首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We hypothesized that nitric oxide (NO) may play a role in homeostatic sleep regulation. To test this hypothesis, we studied the sleep deprivation (SD)-induced homeostatic sleep responses after intraperitoneal administration of an NO synthase inhibitor, Nomega-nitro-L-arginine methyl ester (L-NAME, a cumulative dose of 100 mg/kg). Amounts and intensity of sleep were increased in response to 8 h of SD in control rats (n = 8). Sleep amounts remained above baseline for 16 h after SD followed by a negative rebound. Rapid eye movement sleep (REMS) and non-REMS (NREMS) intensities were elevated for 16 and 4 h, respectively. L-NAME treatment (n = 8) suppressed the rebound increases in NREMS amount and intensity. REMS rebound was attenuated by L-NAME in the first dark period after SD; however, a second rebound appeared in the subsequent dark period. REMS intensity did not increase after SD in L-NAME-injected rats. The finding that the NO synthase inhibitor suppressed rebound increases in NREMS suggests that NO may play a role as a signaling molecule in homeostatic regulation of NREMS.  相似文献   

2.
3.
Phosphodiesterases from blood cells and serum can be subdivided in several groups according to substrate specificity, optimum pH and effects of inhibitors: 1) Acidic phosphodiesterase activities were not inhibited by EDTA, represented the whole p3'T hydrolysing activity, but only a part of the activity hydrolysing the other substrates (p5'T was not hydrolysed at acidic pH). This acid phosphodiesterase activity was high in white blood cells and platelets but very low in serum. 2) Neutral phosphodiesterase activity was prevalent in leucocytes when BpP and BMP were used as substrates. 3) Alkaline phosphodiesterase activity was characterized by substrate specificity at optimum pH and distribution in cells and serum: in serum there are phosphodiesterases hydrolysing all checked substrates (p3'T excepted) at optimum pH 9.0, whereas in blood cells alkaline phosphodiesterase activities are very low for all substrates (excepted for p Phi Pn and p5'T). In each cell and serum we have determined, for all phosphodiesterase activities, the linearity of activity of versus time and versus protein concentration, the effect of substrate and effector concentration and the heat stability.  相似文献   

4.
5.
To study sleep responses to chronic sleep restriction (CSR) and time-of-day influences on these responses, we developed a rat model of CSR that takes into account the polyphasic sleep patterns in rats. Adult male rats underwent cycles of 3 h of sleep deprivation (SD) and 1 h of sleep opportunity (SO) continuously for 4 days, beginning at the onset of the 12-h light phase ("3/1" protocol). Electroencephalogram (EEG) and electromyogram (EMG) recordings were made before, during, and after CSR. During CSR, total sleep time was reduced by ~60% from baseline levels. Both rapid eye movement sleep (REMS) and non-rapid eye movement sleep (NREMS) during SO periods increased initially relative to baseline and remained elevated for the rest of the CSR period. In contrast, NREMS EEG delta power (a measure of sleep intensity) increased initially, but then declined gradually, in parallel with increases in high-frequency power in the NREMS EEG. The amplitude of daily rhythms in NREMS and REMS amounts was maintained during SO periods, whereas that of NREMS delta power was reduced. Compensatory responses during the 2-day post-CSR recovery period were either modest or negative and gated by time of day. NREMS, REMS, and EEG delta power lost during CSR were not recovered by the end of the second recovery day. Thus the "3/1" CSR protocol triggered both homeostatic responses (increased sleep amounts and intensity during SOs) and allostatic responses (gradual decline in sleep intensity during SOs and muted or negative post-CSR sleep recovery), and both responses were modulated by time of day.  相似文献   

