首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri   总被引:16,自引:0,他引:16       下载免费PDF全文
The chemical forms of zinc (Zn) in the Zn-tolerant and hyperaccumulator Arabidopsis halleri and in the non-tolerant and nonaccumulator Arabidopsis lyrata subsp. petraea were determined at the molecular level by combining chemical analyses, extended x-ray absorption spectroscopy (EXAFS), synchrotron-based x-ray microfluorescence, and muEXAFS. Plants were grown in hydroponics with various Zn concentrations, and A. halleri specimens growing naturally in a contaminated site were also collected. Zn speciation in A. halleri was independent of the origin of the plants (contaminated or non-contaminated) and Zn exposure. In aerial parts, Zn was predominantly octahedrally coordinated and complexed to malate. A secondary organic species was identified in the bases of the trichomes, which contained elevated Zn concentrations, and in which Zn was tetrahedrally coordinated and complexed to carboxyl and/or hydroxyl functional groups. This species was detected thanks to the good resolution and sensitivity of synchrotron-based x-ray microfluorescence and muEXAFS. In the roots of A. halleri grown in hydroponics, Zn phosphate was the only species detected, and is believed to result from chemical precipitation on the root surface. In the roots of A. halleri grown on the contaminated soil, Zn was distributed in Zn malate, Zn citrate, and Zn phosphate. Zn phosphate was present in both the roots and aerial part of A. lyrata subsp. petraea. This study illustrates the complementarity of bulk and spatially resolved techniques, allowing the identification of: (a) the predominant chemical forms of the metal, and (b) the minor forms present in particular cells, both types of information being essential for a better understanding of the bioaccumulation processes.  相似文献   

2.
Arabidopsis halleri is a well-known zinc (Zn) hyperaccumulator, but its status as a cadmium (Cd) hyperaccumulator is less certain. Here, we investigated whether A. halleri can hyperaccumulate Cd and whether Cd is transported via the Zn pathway. Growth and Cd and Zn uptake were determined in hydroponic experiments with different Cd and Zn concentrations. Short-term uptake and root-to-shoot transport were measured with radioactive 109Cd and 65Zn labelling. A. halleri accumulated > 1000 mg Cd kg(-1) in shoot dry weight at external Cd concentrations >or= 5 microm, but the short-term uptake rate of 109Cd was much lower than that of 65Zn. Zinc inhibited short-term 109Cd uptake kinetics and root-to-shoot translocation, as well as long-term Cd accumulation in shoots. Uptake of 109Cd and 65Zn were up-regulated, respectively, by low iron (Fe) or Zn status. A. halleri was much less tolerant to Cd than to Zn. We conclude that A. halleri is able to hyperaccumulate Cd partly, at least, through the Zn pathway, but the mechanisms responsible for cellular Zn tolerance cannot detoxify Cd effectively.  相似文献   

3.
Pollution by heavy metals is one of the strongest environmental constraints in human-altered environments that only a handful of species can cope with. Identifying the genes conferring to those species the ability to grow in polluted areas is a first step towards a global understanding of the evolutionary processes involved and will eventually improve phytoremediation practices. We used a genome-scan approach to detect loci under divergent selection among four populations of Arabidopsis halleri growing on either polluted or nonpolluted habitats. Based on a high density of amplified fragment length polymorphism (AFLP) markers (820 AFLP markers, i.e. ~1 marker per 0.3 Mb), evidence for selection was found for some markers in every sampled population. Four loci departed from neutrality in both metallicolous populations and thus constitute high-quality candidates for general adaptation to pollution. Interestingly, some candidates differed between the two metallicolous populations, suggesting the possibility that different loci may be involved in adaptation in the different metallicolous populations.  相似文献   

