首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biological assessments of river conditions are increasingly conducted at regional and continental scales that match the extent of large-scale river management efforts. Multimetric indices composed of biological community indicators are commonly used to assess ecological condition and indices have recently been applied in large regions. Methods for large-scale multimetric index creation emphasize repeatability, comparability across regions, and objective selection of candidate metrics. Here we used an extensive fish dataset to create a large pool of fish community metrics which were screened to create multimetric indices (MMIs) in eight ecoregions covering the conterminous U.S. Candidate metrics were tested for metric range, corrected for natural gradients using boosted regression trees, and then tested for repeatability and sensitivity to landscape disturbance. Temporally stable and repeatable metrics were then evaluated for redundancy and used to compose MMIs for each region. Our MMIs were significantly correlated to independently developed MMIs, accurately reproducing prior index values with moderate to high precision and little bias. Our study demonstrates the utility of boosted regression tree models for correcting metric values for natural abiotic gradients and shows that the order of screening tests has a potentially important influence on metric selection. The resultant regional indices and component metrics provide a basis for assessing condition and testing hypotheses about landscape influences on aquatic ecosystems at a national scale in the US.  相似文献   

2.
3.
An estuarine multi-metric fish index (EMFI) was developed and applied to Irish transitional waters. The index comprised a balanced and complimentary set of 14 metrics that represent four fish community attributes: species diversity and composition, species abundance, estuarine utilisation, and trophic composition. Reference conditions and metric scoring thresholds were developed using a combination of historical records, best available data, and expert judgement. The index was applied using representative and robust fish monitoring data collected using a suite of methods designed to cover a range of habitats and conditions. To ensure consistency and comparability, all systems were considered at the whole estuary level. A sensitivity analysis was carried out to assess the response of the EMFI under various scenarios of metric change; five metrics were consistently among the most influential on the EMFI in all scenarios of metric manipulation. The overall EMFI was significantly correlated with environmental condition as measured by two separate indicators of ecological state. Ecological status classes were also established based on the relationship between the EMFI and an index of human pressure. The EMFI provides a robust, sensitive, and integrated measure of the ecological status of fishes in transitional waters and meets the requirements of the EU Water Framework Directive.  相似文献   

4.
The application of macrophytes in freshwater monitoring is still relatively limited and studies on their intercalibration and sources of variation are required. Therefore, the aim of the study was to compare selected indices and metrics based on macrophytes and to quantify their variability. During the STAR project, several aspects influencing uncertainty in estimation of the ecological quality of river were assessed. Results showed that several metrics based on the indicative value of plant species can be used in evaluation of the ecological status of rivers. Among estimated sources of variance in metric values the inter-surveyor differences had the lowest effect and slightly stronger were the influences of temporal variation (years and seasons) and shading. The impact of habitat modification was the most important factor. Analysis showed that some of macrophyte-based metrics (notably MTR and IBMR) are of sufficient precision in terms of sampling uncertainty, that they could be useful for estimating the ecological status of rivers in accordance with the aims of the Water Framework Directive.  相似文献   

5.
Most traditional "biodiversity" indices have an uncertain ecological interpretation, unfavourable sampling properties, and excessive data requirements. A new index of taxonomic distinctness (the average evolutionary distance between species in an assemblage) has many advantages over traditional measures, but its ecological interpretation remains unclear. We used published behavioural species data in conjunction with bird atlas data to quantify simple functional metrics (the fraction of species engaged in non-competitive interactions, and the average between-species disparity in habitat preferences) for breeding-bird assemblages in Europe and North America. We then analysed correlations of functional metrics with taxonomic distinctness and species richness, respectively. All functional metrics had weak, positive correlations with species richness. In contrast, correlations between functional metrics and taxonomic distinctness ranged from slightly negative to strongly positive, depending on the relative habitat heterogeneity, and on the resource involved in the between-species interaction. Strong positive correlations between taxonomic distinctness and the fraction of interactive species occurred for resources with few producer species per consumer species, and we suggest that taxonomic distinctness is consistently correlated with conservation worth. With its favourable sampling properties and data requirements, this taxonomic distinctness measure is a promising tool for biodiversity research and for environmental monitoring and management.  相似文献   

