首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Inappropriate farm practices can increase greenhouse gases (GHGs) emissions and reduce soil organic carbon (SOC) sequestration, thereby increasing carbon footprints (CFs), jeopardizing ecosystem services, and affecting climate change. Therefore, the objectives of this study were to assess the effects of different tillage systems on CFs, GHGs emissions, and ecosystem service (ES) values of climate regulation and to identify climate-resilient tillage practices for a winter wheat (Triticum aestivum L.)-summer maize (Zea mays L.) cropping system in the North China Plain (NCP). The experiment was established in 2008 involving no-till with residue retention (NT), rotary tillage with residue incorporation (RT), sub-soiling with residue incorporation (ST), and plow tillage with residue incorporation (PT). The results showed that GHGs emissions from agricultural inputs were 6432.3–6527.3 kg CO2-eq ha−1 yr−1 during the entire growing season, respectively. The GHGs emission from chemical fertilizers and irrigation accounted for >80% of that from agricultural inputs during the entire growing season. The GHGs emission from agricultural inputs were >2.3 times larger in winter wheat than that in the summer maize season. The CFs at yield-scale during the entire growing season were 0.431, 0.425, 0.427, and 0.427 without and 0.286, 0.364, 0.360, and 0.334 kg CO2-eq kg−1 yr−1 with SOC sequestration under NT, RT, ST, and PT, respectively. Regardless of SOC sequestration, the CFs of winter wheat was larger than that of summer maize. Agricultural inputs and SOC change contributed mainly to the component of CFs of winter wheat and summer maize. The ES value of climate regulation under NT was ¥159.2, 515.6, and 478.1 ha−1 yr−1 higher than that under RT, ST, and PT during the entire growing season. Therefore, NT could be a preferred “Climate-resilient” technology for lowering CFs and enhancing ecosystem services of climate regulation for the winter wheat–summer maize system in the NCP.  相似文献   

2.
3.
The effects of organic manure and chemical fertilizer on total soil organic carbon (C T), water-soluble organic C (C WS), microbial biomass C (C MB), labile C (C L), C mineralization, C storage and sequestration, and the role of carbon management index (CMI) in soil quality evaluation were studied under a wheat–maize cropping system in a long-term experiment, which was established in 1989 in the North China Plain. The experiment included seven treatments: (1) OM: application of organic manure; (2) 1/2OMN: application of half organic manure plus chemical fertilizer NPK; (3) NPK: balanced application of chemical fertilizer NPK; (4) NP: application of chemical fertilizer NP; (5) PK: application of chemical fertilizer PK; (6) NK: application of chemical fertilizer NK; and (7) CK: unfertilized control. Application of organic manure (OM and 1/2OMN) was more effective for increasing C T, C WS, C MB, C L, C mineralization, and CMI, as compared with application of chemical fertilizer alone. For the chemical fertilizer treatments, balanced application of NPK (treatment 3) showed higher C T, C WS, C MB, C L, C mineralization, and CMI than the unbalanced use of fertilizers (treatments 4, 5, and 6). The C storage in the OM and 1/2OMN treatments were increased by 58.0% and 26.6%, respectively, over the NPK treatment, which had 5.9–25.4% more C storage than unbalanced use of fertilizers. The contents of C WS, C MB, and C L in organic manure treatments (treatments 1 and 2) were increased by 139.7–260.5%, 136.7–225.7%, and 150.0–240.5%, respectively, as compared to the CK treatment. The CMI was found to be a useful index to assess the changes of soil quality induced by soil management practices due to its significant correlation with soil bulk density and C fractions. The OM and 1/2OMN treatments were not a feasible option for farmers, but a feasible option for sequestering soil carbon, especially for the OM treatment. The NPK treatment was important for increasing crop yields, organic material inputs, and soil C fractions, so it could increase the sustainability of cropping system in the North China Plain.  相似文献   