4.
5.
6.
7.
8.
9.
Arabidopsis halleri is a pseudometallophyte involved in numerous molecular studies of the adaptation to anthropogenic metal stress. In order to test the representativeness of genetic accessions commonly used in these studies, we investigated the A. halleri population genetic structure in Europe. Microsatellite and nucleotide polymorphisms from the nuclear and chloroplast genomes, respectively, were used to genotype 65 populations scattered over Europe. The large-scale population structure was characterized by a significant phylogeographic signal between two major genetic units. The localization of the phylogeographic break was assumed to result from vicariance between large populations isolated in southern and central Europe, on either side of ice sheets covering the Alps during the Quaternary ice ages. Genetic isolation was shown to be maintained in western Europe by the high summits of the Alps, whereas admixture was detected in the Carpathians. Considering the phylogeographic literature, our results suggest a distinct phylogeographic pattern for European species occurring in both mountain and lowland habitats. Considering the evolution of metal adaptation in A. halleri, it appears that recent adaptations to anthropogenic metal stress that have occurred within either phylogeographic unit should be regarded as independent events that potentially have involved the evolution of a variety of genetic mechanisms.  相似文献   

10.
Polyploidization, or genome duplication, has played a critical role in the diversification of animals, fungi and plants. Little is known about the population structure and multiple origins of polyploid species because of the difficulty in identifying multiple homeologous nuclear genes. The allotetraploid species Arabidopsis kamchatica is closely related to the model species Arabidopsis thaliana and is distributed in a broader climatic niche than its parental species. Here, we performed direct sequencing of homeologous pairs of the low-copy nuclear genes WER and CHS by designing homeolog-specific primers, and obtained also chloroplast and ribosomal internal transcribed spacer sequences. Phylogenetic analysis showed that 50 individuals covering the distribution range including North America are allopolyploids derived from Arabidopsis lyrata and Arabidopsis halleri . Three major clusters within A. kamchatica were detected using Bayesian clustering. One cluster has widespread distribution. The other two are restricted to the southern part of the distribution range including Japan, where the parent A. lyrata is not currently distributed. This suggests that the mountains in Central Honshu and surrounding areas in Japan served as refugia during glacial–interglacial cycles and retained this diversity. We also found that multiple haplotypes of nuclear and chloroplast sequences of A. kamchatica are identical to those of their parental species. This indicates that multiple diploid individuals contributed to the origin of A. kamchatica . The haplotypes of low-copy nuclear genes in Japan suggest independent polyploidization events rather than introgression. Our findings suggest that self-compatibility and gene silencing occurred independently in different origins.  相似文献   

11.
12.
13.
14.
Nucleotide variation in eight effectively unlinked genes was surveyed in species-wide samples of the closely related outbreeding species Arabidopsis halleri and A. lyrata ssp. petraea and in three of these genes in A. lyrata ssp. lyrata and A. thaliana. Significant genetic differentiation was observed more frequently in A. l. petraea than in A. halleri. Average estimates of nucleotide variation were highest in A. l. petraea and lowest in A. l. lyrata, reflecting differences among species in effective population size. The low level of variation in A. l. lyrata is concordant with a bottleneck effect associated with its origin. The A. halleri/A. l. petraea speciation process was studied, considering the orthologous sequences of an outgroup species (A. thaliana). The high number of ancestral mutations relative to exclusive polymorphisms detected in A. halleri and A. l. petraea, the significant results of the multilocus Fay and Wu H tests, and haplotype sharing between the species indicate introgression subsequent to speciation. Average among-population variation in A. halleri and A. l. petraea was approximately 1.5- and 3-fold higher than that in the inbreeder A. thaliana. The detected reduction of variation in A. thaliana is less than that expected from differences in mating system alone, and therefore from selective processes related to differences in the effective recombination rate, but could be explained by differences in population structure.  相似文献   

15.
Natural selection on flowering phenology has been studied primarily in terms of plant–pollinator interactions and effects of abiotic conditions. Little is known, however, about geographic variation in other biotic factors such as herbivores and its consequence for differential selection on flowering phenology among populations. Here, we examine selection by floral herbivores on the flowering phenology of Arabidopsis halleri subsp. gemmifera using two adjacent populations with contrasting herbivory regimes. Intensive floral herbivory by the leaf beetle Phaedon brassicae occurs in one population, while the beetle is absent in another population. We tested the hypothesis that the two populations experience differential selection on flowering time that is attributable to the presence or absence of floral herbivory. A two-year field study showed that early flowering was favoured in the population under intensive floral herbivory, whereas selection for early flowering was not found in one year in the population where floral herbivory was absent. Selection for early flowering disappeared when the abundance of floral herbivores was artificially decreased in a field experiment. Thus, the heterogeneous distribution of P. brassicae was a major agent for differential selection on flowering time. However, flowering time did not differ between the two populations when plants were grown in the laboratory. The lack of genetic differentiation in flowering time may be explained by ongoing gene flow or recent invasion of P. brassicae. This study illustrates that the role of floral herbivory in shaping geographic variation in selection on flowering phenology may be more important than previously thought.  相似文献   

