were scored for MN. Eighteen male control subjects (23–59 years) provided corresponding urine and blood samples. Median urinary MOCA concentrations were 6.5 μmol/mol creatinine (range 0.4–48.6 μmol/mol creatinine) in postwork samples of MOCA-exposed workers. MOCA was not detected in urine of control workers. Mean MN frequencies were higher in urothelial cells and lymphocytes of MOCA workers (14.27±0.56 and 13.25±0.48 MN/1000 cells) than in controls (6.90±0.18 and 9.24±0.29 MN/1000 cells). The mean number of micronucleate cells was also higher in both tissues of exposed workers (9.69±0.32 and 8.54±0.14 MN cells/1000 cells) than in controls (5.18±0.11 and 5.93±0.13 MN cells/1000). There was no correlation between postwork urinary MOCA concentrations and MN frequencies in either tissue. This study suggests that exposures to MOCA in South Australia are similar to those of a decade ago and are at levels similar to those currently acceptable in Australia. These are associated with genotoxic effects in urothelial cells and peripheral blood lymphocytes. It may be prudent to reduce MOCA exposures in line with proposed guidance values.  相似文献   

8.
Combined pH-metric, UV-Vis, 1H NMR and EPR spectral investigations on the complex formation of M(II) ions (M=Co, Ni, Cu and Zn) with N-(2-benzimidazolyl)methyliminodiacetic acid (H2bzimida, hereafter H2L) in aqueous solution at a fixed ionic strength, I=10−1 mol dm−3, at 25 ± 1 °C indicate the formation of M(L), M(H−1L) and M2(H−1L)+ complexes. Proton-ligand and metal-ligand constants and the complex formation equilibria have been elucidated. Solid complexes, [M(L)(H2O)2] · nH2O (n=1 for M = Co and Zn, n=2 for M = Ni) and {Cu (μ-L) · 4H2O}n, have been isolated and characterized by elemental analysis, spectral, conductance and magnetic measurements and thermal studies. Structures of [Ni(L)(H2O)2] · 2H2O and {Cu(μ-L) · 4H2O}n have been determined by single crystal X-ray diffraction. The nickel(II) complex exists in a distorted octahedral environment in which the metal ion is coordinated by the two carboxylate O atoms, the amino-N atom of the iminodiacetate moiety and the pyridine type N-atom of the benzimidazole moiety. Two aqua O atoms function as fifth and sixth donor atoms. The copper(II) complex is made up of interpenetrating polymeric chains of antiferromagnetically coupled Cu(II) ions linked by carboxylato bridges in syn-anti (apical-equatorial) bonding mode and stabilized via interchain hydrogen bonds and π-π stacking interactions.  相似文献   

9.
Four new ligands, N-(2-methoxyethyl)-N-(pyridin-2-ylmethyl)amine (mepma), N-(3-methoxypropyl)-N,N-bis(pyridin-2-ylmethyl)amine (mpbpa), N-(2-methoxyethyl)-N,N-bis(pyridin-2-ylmethyl)amine (mebpa) and 2-{[(2-methoxyethyl)(pyridin-2-ylmethyl)amino]methyl} phenol (Hmepap), and four of their complexes with manganese(II) halides, [MnCl2(mepma)2] (1), [MnCl(μ-Cl)(mpbpa)]2 (2), [MnBr2(mebpa)] (3) and [MnBr2(MeOH)(Hmepap)] (4) have been synthesized and characterized. Single-crystal Xray studies revealed that in all four complexes, the Mn(II) coordination spheres are distorted octahedral. In 1 and 2, the ether oxygen atom does not coordinate to the Mn(II) centre, but in 3 and 4 it does. The mononuclear molecules of 1 are linked by double hydrogen bonds to form linear chains. Temperature dependent magnetic susceptibility measurements revealed that the Mn(II) ions in 1 interact antiferromagnetically, with J=−1.06 cm−1. Compound 2 crystallizes as a double chloride-bridged dimer in which there is a weak ferromagnetic interaction (J=0.55 cm−1) between the Mn(II) pair. The solution EPR spectrum of 2 suggests that in methanol compound 2 decomposes to a great extent to mononuclear species. In compound 3, mebpa acts as a tetradentate ligand with all of its nitrogen and oxygen atoms coordinated to the Mn(II) ion. Unexpectedly, in complex 4, the phenolic oxygen of Hmepap remains protonated and does not coordinate to the metal ion. Instead the oxygen from a methanol molecule coordinates the manganese centre. Hydrogen bonds between one of the two bromide ions, and the methanol and phenol hydroxyl groups, respectively, connect the mononuclear molecules of 4 into chains. No magnetic interactions were observed between the Mn(II) ions in 3 or 4.  相似文献   