6.
Sleep deprivation has been linked to hypertension, and recent evidence suggests that associations between short sleep duration and hypertension are stronger in women. In the present study we hypothesized that 24 h of total sleep deprivation (TSD) would elicit an augmented pressor and sympathetic neural response in women compared with men. Resting heart rate (HR), blood pressure (BP), and muscle sympathetic nerve activity (MSNA) were measured in 30 healthy subjects (age, 22 ± 1; 15 men and 15 women). Relations between spontaneous fluctuations of diastolic arterial pressure and MSNA were used to assess sympathetic baroreflex function. Subjects were studied twice, once after normal sleep and once after TSD (randomized, crossover design). TSD elicited similar increases in systolic, diastolic, and mean BP in men and women (time, P < 0.05; time × sex, P > 0.05). TSD reduced MSNA in men (25 ± 2 to 16 ± 3 bursts/100 heart beats; P = 0.02), but not women. TSD did not alter spontaneous sympathetic or cardiovagal baroreflex sensitivities in either sex. However, TSD shifted the spontaneous sympathetic baroreflex operating point downward and rightward in men only. TSD reduced testosterone in men, and these changes were correlated to changes in resting MSNA (r = 0.59; P = 0.04). Resting HR, respiratory rate, and estradiol were not altered by TSD in either sex. In conclusion, TSD-induced hypertension occurs in both sexes, but only men demonstrate altered resting MSNA. The sex differences in MSNA are associated with sex differences in sympathetic baroreflex function (i.e., operating point) and testosterone. These findings may help explain why associations between sleep deprivation and hypertension appear to be sex dependent.  相似文献   

7.
It has been shown that the content of G and A immunoglobulin (IgG, IgA) in blood serum increases with human age. IgM quantity is maximum at child age and at old age (about 80 years old and elder), at the age of 15-20 it is minimum. Immunoglobulin concentration is higher in female's blood serum than in male's, particularly at middle and old ages. The role of X-chromosome in regulation of serum IgM concentration is being discussed.  相似文献   

8.
In rats of the Krushinskii-Molodkina (KM) line with hereditary predisposition to audiogenic convulsions there were studied effects of total sleep deprivation for 3, 6, and 9 h by a light arousal or a slow rotation in a roller on spectral EEG characteristics in the wakefulness-sleep cycle, organization of the cycle, and intensity of convulsive symptoms at the recovery period. The data are presented on dynamics of recovery of the cycle structure for 12 h of postdeprivation period. It has been established that during and after the total sleep deprivations of any duration no paroxysmal discharges appear in EEG of hippocampus, caudate nucleus, medial central thalamic nucleus, somatosensory, visual, and auditory cerebral cortex in any of states of the wakefulness-sleep cycle. These deprivations were also shown to have no effect on the latent period value and parameters of generalized tonic-clonal audiogenic convulsions. At the same time, after 6 and 9 h of the total sleep deprivations in a slowly rotating roller there was revealed in some animals a change of the type of response to the sound stimulus. Such decrease of reaction of rats to audiogenic stimuli seems to be due to alertness of the animals. It is stated that in the KM rats, with the hidden convulsive syndrome, we failed to activate epileptiform manifestations by the used types and ways of the total sleep deprivations.Translated from Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, Vol. 41, No. 1, 2005, pp. 82–88.Original Russian Text Copyright © 2005 by Vataev, Oganesyan.  相似文献   

9.
10.
Xu  Xiaowen  Wang  Liang  Zhang  Yan  Su  Tianjiao  Chen  Liying  Zhang  Yan  Ma  Weifeng  Xie  Yuanyuan  Wang  Tiantian  Yang  Fan  He  Li  Wang  Wenjiao  Fu  Xuemei  Hao  Hongxia  Ma  Yuanzheng 《Sleep and biological rhythms》2016,14(4):321-328
Sleep and Biological Rhythms - Epidemiological studies have shown that chronic sleep disturbances resulted in metabolic disorders. The purpose of this study was to assess the relationship between...  相似文献   

11.
Sleep and Biological Rhythms - Acute sleep deprivation upregulates hippocampal neurogenesis. Neurotrophic factors such as glial cell line-derived neurotrophic factor (GDNF), brain-derived...  相似文献   