6.
Multimetric fish-based indices have been increasingly gaining importance in Europe, as the Water Framework Directive (WFD) requires fish fauna, and particularly its composition and abundance, to be taken into account in the assessment of the ecological quality of continental surface waters, including transitional waters. These indices are composed of several metrics, mostly related with structural and functional characteristics of fish communities, such as species richness, the role of nursery areas, or trophic web structure. Therefore, ecological quality assessments should ensure that these structural and functional characteristics of fish communities were covered by the sampling methods used. In the present work, the influence of sampling effort on several metrics of the Estuarine Fish Assessment Index (EFAI) was studied. Pseudo-random samples were generated from data of four Portuguese estuaries and bootstrap cycles were performed, in order to obtain metrics’ means and standard deviations per number of hauls analysed. The number of hauls necessary for the means to level off differed with the metrics considered. Generally, for metrics on percentages (percentage of marine migrants, percentage of estuarine residents and percentage of piscivores) the curve levelled off with less than 20 hauls, both for the estuary as a whole and for different estuarine salinity zones. On the other hand, metrics on species richness required much larger samples. In order to decrease to −5% the current estimated bias of metrics, the WFD sampling costs would have to be more than 3 times higher than they currently are. The findings in the present study are of great importance for an effective assessment of estuarine ecological quality and particularly in the context of the WFD, as the metrics studied are common to other Member State indices.  相似文献   

7.
As the recognition of the importance of biological diversity in biological conservation grows, an ongoing challenge is to develop metrics that can be used for effective conservation and management. The ecological integrity assessment has been proposed as such a metric. It is held by some to measure species composition, diversity, and habitat quality, as well as ecosystem structure, composition, and function. The methodology relies on proxy variables that include data on landscape characteristics such as patch size, abiotic factors such as hydrology, and some features of vegetation structure and composition. We suggest that the measure is flawed on four levels. First, its putative representation of general ecological form and function, and its lack of specific detail about how it actually represents those attributes, leaves the metric without the focus needed to be useful for measuring ecological features on the ground and testing associated hypotheses and predictions. Second, the proxy variables used to represent biological diversity, such as habitat (vegetation) metrics and vascular plant species diversity, are not empirically correlated with diversity of a range of taxa or of other components of the biota. Third, like other ecological indices that integrate many distinct features, the ecological integrity index is subject to the loss of information in its condensation of multi-dimensional variability into a one-dimensional index, and it may be subject to systematic bias from the conversion of raw data into categorical scores. Fourth, the sampling protocols are at risk of sampling bias, observer bias, and measurement error, any of which can confound the estimation of conservation value. In terms of biological diversity, the methodology produces an unreliable estimate of the number of vascular plant species and their relative percentages of occurrence, and an absence of any protocols for taxa other than plants. For these reasons we believe that ecological integrity assessment is currently of limited value as a measure of site-specific biological diversity and its change over time. A considerable amount of investigation is needed in order to have confidence in the results of an ecological integrity assessment, especially if it is to be used for regulatory purposes. We suggest further refinements and discuss alternative measures of biological diversity that provide reliable metrics for assessing change. A thoughtful choice among measures can help to identify the most appropriate assessment for conservation decisions.  相似文献   