4.
There is a growing concern about excessive nitrogen (N) and water use in agricultural systems in North China due to the reduced resource use efficiency and increased groundwater pollution. A two-year experiment with two soil moisture by four N treatments was conducted to investigate the effects of N application rates and soil moisture on soil N dynamics, crop yield, N uptake and use efficiency in an intensive wheat–maize double cropping system (wheat–maize rotation) in the North China Plain. Under the experimental conditions, crop yield of both wheat and maize did␣not␣increase significantly at N rates above 200 kg N ha−1. Nitrogen application rates affected little on ammonium-N (NH4-N) content in the 0–100 cm soil profiles. Excess nitrate-N (NO3-N), ranging from 221 kg N ha−1 to 620 kg N ha−1, accumulated in the 0–100 cm soil profile at the end of second rotation in the treatments with N rates of 200 kg N ha−1 and 300 kg N ha−1. In general, maize crop has higher N use efficiency than wheat crop. Higher NO3-N leaching occurred in maize season than in wheat season due to more water leakage caused by the concentrated summer rainfall. The results of this study indicate that the optimum N rate may be much lower than that used in many areas in the North China Plain given the high level of N already in the soil, and there is great potential for reducing N inputs to increase N use efficiency and to mitigate N leaching into the groundwater. Avoiding excess water leakage through controlled irrigation and matching N application to crop N demand is the key to reduce NO3-N leaching and maintain crop yield. Such management requires knowledge of crop water and N demand and soil N dynamics as they change with variable climate temporally and spatially. Simulation modeling can capture those interactions and is considered as a powerful tool to assist in␣the␣future optimization of N and irrigation managements. Section Editor: L. Wade  相似文献   

5.
Crop yield and water use efficiency (WUE) in a wheat-maize double cropping system are influenced by short and uneven rainfalls in the North China Plain (NCP), A 2-year experiment was conducted to investigate the effects of irrigation on soil water balance, crop yield and WUE to improve irrigation use efficiency in the cropping system, Soil water depletion (~SWS) by crop generally decreased with the increase of irrigation and rainfall, while ASWS for the whole rotation was relatively stable among these irrigation treatments, High irrigations in wheat season increased initial soil moisture and ASWS for subsequent maize especially in the drought season, Initial soil water influenced mainly by the irrigation and rainfall in the previous crop season, is essential to high yield in such cropping systems, Grain yield decreased prior to evapotranspiraUon (ET) when ET reached about 300mm for wheat, while maize showed various WUEs with similar seasonal ET, For whole rotation, WUE declined when ET exceeded about 650 mm, These results indicate great potential for improving irrigation use efficiency in such wheat-maize cropping system in the NCP, Based on the present results, reasonable irrigation schedules according to different annual rainfall conditions are presented for such a cropping system.  相似文献   

6.
Diversity measures reflect different aspects of a community, which are determined by different ecological processes. However, information is still limited on the ecological processes that are represented by different measures of species diversity. In this study, the primary driving factors for richness and diversity indices were tested. The possible ecological processes represented by each index were analyzed. First, the type of ecological process that governed the phytoplankton community in the Yunnan–Guizhou Plateau lakes, either deterministic or stochastic, was identified by Caswell's neutral model. The results indicate that a deterministic process governs the phytoplankton community. Second, the driving factors of richness and diversity indices were screened with mixed models. The results suggest that the variation of phytoplankton richness in different lakes or sites was primarily related to bottom-up factors. The variations in evenness and other measures based on the relative abundance were driven by both top-down and bottom-up factors, such as zooplankton biomass, and pH and mean light, respectively. Finally, although the different measures of diversity may respond to specific bottom-up or top-down processes, the responses to the two processes were not independent of each other. These findings will increase our understanding of the relationships between ecological processes and diversity measures for freshwater phytoplankton.  相似文献   