12.
To determine the relationships among plasma ghrelin and leptin concentrations and hypothalamic ghrelin contents, and sleep, cortical brain temperature (Tcrt), and feeding, we determined these parameters in rats in three experimental conditions: in free-feeding rats with normal diurnal rhythms, in rats with feeding restricted to the 12-h light period (RF), and in rats subjected to 5-h of sleep deprivation (SD) at the beginning of the light cycle. Plasma ghrelin and leptin displayed diurnal rhythms with the ghrelin peak preceding and the leptin peak following the major daily feeding peak in hour 1 after dark onset. RF reversed the diurnal rhythm of these hormones and the rhythm of rapid-eye-movement sleep (REMS) and significantly altered the rhythm of Tcrt. In contrast, the duration and intensity of non-REMS (NREMS) were hardly responsive to RF. SD failed to change leptin concentrations, but it promptly stimulated plasma ghrelin and induced eating. SD elicited biphasic variations in the hypothalamic ghrelin contents. SD increased plasma corticosterone, but corticosterone did not seem to influence either leptin or ghrelin. The results suggest a strong relationship between feeding and the diurnal rhythm of leptin and that feeding also fundamentally modulates the diurnal rhythm of ghrelin. The variations in hypothalamic ghrelin contents might be associated with sleep-wake activity in rats, but, unlike the previous observations in humans, obvious links could not be detected between sleep and the diurnal rhythms of plasma concentrations of either ghrelin or leptin in the rat.  相似文献   

13.
Effects of sleep deprivation and season on thermoregulation during 60 min. of leg-bathing (water temperature of 42 degrees C, air temperature of 30 degrees C, and relative humidity of 70%) were studied in eight men who completed all 4 experiments for normal sleep and sleep deprivation in summer and winter. Rectal temperature (T(re)), skin temperature, total body sweating rate (M(sw-t)), local sweating rate on the back (M(sw-back)) and forearm (M(sw-forearm)), and skin blood flow on the back (SBF(back)) and forearm (SBF(forearm)) were measured. The changes in T(re) (DeltaT(re)) were smaller (P<0.05) for sleep deprivation than for normal sleep regardless of the season. This decrease in DeltaT(re) was significant only in summer (P<0.05). Mean skin temperature (T(mean of)(sk)) was higher (P<0.05) for sleep deprivation than for normal sleep regardless of the season. M(sw-t) was smaller (P<0.05) for sleep deprivation than for normal sleep regardless of season, although M(sw-back) and M(sw-forearm) were similar. SBF(back) and SBF(forearm) tended to be higher for sleep deprivation than normal sleep. The sensitivity of SBF to T(re) was higher (P<0.05) for sleep deprivation than for normal sleep. These data indicate that seasonal differences in thermoregulation were small because of morning time. Sleep deprivation increased dry heat loss and restrained T(re) rise, in spite of decreased sweating rate.  相似文献   

14.
目的:探讨长期异相睡眠剥夺对大鼠能量代谢及血清甲状腺素水平的影响。方法:采用小平台水环境法建立长期异相睡眠剥夺大鼠模型;检测其能量代谢变化;放射免疫法检测血清中甲状腺素水平。结果:睡眠剥夺后大鼠摄食量由(75.06±25.37)g/(d.kg)增加到(122.30±20.43)g/(d.kg),体重由(360.89±43.01)g减轻到(295.97±37.95)g,体温由(37.62±1.12)℃先升高到(39.00±0.87)℃后又降低至(37.72±0.84)℃,基础代谢率由(1.69±0.36)mlO2/(g.h)增加到(2.40±0.09)mlO2/(g.h)与对照组相比差异显著(P〈0.05);血清中游离三碘甲状腺原氨酸(FT3)水平由(3.38±0.88)pmol/L降低到(2.38±0.83)pmol/L,游离甲状腺素(FT4)由(14.62±3.62)pmol/L降低到(8.26±2.80)pmol/L与对照组相比差异显著(P〈0.05)。结论:长期异相睡眠剥夺可以显著影响大鼠的能量代谢和血清甲状腺素水平。  相似文献   