10.
We report the synthesis of a new ligand, 4,4′-bis(3,5-dimethoxyphenyl)-6,6′-dimethyl-2,2′-bipyridine, optimised for binding to copper(I) and with pendant functionality that can eventually be developed into metallodendritic structures. The synthesis and photophysical properties of complexes with copper(I) and ruthenium(II) are reported. The solid state structure of the complex [Cu(1)2][PF6] · MeCN (1 = 4,4′-bis(3,5-dimethoxyphenyl)-6,6′-dimethyl-2,2′-bipyridine) is also described.  相似文献   

11.
(ML)2(bipy) complexes (LH2 = thiosemicarbazone of 2-hydroxybenzaldehyde, bipy = 4,4′-bipyridine, M = Ni(II), 1, or Cu(II), 2) were synthesized and characterized by X-ray crystallography. Compound 1 possessed porous structure due to peculiarities of crystal packing, whereas 2 formed infinite zig-zag chains with dense non-porous packing. It was shown that 1 absorbed 0.013 cm3/g of methanol vapor in two steps. Complex 1 was diamagnetic; for 2, the dependency of χ versus T could be interpreted by Bleaney-Bowers expression in 20-300 K temperature range (J = −6.8 cm−1, g = 2.07).  相似文献   

12.
Three substituted-pyridyl functionalized bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) derivatives 1-3 and their corresponding Ni(II) and Co(II) complexes have been synthesized and characterized. Their electrochemical properties in CH2Cl2 solution have been investigated by cyclic voltammetry and two reversible single-electron oxidation waves for the TTF moiety are observed. Crystal structure analyses were carried out for compound 2 as well as for the Co(II) complex of 1 (7).  相似文献   

13.
Mixed ligand complexes: [Co(L)(bipy)] · 3H2O (1), [Ni(L)(phen)] · H2O (2), [Cu(L)(phen)] · 3H2O (3) and [Zn(L)(bipy)] · 3H2O (4), where L2− = two -COOH deprotonated dianion of N-(2-benzimidazolyl)methyliminodiacetic acid (H2bzimida, hereafter, H2L), bipy = 2,2′ bipyridine and phen = 1,10-phenanthroline have been isolated and characterized by elemental analysis, spectral and magnetic measurements and thermal studies. Single crystal X-ray diffraction studies show octahedral geometry for 1, 2 and 4 and square pyramidal geometry for 3. Equilibrium studies in aqueous solution (ionic strength I = 10−1 mol dm−3 (NaNO3), at 25 ± 1 °C) using different molar proportions of M(II):H2L:B, where M = Co, Ni, Cu and Zn and B = phen, bipy and en (ethylene diamine), however, provides evidence of formation of mononuclear and binuclear binary and mixed ligand complexes: M(L), M(H−1L), M(B)2+, M(L)(B), M(H−1L)(B), M2(H−1L)(OH), (B)M(H−1L)M(B)+, where H−1L3− represents two -COOH and the benzimidazole N1-H deprotonated quadridentate (O, N, O, N), or, quinquedentate (O, N, O, N, N) function of the coordinated ligand H2L. Binuclear mixed ligand complex formation equilibria: M(L)(B) + M(B)2+ ? (B)M(H−1L)M(B)+ + H+ is favoured with higher π-acidity of the B ligands. For Co(II), Ni(II) and Cu(II), these equilibria are accompanied by blue shift of the electronic absorption maxima of M(II) ions, as a negatively charged bridging benzimidazolate moiety provides stronger ligand field than a neutral one. Solution stability of the mixed ligand complexes are in the expected order: Co(II) < Ni(II) < Cu(II) > Zn(II). The Δ log KM values are less negetive than their statistical values, indicating favoured formation of the mixed ligand complexes over the binary ones.  相似文献   