7.
8.
The Devonian–Carboniferous (D–C) transition coincides with the Hangenberg Crisis, carbon isotope anomalies, and the enhanced preservation of organic matter associated with marine redox fluctuations. The proposed driving factors for the biotic extinction include variations in the eustatic sea level, paleoclimate fluctuation, climatic conditions, redox conditions, and the configuration of ocean basins. To investigate this phenomenon and obtain information on the paleo-ocean environment of different depositional facies, we studied a shallow-water carbonate section developed in the periplatform slope facies on the southern margin of South China, which includes a well-preserved succession spanning the D–C boundary. The integrated chemostratigraphic trends reveal distinct excursions in the isotopic compositions of bulk nitrogen, carbonate carbon, organic carbon, and total sulfur. A distinct negative δ15N excursion (~−3.1‰) is recorded throughout the Middle Si. praesulcata Zone and the Upper Si. praesulcata Zone, when the Hangenberg mass extinction occurred. We attribute the nitrogen cycle anomaly to enhanced microbial nitrogen fixation, which was likely a consequence of intensified seawater anoxia associated with increased denitrification, as well as upwelling of anoxic ammonium-bearing waters. Negative excursions in the δ13Ccarb and δ13Corg values were identified in the Middle Si. praesulcata Zone and likely resulted from intense deep ocean upwelling that amplified nutrient fluxes and delivered 13C-depleted anoxic water masses. Decreased δ34S values during the Middle Si. praesulcata Zone suggests an increasing contribution of water-column sulfate reduction under euxinic conditions. Contributions of organic matter produced by anaerobic metabolisms to the deposition of shallow carbonate in the Upper Si. praesulcata Zone is recorded by the nadir of δ13Corg values associated with maximal △13C. The integrated δ15N-δ13C-δ34S data suggest that significant ocean-redox variation was recorded in South China during the D–C transition; and that this prominent fluctuation was likely associated with intense upwelling of deep anoxic waters. The temporal synchrony between the development of euxinia/anoxia and the Hangenberg Event indicates that the redox oscillation was a key factor triggering manifestations of the biodiversity crisis.  相似文献   

9.
<正>The year 2009 marks the tenth anniversary of the founding of Institute of Neuroscience (ION) in the Shanghai campus of Chinese Academy of Sciences.  相似文献   

10.
Modelling of the carbon dynamics in arable soils is complex and the accuracy of the predictions is unknown before the model is applied to each specific site. Objectives were (i) to test the accuracy of predictions of the carbon dynamics using the Rothamsted Carbon (RothC) Model in a field trial in Quzhou, North China Plain, using different methods for initialization and estimation of carbon input into the soil and (ii) to test the applicability of the RothC model for plots with either conventional tillage (CT) or no-tillage (NT) systems. A field trial was conducted with applications of differing amounts of N (0, 112 or 187 kg N ha?1 year?1), P (0, 75 or 150 kg P2O5 ha?1 year?1) and wheat straw (0, 2.25 or 4.5 t DM ha?1 year?1) in differing combinations with either CT or NT for 18 years. CT and NT affected stocks of soil organic carbon (SOC) similarly. Carbon inputs from crops were either estimated from published regression functions that relate C inputs to crop yield including rhizodeposition (models 1 and 2) or published root:aboveground biomass ratios (model 3). Model 1, which was not calibrated to the site conditions, was successful in predicting the carbon dynamics in seven out of nine treatments (model efficiencies EF ranged from 0.28 to 0.87), whereas for two treatments, EF (?0.35 and?2.3) indicated an unsuccessful prediction. The prediction of the C dynamics in NT experiments using model 1 was generally successful, but this may have been due to the fact that NT did not have a specific effect on SOC stocks for this trial. Model 2, which was the same as model 1 except for an optimization of the stock of inert organic matter using one treatment, predicted SOC stocks in the remaining eight treatments overall better than model 1. Model 3 was less successful than models 1 and 2 in all treatments (?19 ≤ EF ≤ 0.56). The results indicate that the RothC model may successfully predict C dynamics—for the site studied even without prior calibration as in model 1—, but care should be taken in choosing an appropriate approach for estimating C inputs into the soil.  相似文献   

11.
Vegetation changes during the Holocene in the North Iberá, Corrientes, Argentina. Wetlands are very important sites for palynological studies, since they represent one of the most suitable environments for fossil pollen preservation. The aim of this work was to determine, by palynological analysis of lacustrine sediments, the vegetal communities and the predominant environment during the Holocene in NW of Iberá. Two lagoons were studied: San Sebastián and San Juan Poriahú. Sediment samples were obtained with witness using a "Levingstone square-rod sampler", processed with Faegri e Iversen techniques and dated with C14. The palynological graphs were divided in zones using the Tilia program. The palynological analysis allowed visualizing diverse changes in the vegetation: from 6 140 +/- 50 to 5 170 +/- 100 a. C., the NW of Iberá was characterized by marsh-herbaceous vegetation and arboreal vegetation typical of dry vegetation. From 5 170 +/- 100 to 3 460 +/- 60 a. C., a decrease in the species frequency, typical of wet environments, is produced, and the clogging of the waterbody, from 3460 +/- 60 a. C. onwards, while continuing the dominance of herbaceous vegetation typical of these environments, the arboreal pollen, indicates the beginning of a hygrophilous forest development.  相似文献   

