首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The application of non-invasive nuclear magnetic resonance (NMR) methods in xenobiotic research is reviewed in relation to: (i) the characterisation of the effects of xenobiotics on the metabolism of plants and plant cell suspensions; (ii) the direct detection of xenobiotics and their degradation products in vivo; and (iii) the spatial localisation of xenobiotics and their derivatives at the subcellular and tissue levels. Novel information has been generated by in vivo NMR studies of both agrochemicals and heavy metals, but a lack of generality in the methods makes it difficult to extrapolate from one successful application to the next. In vivo NMR spectroscopy is shown to be informative when a xenobiotic perturbs metabolic pathways that are accessible to the technique, and it is useful for probing the partitioning of paramagnetic metal ions between the cytoplasm and the vacuole. The successful application of 19F NMR to the analysis of plant tissue extracts also suggests that in vivo 19F NMR spectroscopy may have a role in biotransformation studies of fluorinated xenobiotics. In contrast NMR imaging techniques have been little used for xenobiotic research in plants, and while the method has been shown to be capable of monitoring the uptake and translocation of paramagnetic ions in plants, the potential use of high resolution 1H and 19F NMR imaging for mapping agrochemicals in tissues is still in its infancy.  相似文献   

2.
Phytoremediation-the use of plants for cleaning up of xenobiotic compounds-has received much attention in the last few years and development of transgenic plants tailored for remediation will further enhance their potential. Although plants have the inherent ability to detoxify some xenobiotic pollutants, they generally lack the catabolic pathway for complete degradation/mineralization of these compounds compared to microorganisms. Hence, transfer of genes involved in xenobiotic degradation from microbes/other eukaryotes to plants will further enhance their potential for remediation of these dangerous groups of compounds. Transgenic plants with enhanced potential for detoxification of xenobiotics such as trichloro ethylene, pentachlorophenol, trinitro toluene, glycerol trinitrate, atrazine, ethylene dibromide, metolachlor and hexahydro-1,3,5-trinitro-1,3,5-triazine are a few successful examples of utilization of transgenic technology. As more genes involved in xenobiotic metabolism in microorganisms/eukaryotes are discovered, it will lead to development of novel transgenic plants with improved potential for degradation of recalcitrant contaminants. Selection of suitable candidate plants, field testing and risk assessment are important considerations to be taken into account while developing transgenic plants for phytoremediation of this group of pollutants. Taking advantage of the advances in biotechnology and 'omic' technologies, development of novel transgenic plants for efficient phytoremediation of xenobiotic pollutants, field testing and commercialization will soon become a reality.  相似文献   

3.
4.
M.W. Anders 《Mitochondrion》2013,13(5):454-463
Oxidative stress plays a role in a range of human disease entities. Hence, strategies to target antioxidants to mitochondria are an active area of investigation. Triphenylphosphonium cation-based antioxidants and SS-peptides have been described and show significant uptake by mitochondria and effectiveness in animal models of conditions linked to oxidative stress. We tested the hypothesis that the mitochondrial β-oxidation pathway could be exploited to activate the antioxidant phenolic and methimazole prodrugs. Most compounds studied underwent mitochondrial biotransformation to release their antioxidant moieties, and some were cytoprotective in a hypoxia–reoxygenation model in rat cardiomyocytes. These results demonstrate the feasibility of exploiting mitochondrial bioactivation reactions for targeted drug delivery.  相似文献   

5.
R C Chou  R Wyss  C A Huselton  U W Wiegand 《Life sciences》1991,49(21):PL169-PL172
Formation of etretinate, ethyl ester of acitretin, can be confirmed in vitro and in vivo using acitretin as the substrate. Etretinate was identified by LC/MS. The in vitro incubation was performed using rat and human liver 12,000 g supernatant, and the in vivo experiment was conducted in rats after oral dosing of acitretin. The ethyl ester formation was greatly enhanced by addition of or dosing with ethanol.  相似文献   

6.
Phytoremediation is the use of plants to remove xenobiotic compounds from the environment. Plants have the inherent ability to detoxify xenobiotic pollutants, but they are generally poor at degrading them. The introduction of genes involved in xenobiotic degradation is aimed at enhancing plants' potential further. Rice (Oryza sativa) is a good candidate for this purpose and has been transformed with genes encoding cytochrome P450 monooxygenases CYP1A1, CYP2B6, and CYP2C19. The transgenic plants were more tolerant to various herbicides than nontransgenic Nipponbare rice plants, owing to enhanced metabolism by the introduced P450 enzymes. Transgenic plants were able to remove atrazine and metolachlor from soil. Field testing and risk assessment are very important for developing transgenic plants for phytoremediation. Transgenic rice plants should become useful as herbicide-tolerant crops and for phytoremediation of xenobiotic pollutants in future.  相似文献   

7.
  1. Download : Download high-res image (85KB)
  2. Download : Download full-size image
  相似文献   