14.
Three complexes of composition [Co2IICo2III(H2hbhpd)2(H4hbhpd)2(H2O)2]Cl2(CH3OH)4 (1), [Co2IICo2III(H2hbhpd)2(H4hbhpd)2(H2O)2](NO3)2(CH3OH)4 (2) and [Ni2(H4hbhpd)2(NO3)](NO3)(CH3OH)1.5 (3) (H5hbhpd = 2-(2-hydroxy-benzylamino)-2-hydroxymethyl-propane-1,3-diol) have been synthesized and their structures have been characterized. Complexes 1 and 2 are mixed-valence cobalt clusters and display face-sharing monovacant dicubane structures. In the complexes 1 and 2, one of the three alkyl hydroxyl groups of H5hbhpd ligand is deprotonated instead of deprotonation of phenyl hydroxyl group; thus monoanionic H4hbhpd ligand displays novel η3, η1, η1, μ3 coordination mode. Complex 3 is binuclear, and the two metal centers of 3 are bridged by two deprotonated phenyl hydroxyl oxygen atoms and iso-orthogonalized by a nitrato group in η1η1-O,O′ coordination fashion. Variable-temperature solid-state dc magnetization studies have been performed in the temperature range 2-300 K for compounds 1 and 3. Antiferromagnetic interactions were determined for 1 and ferromagnetic couplings were found for 3.  相似文献   

15.
Monomeric complexes [Cu(LL)(L′)(NO3)2] (where LL is 2,2′-bipyridine or 1,10-phenanthroline and L′ is 1-methylimidazole) and dimeric complexes [Cu2(LL)2(L″)]NO3 (where L″ is an anion of imidazole or 2-methylimidazole) have been synthesized. These complexes show a d-d transition in the range of 600 to 710 nm. The infrared spectra of monomeric complexes show that the NO3 is coordinated to copper as a monodentate ligand through an oxygen atom. The ESR spectra of monomeric complexes indicate that the ligands are bonded in axial environment around copper (square pyramidal geometry) with three nitrogen donors occupying an equatorial plane. The ESR spectra of dimeric complexes show a broad signal at about G = 2 with an additional weak signal at about G = 4. This suggests that two copper atoms are in close proximity of < 7 Å. The ESR studies reveal that the formation of imidazolate-bridged binuclear copper(II) complexes from [Cu(LL)(L′)(NO3)2] and imidazole is pH dependent with apparent pKa values of 8.25 to 8.30. The superoxide dismutase activity of ICu(phen)(L′)(NO3)2], [Cu(bipy)(L′)(NO3)2], and [Cu2(bipy)2(L′)2(L″)]NO3 has been measured and the latter two complexes show better activity than the former complex.  相似文献   

16.
Two Ni(II) pyridine-2-aldoximate complexes, Ni(pao)2(bpy) (1) and Ni(pao)2(phen) (2) (pao=pyridine-2-aldoximate, bpy=2,2-bipyridine, phen=1,10-phenanthroline), were synthesized via the deprotonation of NiCl2(Hpao)2 in methanol followed by the addition of bidentate ligands of 2,2-bipyridine and 1,10-phenanthroline. Crystallization in CHCl3 gave block-type crystals of 1 and 2 in high yields. The mononuclear structure surrounded by three bidentate ligands, i.e., two pao and one bpy or phen, was revealed by X-ray crystallography: 1 crystallizes in monoclinic space group P21/c with cell dimensions of a=13.457(3) Å, b=14.493(3) Å, c=19.104(4) Å, β=108.681(3)°, Z=4, and 2 crystallizes in monoclinic space group P21/n with cell dimensions of a=14.235(5) Å, b=12.018(4) Å, c=20.696(7) Å, β=110.304(4)°, Z=4. 1 and 2 each have two oximate groups (pao), with an NO-trans arrangement around the NiII ion. Complexes 1 and 2 are racemic, namely, each molecule has a chiral center of Δ or Λ, thereby forming NO-trans-Δ and -Λ geometries in the solid state. Magnetic measurements revealed a paramagnetic S=1 spin state with a positive zero-field splitting parameter.  相似文献   