12.
Manganese (Mn) deficiency in wheat under rice (Oryza sativa L.) and wheat (Triticum aestivum L.) rotation is an important problem in most rice-growing areas in China. A field survey, field trials and a soil column experiment were conducted to determine the relationship between Mn leaching and distribution in soil profiles and paddy rice cultivation and the effects of Mn distribution in soil profiles on wheat growth and its response to Mn fertilization. At five field sites surveyed, total Mn and active Mn concentrations in the topsoil layers under rice–wheat rotations were only 42% and 11%, respectively, of those under systems without paddy rice. Both total and available Mn increased with soil depth in soils with rice–wheat rotations, showing significant spatial variability of Mn in the soil profile. Manganese leaching was the main pathway for Mn loss in coarse-textured soil with high pH, while excessive Mn uptake was the main pathway for Mn loss in clay-textured and acid soil. When Mn was deficient in the topsoil, sufficient Mn in the subsoil contributed to better growth and Mn nutrition of wheat but insufficient Mn in the subsoil resulted in Mn deficiency in wheat.  相似文献   

13.
L.A. Batten 《Bird Study》2013,60(3):163-168
Common Birds Census data from a Norfolk Farm, pertaining to two four-year periods before and after massive alterations which removed one-third of the hedgerow length and brought changes in cropping in the greatly enlarged fields, are analysed to elucidate their effects on the bird community structure and population levels.  相似文献   

14.
Shang  Zongbo  Gao  Qiong  Dong  Ming 《Plant and Soil》2003,249(2):237-251
A process-based model was built to describe the ecological processes of an alkalinized–salinized meadow steppe ecosystem, including the hydrological and alkalization–salinization processes in the soil, as well as the succession and growth dynamics of the grassland communities. A numerical integration model and a water and salt balance model were integrated into a physically-based model, describing the dynamics of soil moisture, salt concentration, exchangeable sodium percentage (ESP) and pH. Meteorological variables and soil characteristics were the main environmental factors used to estimate the growth dynamics of three herbaceous communities that were dominated by Aneurolepidium chinense, Chloris virgata, and Suaeda glauca, respectively. Model validation showed good agreement between the simulated results and the observed data. Simulation studies were conducted to evaluate the potential changes in hydrological and alkalization–salinization processes, succession and growth dynamics from 1991 to 1998, under five grazing intensities, namely 0%, 25%, 50%, 75% and 90% above-ground biomass removal (AGBR). The simulations show that soil moisture decreased markedly under the 50%, 75% and 90% AGBR, but increased slightly under the 25% AGBR. The de-alkalization and de-salinization processes would be predominant under the 0% AGBR, and the processes became a little slower under the 25% AGBR. In contrast, the 50%, 75% and 90% AGBR accelerated the degradation of soil properties. The grassland was dominated by A. chinense under the 0% AGBR, and by A. chinense and C. virgata under the 25% AGBR. C. virgata could grow on slightly alkalinized–salinized soil and became a dominant species after three years of 50% AGBR. The soil degraded quickly and only S. glauca could grow on the severe alkalinized–salinized soil if the grassland received 75% or 90% AGBR. The grassland grew well under the 0% AGBR, and the biomass stayed at moderate level under 25% AGBR. The 50%, 75% and 90% AGBR decreased the grassland growth greatly. After accumulating the grazed biomass for each year, the 25% AGBR would provide the highest production, and the grassland production would decrease sharply with the increasing of grazing intensities. The simulation results indicate that 25% AGBR is significant for preserving the soil from degradation, and maintaining high grassland production.  相似文献   

15.
Vegetation History and Archaeobotany - Between the initial colonization of North America and the European settlement period, Indigenous American land use practices shaped North American landscapes...  相似文献   