8.
1. Aquatic macrophyte composition and abundance is required by the European Union's Water Framework Directive for determining ecological status. Five metrics were produced that can be combined to determine the deviation of aquatic macrophytes from reference conditions in Northern Ireland's rivers. 2. Species optima and niche breadths along silt, nitrate, pH, conductivity and dissolved oxygen gradients were generated from aquatic macrophyte and water quality surveys conducted at 273 sites throughout Northern Ireland using Canonical Correspondence Analysis (CCA). Five metric scores based on these environmental gradients were determined at new monitoring sites using the mean optima of the species occurring at the site, weighted by percentage cover and niche breadth of each species. 3. A preliminary reference network of 32 sites of high physico‐chemical and hydromorphological quality, and representative of the range of river types in Northern Ireland, enabled reference metric scores to be produced for each river type. Five unimpacted and twenty impacted sites were used for testing the performance of the metrics. By subtracting reference metric scores from metric scores at a monitoring site measures of ecological impact could be determined along five different impact gradients. Metrics were also combined to give a measure of total ecological change. 4. The metrics system distinguished unimpacted from impacted sites and correctly identified 77% of the known impacts. The metrics distinguished different types of impact, e.g. silt and nitrate. 5. Aquatic macrophyte occurrence and abundance has high natural variability at a site, both temporally and spatially. This method was designed to be sensitive to ecological change whilst reducing noise caused by natural variation.  相似文献   

9.
Assessing the ecological impacts of anthropogenic pressures is a key task in environmental management. Multimetric indices (MMIs), based on aquatic assemblage responses to anthropogenic pressures, have been used increasingly throughout the world. The MMI approach is a low-cost, rapid field method that produces an aquatic condition index that responds precisely to anthropogenic pressures, making it useful for conservation and environmental management. We developed four candidate MMIs based on benthic macroinvertebrate assemblages sampled at 40 randomly selected sites to assess the environmental condition of streams upstream of a hydroelectric power plant in the Brazilian Neotropical Savanna biome. Those MMIs were built from landscape-adjusted and unadjusted biological metrics as well as two alternative ways of choosing metrics. The alternative MMIs performances were tested by comparing their precision to distinguish least-disturbed areas, responsiveness to discriminate least- and most-disturbed areas, and sensitivity to anthropogenic pressures at catchment and local scales. The best performing MMI had landscape-adjusted metrics and was produced through use of principal component analysis for metric selection. It included 4 metrics: Ephemeroptera richness, average tolerance score per taxon, percentage of predator individuals, and percentage of Odonata individuals adjusted by elevation. This index discriminated well the anthropogenic pressures at local- and catchment-scales, and at both scales simultaneously, as indicated by an integrated disturbance index. Our methodological development included statistical criteria for identifying least- and most-disturbed sites, calibrating for natural landscape variability, and use of non-redundant metrics. Therefore, we expect it will provide a model for environmental assessment of water resources elsewhere in Brazil and in other nations.  相似文献   

10.
The development of ecologically based indices that respond to disturbances in a predictable manner has been stressed by the EU Water Framework Directive. The seagrass Posidonia oceanica, given its ecological indicator characteristics, has been identified as one of the elements to determine ecological status under the EU Water Framework Directive. The purpose of this study is therefore to develop a biotic index based on P. oceanica (BiPo), focussing on: (i) the necessity of an index that may be applied over the largest geographical extent possible, (ii) the necessity of a tool for a baseline evaluation of P. oceanica status in the Mediterranean, (iii) the compliance with WFD requirements, (iv) the efficiency of the method in terms of reliability and cost. The BiPo index is developed on the basis of all P. oceanica monitoring data available in the western Mediterranean and on a standard assessment of anthropogenic pressures. The index metrics are selected and evaluated on the basis of this pressures assessment, and are subsequently integrated for the evaluation of ecological status. The index is then tested on 15 sites around Corsica (France). The results show that the BiPo well reflects meadow health status and ecological status. Furthermore it is reliable, standard and cost-effective, and can be applied to a wide array of management and conservation purposes.  相似文献   

11.
There are many rivers in northwest Spain as a consequence of the mountainous landscape and the granitic geology subjected to Atlantic influences. Water and epilithic diatoms samples were collected at 72 sites in Galicia flowing into the Atlantic Ocean and Cantabrian Sea in summer 2002–2003 and spring 2004. These sites included minimally disturbed sites, defined as reference sites, and impacted sites which were influenced by different human pressures. We used the diatom assemblages to calculate diatom indices using the Omnidia software, but we also developed new metrics based on the similarity of species composition in reference sites. The response of the metrics was tested in relation to physicochemical variables. We developed a diatom multimetric index (MDIAT) as a combination of metric values. The sensitivity of the MDIAT to organic and nutrient stressors supports the use of this index to classify the ecological status of Galician rivers. The MDIAT showed higher correlations with some variables and nutrients than the individual metrics. According to the MDIAT, 69% of the sites sampled in Galician coastal rivers achieve good ecological status. The MDIAT has been developed specifically for Galician granitic rivers (NW Spain), and has been intercalibrated at the European level in the Central Baltic Rivers GIG. Our study validates the application of this multimetric index to evaluate the water quality in coastal Galician rivers.  相似文献   