16.
Although current knowledge about the overall distribution of zinc (Zn) tolerance in Arabidopsis halleri populations is scarce, the species is an emerging model for the study of heavy metal tolerance in plants. We attempted to improve this knowledge by testing the Zn tolerance of scattered European metallicolous (M) and nonmetallicolous (NM) populations of A. h. subsp. halleri and A. h. subsp. ovirensis in hydroponic culture. The occurrence of constitutive tolerance was unconditionally established in A. h. halleri and tolerance was extended to the subspecies ovirensis. M populations were the most tolerant but there was a continuous range of variation in tolerance from NM to M populations. Finally, relatively high levels of tolerance were detected in some NM populations, suggesting that enhanced tolerance could be present at high frequency in populations that have not experienced metal exposure. We used our results to argue the evolutionary dynamics and origin of Zn tolerance in A. halleri.  相似文献   

17.
Arabidopsis halleri, a close wild relative of A. thaliana, is a clonal, insect-pollinated herb tolerant to heavy metals (Zn, Pd, Cd) and a hyperaccumulator of Zn and Cd. It is of particular interest in the study of evolutionary processes and phytoremediation. However, little is known about its population gene flow patterns and the structure of its genetic diversity. We used five microsatellite loci to investigate the genetic structure at a fine spatial scale (10 cm to 500 m) in a metallicolous population of A. halleri. We also studied the contributions made by clonal propagation and sexual reproduction (seed and pollen dispersal) to the genetic patterns. Clonal diversity was high (D(G) > 0.9). Clonal spread occurs only at short distances (< 1 m). Both clonal spread and limited dispersal, associated with sexual reproduction, contribute to the significant spatial genetic structure revealed by spatial autocorrelation analysis. The shape of the autocorrelogram suggests that seed dispersal is restricted and pollen flow extensive, which may be related to intense activity by insect pollinators. Clonal spread was more extensive in the lowly polluted zone than in the highly polluted zone. This cannot be interpreted as a strategy for promoting the propagation of adapted genotypes under the harshest ecological constraints (highest heavy metal concentrations). The higher fine-scale spatial genetic structure found in the lowly polluted zone can be ascribed to plant densities that were lower than in the highly polluted zone. No evidence of genetic divergence due to spatial heavy metal heterogeneity was found between lowly and highly polluted zones.  相似文献   

18.
19.
20.
The hyperaccumulation of zinc (Zn) and cadmium (Cd) is a constitutive property of the metallophyte Arabidopsis halleri. We therefore used Arabidopsis GeneChips to identify genes more active in roots of A. halleri as compared to A. thaliana under control conditions. The two genes showing highest expression in A. halleri roots relative to A. thaliana roots out of more than 8000 genes present on the chip encode a nicotianamine (NA) synthase and a putative Zn2+ uptake system. The significantly higher activity of these and other genes involved in metal homeostasis under various growth conditions was confirmed by Northern and RT-PCR analyses. A. halleri roots also show higher NA synthase protein levels. Furthermore, we developed a capillary liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry (CapLC-ESI-QTOF-MS)-based NA analysis procedure and consistently found higher NA levels in roots of A. halleri. Expression of a NA synthase in Zn2+-hypersensitive Schizosaccharomyces pombe cells demonstrated that formation of NA can confer Zn2+ tolerance. Taken together, these observations implicate NA in plant Zn homeostasis and NA synthase in the hyperaccumulation of Zn by A. halleri. Furthermore, the results show that comparative microarray analysis of closely related species can be a valuable tool for the elucidation of phenotypic differences between such species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号