8.
Some general properties of the solution of the diffusion equation are deduced for the steady-state, spherically symmetric system. On the basis of these developments some results of N. Rashevsky (Bull. Math. Biophysics,11, 15, 1949) are discussed and the results of a previous investigation (Hearon,Bull. Math. Biophysics,12, 135, 1950b) are extended to more general conditions. In particular these extensions apply to the flow of a soluteagainst its concentration gradient, the nonzero gradient of an inert metabolite, and theaccumulation or exclusion of an inert metabolite in a metabolic system. A portion of this work was performed while the author was a research participant, Oak Ridge Institute of Nuclear Studies, assigned to the Mathematics Panel, Oak Ridge National Laboratory.  相似文献   

9.
Components of a xenobiotic detoxication/toxication system involving mixed function oxygenases are present inMytilus edulis. Our paper critically reviews the recent literature on this topic which reported the apparent absence of such a system in bivalve molluscs and attempts to reconcile this viewpoint with our own findings on NADPH neotetrazolium reductase, glucose-6-phosphate dehydrogenase, aldrin epoxidation and other reports of the presence of mixed function oxygenases. New experimental data are presented which indicate that some elements of the detoxication/toxication system inM. edulis can be induced by aromatic hydrocarbons derived from crude oil. This includes a brief review of the results of long-term experiments in which mussels were exposed to low concentrations of the water accommodated fraction of North Sea crude oil (7.7–68 μg 1−1) in which general stress responses such as reduced physiological scope for growth, cytotoxic damage to lysosomal integrity and cellular damage are considered as characteristics of the general stress syndrome induced by the toxic action of the xenobiotics. In addition, induction in the blood cells of microsomal NADPH neotetrazolium reductase (associated with mixed function oxygenases) and the NADPH generating enzyme glucose-6-phosphate dehydrogenase are considered to be specific biological responses to the presence of aromatic hydrocarbons. The consequences of this detoxication/toxication system forMytilus edulis are discussed in terms of the formation of toxic electrophilic intermediate metabolites which are highly reactive and can combine with DNA, RNA and proteins with subsequent damage to these cellular constituents. Implications for neoplasms associated with the blood cells are also discussed. Finally, in view of the increased use of mussel species in pollutant monitoring programmes, the induction phenomenon which is associated with microsomal enzymes in the blood cells is considered as a possible tool for the detection of the biological effects of environmental contamination by low concentrations of certain groups of organic xenobiotics.  相似文献   

10.
Glutathione-mediated detoxification systems in plants   总被引:17,自引:0,他引:17  
Recent work has highlighted the presence of diverse glutathione-dependent enzymes in plants with potential roles in the detoxification of both xenobiotic and endogenous compounds. In particular, studies on glutathione transferases are further characterising their role in xenobiotic metabolism, and also raising intriguing possible roles in endogenous metabolism. The solution of their three-dimensional structures together with studies on their molecular diversity and substrate specificity is providing new insights into the function and classification of these enigmatic enzymes.  相似文献   

11.
12.
The defenses of higher plants against a variety of biotic and abiotic stress agents can be grouped into two categories: Preformed and Induced. Induced defensive responses by the plant, or “alarms”—the subject of the present review—can be localized or systemic. Certain alarms, especially those which are induced by necrotizing pathogens, are protective against a wide variety of biotic stress agents. Other responses appear protective but the degree of host plant involvement is unclear. Finally, there are a few induced plant responses which, although protective, do not easily fit our criteria of an “alarm.” Oligosaccharins may be involved as signals in both anti-herbivore and anti-pathogen alarm systems. Other specific components of plant alarms appear to be induced by only one type of stress agent. The specificity of protection, mechanisms of various alarms and comparisons between them are presented.  相似文献   

13.
Contemporary data on the mechanism of biodegradation of aromatic hydrocarbons and biodegradation genes (genomic organization and pathways of evolution) in diverse groups of microorganisms have been reviewed. Studies of this problem are topical, in view of the need in identification and construction of new strains degrading xenobiotics, particularly those halogenated. For this reason, emphasis is placed on specific features of explored metabolic pathways that can be used for constructing new enzymatic systems not present in nature. Sections on the mechanisms of genomic rearrangements involving biodegradation determinants are presented from the same standpoint. Part of the review is devoted to analyzing methods used for studying the population dynamics of bacterial communities involved in xenobiotic degradation in natural biotopes or industrial waste disposal plants. Particular attention is given to methods of gene systematics.  相似文献   

14.
Contemporary data on the mechanism of biodegradation of aromatic hydrocarbons and biodegradation genes (genomic organization and pathways of evolution) in diverse groups of microorganisms have been reviewed. Studies of this problem are topical, in view of the need in identification and construction of new strains degrading xenobiotics, particularly those halogenated. For this reason, emphasis is placed on specific features of explored metabolic pathways that can be used for constructing new enzymatic systems not present in nature. Sections on the mechanisms of genomic rearrangements involving biodegradation determinants are presented from the same standpoint. Part of the review is devoted to analyzing methods used for studying the population dynamics of bacterial communities involved in xenobiotic degradation in natural biotopes or industrial waste disposal plants. Particular attention is given to methods of gene systematics.  相似文献   