12.
《Ecological Indicators》2008,8(5):582-587
An accurate assessment of estuarine condition is critical to determining whether there has been a change from baseline or ‘natural’ conditions; benthic communities are routinely used as an ecological endpoint to make this assessment. We addressed two issues, which arise when attempting to detect differences between benthic communities. The first is the varying sensitivity of metrics, e.g. one metric may not be able to detect differences between two communities where another metric can. The second is the influence of season on the detection of differences between benthic communities from different estuarine systems. In this study, benthic communities taken from depositional sites were sampled in three seasons, at three sites within two relatively pristine estuaries located in southern Massachusetts, USA. Statistical comparisons of benthic community data from the two estuaries were made using three common metrics: species richness, Shannon diversity and Bray–Curtis similarity indices. Significant community differences were found depending upon the index. The Bray–Curtis index, using permutation testing, was the only metric that detected differences between estuaries despite disparate seasonal sampling. This suggests that researchers do not need to be overly constrained to sampling in the same season when testing for differences in benthic communities between estuaries. Additionally, we propose an analytical method to identify anthropogenically impacted estuarine systems.  相似文献   

13.
Summary   In 2002 the Environmental Services Scheme (ESS) was launched in New South Wales, Australia. Its aim was to pilot a process to provide financial incentives to landholders to undertake changes in land use or land management that improved the status of environmental services (e.g. provision of clean water, healthy soils, biodiversity conservation). To guide the direction of incentive funds, metrics were developed for use by departmental staff to score the benefits of land use or land management changes to a range of environmental services. The purpose of this paper is to (i) report on the development of one of these metrics – the biodiversity benefits index; (ii) present the data generated by field application of the metric to 20 properties contracted to the ESS; and (iii) discuss the lessons learned and recent developments of the metric that aim to make it accessible to a wider range of end-users and applications.  相似文献   

14.
Since the introductions of the Habitat Directive and the European Water Framework Directive, water authorities are now obliged to monitor changes in conservation value/ecological quality on larger spatial scales (opposed to site scale), as well as to indicate the level of confidence and precision of the results provided by the monitoring programs in their river basin management plans (European Commission, 2000). To meet these requirements, analyses of the statistical power of the monitoring programs should be implemented. Currently, the statistical properties associated with aquatic monitoring programs are often unknown. We collected macroinvertebrate samples from 25 meso-eutrophic drainage ditches in the Netherlands and selected 7 taxonomic richness metrics for the evaluation of spatial and temporal variability. Simulations were performed to investigate the effects of changes in (1) the total number of species included in a taxonomic richness metric and (2) the relative number of rare species included in a taxonomic richness metric. Of the 7 metrics evaluated, the number of common species required the smallest number of monitoring sites, followed by the number of Gastropoda species, and the number of species. Also, results showed that metric variability will decrease when the proportion of rare species included in a taxonomic richness metric is reduced or the total number of species included is increased. Irrespective of the metric applied a large effort will be required to detect change within drainage ditches in the Wieden, due to high spatial variability. Therefore, we need to explore the possibilities of applying alternative more cost-effective methods for sampling and sample processing in biomonitoring programs.  相似文献   