15.
16.
17.
18.
REM sleep is essential for maintenance of body physiology and its deprivation is fatal. We observed that the levels of ALT and AST enzymes and pro-inflammatory cytokines like IL-1β, IL-6 and IL-12 circulating in the blood of REM sleep deprived rats increased in proportion to the extent of sleep loss. But in contrast the levels of IFN-γ and a ∼200 kDa protein, identified by N-terminal sequencing to be alpha-1-inhibitor-3(A1I3), decreased significantly. Quantitative PCR analysis confirmed that REM sleep deprivation down regulates AII3 gene and up regulates IL1 β, IL6 and their respective receptors gene expression in the liver initiating its inflammation.  相似文献   

19.
The analysis of the electrophysiological features of sleep-wakefulness cycle in Wistar rats for 9h after a 6h sleep deprivation was carried out. The delay of sleep rebound (since 2.5-3 h after deprivation) was found in the form of moderate increasing of slow-wave sleep and fast-wave sleep phases. According to these sleep-wakefulness cycle changes, a quantitative immunohistochemical study of tyrosine hydroxylase: a key enzyme of dopamine synthesis--and D1 and D2 receptors in nigro-striatal projections has been performed. After sleep, an elevation of D1 receptors immunoreactivity in caudate nucleus and reduction of tyrosine hydroxylase immunoreactivity in compact part of substancia nigra was found. After postdeprivation sleep, a decrease of D1 receptors immunoreactivity and increase of D2 receptors immunoreactivity in caudate nucleus together some increase of tyrosine hydroxilase immunoreactivity in substancia nigra compacta has been observed. These data can testify about active role of dopaminergic nigrostriatal system which provide at the same time with another neurotransmitters of the central nervous system the telencephalo-diencephalic interaction in sleep-wakefulness-sleep cycle.  相似文献   

20.
Previous studies have shown increased sleepiness and mood changes in shiftworkers, which may be due to sleep deprivation or circadian disruption. Few studies, however, have compared responses of experienced shiftworkers and non-shiftworkers to sleep deprivation in an identical laboratory setting. The aim of this laboratory study, therefore, was to compare long-term shiftworkers and non-shiftworkers and to investigate the effects of one night of total sleep deprivation (30.5 h of continuous wakefulness) and recovery sleep on psychomotor vigilance, self-rated alertness, and mood. Eleven experienced male shiftworkers (shiftwork ≥5 yrs) were matched with 14 non-shiftworkers for age (mean ± SD: 35.7 ± 7.2 and 32.5 ± 6.2 yrs, respectively) and body mass index (BMI) (28.7 ± 3.8 and 26.6 ± 3.4 kg/m(2), respectively). After keeping a 7-d self-selected sleep/wake cycle (7.5/8 h nocturnal sleep), both groups entered a laboratory session consisting of a night of adaptation sleep and a baseline sleep (each 7.5/8 h), a sleep deprivation night, and recovery sleep (4-h nap plus 7.5/8 h nighttime sleep). Subjective alertness and mood were assessed with the Karolinska Sleepiness Scale (KSS) and 9-digit rating scales, and vigilance was measured by the visual psychomotor vigilance test (PVT). A mixed-model regression analysis was carried out on data collected every hour during the sleep deprivation night and on all days (except for the adaptation day), at .25, 4.25, 5.25, 11.5, 12.5, and 13.5 h after habitual wake-up time. Despite similar circadian phase (melatonin onset), demographics, food intake, body posture, and environmental light, shiftworkers felt significantly more alert, more cheerful, more elated, and calmer than non-shiftworkers throughout the laboratory study. In addition, shiftworkers showed a faster median reaction time (RT) compared to non-shiftworkers, although four other PVT parameters did not differ between the groups. As expected, both groups showed a decrease in subjective alertness and PVT performance during and following the sleep deprivation night. Subjective sleepiness and most aspects of PVT performance returned to baseline levels after a nap and recovery sleep. The mechanisms underlying the observed differences between shiftworkers and non-shiftworkers require further study, but may be related to the absence of shiftwork the week prior to and during the laboratory study as well as selection into and out of shiftwork.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号