15.
Chen S  Li H  Liu G 《Transgenic research》2006,15(6):655-665
Vitamin E is important for human and animal health. Many human diseases, such as certain cancers and neurodegenerative and cardiovascular disease, are associated with the insufficient intake of vitamin E. The daily requirements for vitamin E in men and women have been increased to 15–30 mg. Because the primary source of dietary vitamin E comes from plants, there is a need to increase vitamin E production through plant engineering in order to meet the demand in human consumption. Numerous studies have been carried out in this field, leading to many successful examples. In this review, we summarized the recent progress in vitamin E metabolic engineering in plants aimed at improving the vitamin E content and regulating composition of vitamin E.  相似文献   

16.
Research on plant metabolism is currently experiencing the common use of various omics methods creating valuable information on the concentrations of the cell's constituents. However, little is known about in vivo reaction rates, which can be determined by Metabolic Flux Analysis (MFA), a combination of isotope labeling experiments and computer modeling of the metabolic network. Large-scale applications of this method so far have been hampered by tedious procedures of tissue culture, analytics, modeling and simulation. By streamlining the workflow of MFA, the throughput of the method could be significantly increased. We propose strategies for these improvements on various sub-steps which will move flux analysis to the medium-throughput range and closer to established methods such as metabolite profiling. Furthermore, this may enable novel applications of MFA, for example screening plant populations for traits related to the flux phenotype.  相似文献   

17.
《植物生态学报》2014,38(6):599
West、Brown和Enquist提出的植物分形网络模型(简称WBE模型)认为: 植物的分支指数(1/a, 1/b)决定植物的代谢指数, 当分支指数1/a、1/b分别为理论值2.0、3.0时, 代谢速率与个体大小的3/4次幂成正比, 但是恒定的3/4代谢指数并不能全面地反映植物的代谢情况。基于分支指数的协同变化, Price、Enquist和Savage对WBE模型进行扩展, 提出植物分支参数协同变化模型(简称PES模型)。该文借助于PES模型分析了7种木本植物的分支指数和代谢指数。结果表明: 物种间叶面积与叶生物量呈异速生长关系, 基于叶面积得到的分支指数1/a和代谢指数θ在物种间无显著差异, 基于叶生物量得到的分支指数1/a、1/b和代谢指数θ在物种间均存在显著差异, 但基于叶面积和叶生物量分别拟合出的整体分支指数1/a、1/b和代谢指数θ与理论值均无显著差异, 且用叶面积作为代谢速率的替代指标比用叶生物量分析得出的代谢指数与理论值更接近。今后研究应当关注植物叶面积与叶生物量的异速生长关系对植物代谢速率及相关功能特性的影响。  相似文献   

18.
The era of metabolic engineering has begun, but there is only limited knowledge about metabolic fluxes and how they are regulated in plants. Particular challenges are the non-linearities between enzyme abundances, metabolite concentrations and metabolic fluxes, and the existence of metabolic networks that provide multiple routes between many important metabolites. NMR offers the means to distinguish and quantitate the fluxes along different routes to key metabolites. NMR can therefore help us understand and resolve the apparent paradox of, on the one hand, great metabolic flexibility evident in the natural responses of plants and, on the other hand, the unpredictable changes in metabolism reported in genetically engineered plants.  相似文献   

19.
West、Brown和Enquist提出的植物分形网络模型(简称WBE模型)认为: 植物的分支指数(1/a, 1/b)决定植物的代谢指数, 当分支指数1/a、1/b分别为理论值2.0、3.0时, 代谢速率与个体大小的3/4次幂成正比, 但是恒定的3/4代谢指数并不能全面地反映植物的代谢情况。基于分支指数的协同变化, Price、Enquist和Savage对WBE模型进行扩展, 提出植物分支参数协同变化模型(简称PES模型)。该文借助于PES模型分析了7种木本植物的分支指数和代谢指数。结果表明: 物种间叶面积与叶生物量呈异速生长关系, 基于叶面积得到的分支指数1/a和代谢指数θ在物种间无显著差异, 基于叶生物量得到的分支指数1/a、1/b和代谢指数θ在物种间均存在显著差异, 但基于叶面积和叶生物量分别拟合出的整体分支指数1/a、1/b和代谢指数θ与理论值均无显著差异, 且用叶面积作为代谢速率的替代指标比用叶生物量分析得出的代谢指数与理论值更接近。今后研究应当关注植物叶面积与叶生物量的异速生长关系对植物代谢速率及相关功能特性的影响。  相似文献   

20.
Biological networks in metabolic P systems   总被引:4,自引:0,他引:4  
Manca V  Bianco L 《Bio Systems》2008,91(3):489-498
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号