15.
Mosses and vascular plants have been shown to be reliable indicators of wetland habitat delineation and environmental quality. Knowledge of the best ecological predictors of the quality of wetland moss and vascular plant communities may determine if similar management practices would simultaneously enhance both populations. We used Akaike's Information Criterion to identify models predicting a moss quality assessment index (MQAI) and a vascular plant index of biological integrity based on floristic quality (VIBI-FQ) from 27 emergent and 13 forested wetlands in Ohio, USA. The set of predictors included the six metrics from a wetlands disturbance index (ORAM) and two landscape development intensity indices (LDIs). The best single predictor of MQAI and one of the predictors of VIBI-FQ was an ORAM metric that assesses habitat alteration and disturbance within the wetland, such as mowing, grazing, and agricultural practices. However, the best single predictor of VIBI-FQ was an ORAM metric that assessed wetland vascular plant communities, interspersion, and microtopography. LDIs better predicted MQAI than VIBI-FQ, suggesting that mosses may either respond more rapidly to, or recover more slowly from, anthropogenic disturbance in the surrounding landscape than vascular plants. These results supported previous predictive studies on amphibian indices and metrics and a separate vegetation index, indicating that similar wetland management practices may result in qualitatively the same ecological response for three vastly different wetland biological communities (amphibians, vascular plants, and mosses).  相似文献   

16.
Environmental data produced throughout monitoring activities in the framework of the implementation of Water Framework Directive 2000/60/EC (WFD) in Eastern Mediterranean (Greece) were used to assess the sensitivity and response of ecological indices against trace metals, eutrophication and multiple stress factors. The applied ecological indices include multi-metric eutrophication indices, a physicochemical status index applied for the first time in the Greek marine area, benthic indices, phytoplankton biomass index, and integrated status indices assessed through the application of the decision tree integration scheme. To investigate the exceedances in the eco-stoichiometric relationship between nutrients, considered a stressing factor, all physicochemical elements influenced directly or indirectly by eutrophication, such as nutrient concentrations, water transparency, oxygen saturation, particulates concentration, and sediment organic content, were related to ecological indices. Also, chemical contaminant stress factors represented by heavy metal concentrations in the water, as well as multiple stress factors represented by a pressure index, were related to ecological indices. A graphical visualization multivariate tool and statistical correlations were used to evaluate the sensitivity or explanatory power of the tested ecological indices against single and multiple stress factors. Results showed a strong response of all ecological indices to stress factors, although a diversification of sensitivity was evident. Primary production-related indices, i.e., macroalgae and chlorophyll-a indices, are more sensitive to particulates and nitrogen, while secondary production-related indices, i.e., benthic macroinvertebrates indices and eutrophication indices, including nutrients, are more sensitive to phosphates in the water column. The macroalgae index shows the strongest sensitivity to multiple stress factors. Among metals, mostly cadmium seems to match all indices⿿ performance. Nutrient relationships were shown as critical to eutrophication and ecological status.  相似文献   

17.
We developed and validated a single multimetric index based on predictive models that could evaluate anthropogenic disturbances in streams of three disparate ecoregions of Bolivia. To do so, we examined 45 candidate metrics reflecting different aspects of macroinvertebrate assemblage structure and function gleaned from available literature and for their potential to indicate degradation. More importantly, we integrated functional trait metrics to improve the sensitivity of our index. To quantify possible deviation from reference conditions, we first established and validated statistical models describing metric responses to natural environmental differences in the absence of any significant anthropogenic disturbance. We considered that the residual distributions of these models described the response range of each metric, independently of natural environmental influence. After testing the sensitivity of these residuals to a gradient of anthropogenic disturbance, we retained eight metrics that were used in the final assemblage index, four metrics based on richness and composition and four metrics based on biological traits. Our index performed well in discriminating between reference and disturbed sites, giving a significant negative linear response to a gradient of physical and chemical anthropogenic disturbances. After employing a probability survey design and sampling a relatively small number of sites throughout all major ecoregions of Bolivia, we believe our methodology can be used to develop a monitoring tool to evaluate status and trends in biological condition for streams of the entire country despite its complex and heterogeneous geology and climate.  相似文献   