16.
In international practice, the database (DB) considered below is unique in its sources, quantity of data, history of creation, updating and enhancement methods. The advantages and disadvantages of this DB are discussed. Its role in fundamental biological science and applied resource studies and in the development of innovative techniques is shown. The significance of the DB for the Concept of Informational Provisioning of Fishery Studies in Far Eastern Seas of Russia, as well as the Concept of the Ecological Safety of Russia is explained. The necessity of continuing the work on its regular updating is emphasized.  相似文献   

17.
Life zones and their changes in distribution in north-east China were studied based on climate–vegetation relationships. The warmth index (WI) and aridity index (the ratio of evaporation [evaporation rate, ER] to precipitation) were used to represent the site condition. The typical site condition of each vegetation type was determined as the classification criterion. The boundaries of the four potential vegetation zones were estimated based on the combinations of WI and ER in relation to vegetation (i.e. cold-temperate conifer forest zone, temperate broad-leaved conifer mixed forest zone, warm-temperate deciduous forest zone, and temperate steppe zone). The distribution changes in vegetation zone caused by human activities were estimated by comparing the potential vegetation with the actual one. The percentage cover of forest has shrunk from about 70% to the present 27%. About 23% of the study area was replaced by agricultural vegetation and industrial use. Nearly half of the region could have been covered by broad-leaved conifer mixed forest which was shrunk to a small area, less than 5% of the region. The broad-leaved deciduous forest zone in the southern part could have occupied about 7% of the area, and had almost no virgin stand.  相似文献   

18.
19.
Previous studies with chromosome substitution and recombinant inbred chromosome lines identified that chromosome 3A of wheat cv. Wichita contains alleles that influence grain yield, yield components and agronomic performance traits relative to alleles on chromosome 3A of Cheyenne, a cultivar believed to be the founder parent of many Nebraska developed cultivars. This study was carried out to examine the genetic similarity among wheat cultivars based on the variation in chromosome 3A. Forty-eight cultivars, two promising lines and four substitution lines (in duplicate) were included in the study. Thirty-six chromosome 3A-specific and 12 group-3 barley simple sequence repeat (SSR) primer pairs were used. A total of 106 polymorphic bands were scored. Transferability of barley microsatellite markers to wheat was 73%. The coefficient of genetic distance (D) among the genotypes ranged from 0.40 to 0.91 and averaged D=0.66. Cluster analysis by the unweighted pair-group method with arithmetic averages showed one large and one small cluster with eight minor clusters in the large cluster. Several known pedigree relationships largely corresponded with the results of SSR clusters and principal coordinate analysis. Cluster analysis was also carried out by using 22 alleles that separate Wichita 3A from Cheyenne 3A, and three clusters were identified (a small cluster related to Cheyenne of mainly western Nebraska wheat cultivars; a larger, intermediate cluster with many modern Nebraska wheat cultivars; a large cluster related to Wichita with many modern high-yielding or Kansas wheat cultivars). Using three SSR markers that identify known agronomically important quantitative trait loci (QTL) regions, we again separated the cultivars into three main clusters that were related to Cheyenne or Wichita, or had a different 3A lineage. These results suggest that SSR markers linked to agronomically important QTLs are a valuable asset for estimating both genetic similarity for chromosome 3A and how the chromosome has been used in cultivar improvement.  相似文献   

20.
Policy evolution in China has made great achievements in economic development, while its impact on water has also been significant. This study provides detailed insight into how diverse policy evolution affected the water footprint (WF) in China from 1997 to 2007 through input–output analysis and structural decomposition analysis. Input–output analysis was used to measure China's WF. The results indicate that the total WF in China decreased from 495.5 billion m3 in 1997 to 447.6 billion m3 in 2007. Structural decomposition analysis was applied to quantify the determinants of the changes in WF. The driving factors of the WF changes were decomposed into technology, sectoral connection, economic structure, gross economic scale and population. The results show that the sector with the most space to save water changed from agriculture to tertiary industry during the periods under study. Technology and economic structure effects always offset the WF increase, whereas gross economic scale effect always hindered water conservation. In 2002–2005, the sectoral connection effect abruptly changed from negative to positive, with the proportion of the total contribution rising to 60%. This phenomenon can be linked to market expansion, which led to a decrease in water utilization when China joined the WTO in 2001. To promote water conservation in China, macro-control policies should be formulated in coordination with self-readjustment policies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号