17.
4-Amino-3,3′-dichloro-5,4′-dinitrobiphenyl (ADDB) is a novel chemical exerting strong mutagenicity, especially in the absence of metabolic activation. In addition to mutagenicity, ADDB may also disrupt the endocrine system in vitro. ADDB may be discharged from chemical plants near the Waka River and could be unintentionally formed via post-emission modification of drainage water containing 3,3′-dichlorobenzidine (DCB), which is a precursor in the manufacture of polymers and dye intermediates in chemical plants. The main purpose of this study was to make a comprehensive survey of the behaviour and levels of ADDB and suspected starting material or intermediates of ADDB, i.e., DCB, 3,3′-dichloro-4,4′-dinitrobiphenyl (DDB), and 4-amino-3,3′-dichloro-4′-nitrobipheny (ADNB) in Waka River water samples. We also postulated the formation pathway of ADDB. Water samples were collected at five sampling sites from the Waka River four times between March 2003 and December 2004. Samples were passed through Supelpak2 columns, and adsorbed materials were then extracted with methanol. Extracts were used for quantification of ADDB and the related chemicals by HPLC on reverse-phase columns; mutagenicity was evaluated in the Salmonella assay using the O-acetyltransferase-overexpressing strain YG1024. High levels of ADDB, DCB, DDB, and ADNB (12.0, 20,400, 134.8, and 149.4 ng/L-equivalent) were detected in the samples collected at the site where wastewater was discharged from chemical plants into the river. These water samples also showed stronger mutagenicity in YG1024 both with and without S9 mix than the other water samples collected from upstream and downstream sites. The results suggest that ADDB is unintentionally formed from DCB via ADNB in the process of wastewater treatment of drainage water containing DCB from chemical plants.  相似文献   

18.
The binding of the monofunctioal cisplatin model compounds [PtCl(NH3)Cl and [PtCl(dien)]Cl, to Guanosine-5′-triphosphate (5′GTP) is described. For comparison also the binding of [PtCl(NH3)3]Cl to d(TpG) has been studied. It is shown that in all cases the platinum triam(m)ine binds to guanine-N7. The conformations of the sugar rings have been determined using high-resolution NMR techniques. The relative amount of the N conformer of the sugar ring of 5′GTP increases upon platination. Only minor differences were observed between the 5′GTP adducts of [PtCl(NH3)3]Cl and [PtCl(dien)]Cl. The conformational equilibrium of the sugar rings of d(TpG), however, barely shows any change upon platination. For both cases the conformation is assumed to result from the interaction between the negatively charged (tri)phosphate group and the positively charged platinum group. This interaction causes a strain in the 5′GTP adducts resulting in the observed change in the conformational equilibrium of the sugar ring. In the case of d(TpG) such a strain is not found, which is ascribed to the lower charge on the phosphate group.  相似文献   

19.
Radioactive (±)-abscisic acid (ABA), supplied via the transpiration stream to light-grown leaves of Hordeum vulgare was catabolized to 2′-hydroxymethyl ABA. Identification was made by capillary gas chromatography-mass spectrometry (GC-MS).  相似文献   

20.
[Ni(C11H9N2O5)2(H2O)2]?3(C3H7NO) ( 1 ) and [Co(C11H9N2O5)2(H2O)2]?3(C3H7NO) ( 2 ) are synthesized and characterized by elemental analysis, FT‐IR spectra, magnetic susceptibility, and thermal analysis. In addition, the crystal structure of Ni(II) complex is presented. Both complexes show distorted octahedral geometry. In 1 and 2, metal ions are coordinated by two oxygen atoms of salicylic residue and two nitrogen atoms of maleic amide residue from two ligands, and two oxygen atoms from two water molecules. In this paper, both compounds showed excellent inhibitory effects against human carbonic anhydrase (hCA) isoforms I, and II, α‐glycosidase, acetylcholinesterase (AChE), and butyrylcholinesterase (BChE). Compounds 1 and 2 had Ki values of 18.36 ± 4.38 and 26.61 ± 7.54 nM against hCA I and 13.81 ± 3.02 and 29.56 ± 6.52 nM against hCA II, respectively. On the other hand, their Ki values were found to be 487.45 ± 54.18 and 453.81 ± 118.61 nM against AChE and 199.21 ± 50.35 and 409.41 ± 6.86 nM against BChE, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号