18.
Ofenböck  Thomas  Moog  Otto  Gerritsen  Jeroen  Barbour  Michael 《Hydrobiologia》2004,516(1-3):251-268
We investigated four stream types in four different bioregions, classified by catchment area and altitude, and stressed by different degrees of organic pollution and habitat alteration. We examined a macro-invertebrate based multimetric approach for Austrian rivers as a potential assessment method within the European Water Framework Directive. Benthic macro-invertebrate data (100 samples including reference sites) were used to develop a multimetric index for each stream type and targeted stressors. Sites were pre-classified based on physical, chemical, and land use criteria into five ecological quality classes. More than 200 biological metrics were tested for their sensitivity to the targeted stressors, their spatial and temporal variability and their ability to discriminate between different types and degrees of stress. Metrics for index development were selected to reflect different levels of information including ecosystem, community, and individual levels (Karr, 1991; Barbour et al., 1995; Gerritsen, 1995). Combinations of metrics were selected to distinguish best between non or slightly impaired and stressed sites (evaluated by calculating discrimination efficiency values and power analysis). The resulting four indices comprised seven to nine metrics from five to seven metric categories, and distinguished reference/slightly disturbed sites from stressed sites with close to 100% efficiency. The indices can form the basis for stressor-specific assessment of stream condition.  相似文献   

19.
The requirements of the European Water Framework Directive (WFD), aimed at an integrative assessment methodology for evaluating the ecological status of water bodies are frequently being achieved through multimetric techniques, i.e. by combining several indices, which address different stressors or different components of the biocoenosis. This document suggests a normative methodology for the development and application of Multimetric Indices as a tool with which to evaluate the ecological status of running waters. The methodology has been derived from and tested on a European scale within the framework of the AQEM and STAR research projects, and projects on the implementation of the WFD in Austria and Germany. We suggest a procedure for the development of Multimetric Indices, which is composed of the following steps: (1) selection of the most suitable form of a Multimetric Index; (2) metric selection, broken down into metric calculation, exclusion of numerically unsuitable metrics, definition of a stressor gradient, correlation of stressor gradients and metrics, selection of candidate metrics, selection of core metrics, distribution of metrics within the metric types, definition of upper and lower anchors and scaling; (3) generation of a Multimetric Index (general or stressor-specific approach); (4) setting class boundaries; (5) interpretation of results. Each step is described by examples.  相似文献   

20.
Multimetric indices (MMIs) have been successfully used to assess ecological conditions in freshwater ecosystems worldwide, and provide an important management tool especially in countries where biological indicators are fostered by environmental regulations. Nonetheless, for the neotropics, the few published papers are limited to small local scales and lack standardized sampling protocols. To fill the gaps left by previous studies, we propose a stream MMI that reflects anthropogenic impacts by using macroinvertebrate assemblage metrics from a data set of 190 sites collected from four hydrologic units in the Paraná and São Francisco River Basins, southeastern Brazil. Sites were selected through use of a probabilistic survey design allowing us to infer ecological condition to the total of 9432 kilometers of wadeable streams in the target population in the four hydrologic units. We used a filtering process to determine the least- and most-disturbed sites based on their water quality, physical habitat structure, and land use. To develop the MMI, we followed a stepwise procedure to screen our initial set of biological metrics for influence of natural variation, responsiveness and discriminance to disturbances, sampling variability, and redundancy. The final MMI is the sum of 7 scaled assemblage metrics describing different aspects of macroinvertebrate assemblage characteristics: Ephemeroptera richness, % Gastropoda individuals, Shannon-Wiener diversity index, % sensitive taxa richness, % scraper individuals, temporarily attached taxa richness, and gill respiration taxa richness. The MMI clearly distinguished the least-disturbed sites from the most-disturbed sites and showed a significant negative response to anthropogenic stressors. Of the total length of wadeable streams in the study area, 38%, 35%, and 27% were classified by the MMI as being in good, fair, and poor condition, respectively. By reducing the subjectivity of site selection, rigorously selecting the set of reference sites, and following a standardized metric screening method, we developed a robust MMI to assess and monitor ecological condition in neotropical savanna streams. This improved MMI provides an effective ecological tool to guide decision makers and managers in developing and implementing improved, cost-effective environmental policies, regulations, and monitoring of those systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号