首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Maize and Indian mustard plants were studied to: 1) investigate the effect of Cl- complexation on Cd uptake from soil historically amended with sewage sludge (Cd 58 mg kg(-1)) and, 2) model the uptake of Cd by these plants with a Free Ion Activity Model (FIAM). Plants were treated with NaCl (50 to 300 mM in the soil pore water) along with controls using Na2SO4. Cadmium enhanced solubility in soil by Cl- generally reflected increases in Cd uptake by both plants. The free ion Cd2+ activity in soil solution, as modeled by WHAM-VI, remained almost unchanged despite the wide range of NaCl concentrations. Therefore, Na+ exchange for Cd2+ could not fully explain the differences in Cd content between the Cl- treatments because of the high buffering Cd2+ capacity in soiL Activities of Cd-chloro complexes showed the best correlations with the Cd concentrations in the plants compared to the activity of Cd2+. The FIAM showed a reasonable good fit for the plants when assuming competition by Cd2+ and CdCl+ for root sorption sites. Indirect evidence suggests that CaSO4 precipitation may have limited the formation of CdSO4 complexes and reduced Cd soil solubility. The implications of these results for phytoremediation are discussed.  相似文献   

2.
研究了钝顶螺旋藻和极大螺旋藻在含CdCl2水体中的生长状况与摄Cd能力.结果表明:两种螺旋藻皆对CdCl2有较强的耐受能力,但是有不同的摄Cd行为.当CdCl2浓度为6~24mg.L-1,培养96h时,两种螺旋藻对Cd的摄取作用主要表现为藻细胞外的表面吸附;培养10d时,钝顶螺旋藻的胞内Cd含量依然甚微,而极大螺旋藻对Cd的细胞内吸附量却明显增加,24mg.L-1CdCl2处理的极大螺旋藻胞内的Cd吸附量为12mg.L-1CdCl2处理的11.6倍,且略超过细胞表面吸附量.表明在高浓度Cd的长时间胁迫下,两种螺旋藻的摄Cd行为和对Cd的耐受机制具有明显差异,其中钝顶螺旋藻为胞外机制,而极大螺旋藻却为胞内、胞外混合机制,且以胞内机制为主.  相似文献   

3.
Effect of soil chloride level on cadmium concentration in sunflower kernels   总被引:9,自引:1,他引:8  
Understanding soil factors related to cadmium (Cd) uptake and accumulation in plants is important for development of agronomic technologies, and breeding strategy to produce low Cd crops. The objective of the study was to examine the effect of soluble salts (chloride and sulfate) and other soil factors on the Cd concentration in sunflower (Helianthus annuus L.) kernels. Commercial nonoilseed hybrid kernels and soils were sampled from 22 farmer's production fields in North Dakota and Minnesota. The sites sampled included saline and nonsaline variants from 7 soil series. Soils were sampled at four depths. Relationships between kernel Cd level and soil physical and chemical characteristics were examined. The soil pH covered a narrow range (7.3–8.1) at these sampled sites. Regression analysis showed that there was no correlation between kernel Cd and soil pH at any depth. The kernel Cd level was highly correlated with DTPA-extractable Cd in all 4 depths, and with clay content in sub-soils. Soil chloride and sulfate concentrations varied among soil series and within soil series. The absence of a statistically significant effect of soil sulfate level on kernel Cd concentration, indicated that soil sulfate levels did not affect Cd uptake by sunflower plants. However, soil chloride levels in sub-soil were correlated with kernel Cd. The most important soil factor was DTPA-extractable Cd. When chloride was included in the multiple regression equations, R square (R2) values improved significantly. These results demonstrate that soil chloride concentration is another important factor related to Cd uptake in sunflower plants.  相似文献   

4.
中微量元素和有益元素对水稻生长和吸收镉的影响   总被引:11,自引:0,他引:11  
采用盆栽试验,研究了中微量元素和有益元素对水稻生长和吸收镉的影响。结果表明,在所有测试的元素和施用方法中,硅酸钠叶面喷施显著增加稻谷产量,而碳酸钙、硼酸、硅酸钠土施和亚硒酸钠显著降低了稻谷产量。镁、锌、铁的盐酸盐形态对水稻籽粒的增产效果优于硫酸盐形态,而钙、铜的硫酸盐形态增产效果略高于盐酸盐形态。在钙、镁、硫三种中量元素中,钙增加了水稻籽粒中的Cd浓度和吸收量,而镁和硫则降低了籽粒中的Cd浓度和吸收量,以硫磺粉处理为最低。稻草中的Cd浓度和总量均以氯化镁处理为最高,硫磺粉处理最低。镁能有效抑制Cd从秸秆向籽粒的转移,其盐酸盐优于硫酸盐。在微量元素中,锌对水稻Cd的吸收抑制作用最为显著,其次是铜,而有益元素肥料硅酸钠叶面喷施则显著增加了稻谷中的Cd浓度和吸收量。硫酸亚铁、氯化锰、氯化铜、硼酸和硼砂处理都能有效地抑制Cd从秸秆向籽粒的转移,而硅酸钠叶面喷施和锌处理则促进了Cd的转移,表明硅酸钠抑制水稻吸收Cd的机制很可能发生在土壤中,而非在植株体内或地上部分。在Cd污染土壤上选用适宜的中微量和有益元素肥料及其施用方法,能有效降低水稻对镉的吸收和稻米中的Cd含量。  相似文献   

5.
The mechanisms of cadmium-metallothionein (CdMT) uptake and toxicity in proximal tubule (PT) cells are not well understood. The effects of 10 microM CdCl2 or Cd7MT-1 (MT-1 saturated with 10 microM CdCl2) on 109Cd2+ uptake, viability, and MT levels of cultured rat PT cells were investigated. Apical 109Cd2+ uptake was measured in confluent monolayers, apoptosis was assessed with Hoechst 33342, and intracellular MT levels were monitored by immunofluorescence and quantitative morphometry. 109Cd2+ uptake into PTC increased over time and plateaued at 24 h. 109Cd7MT-1 uptake was delayed but reached a similar magnitude after 40 h. With Cd2+, apoptosis occurred within 4 h, peaked at 24 h, and declined at 48-72 h. Cd7MT-1 induced apoptosis after 24-36 h, reaching similar levels as with Cd2+ after 48 h. Cd2+ and Cd7MT-1 significantly increased intracellular MT immunoreactivity after 20 and 4 h, respectively. The weak base chloroquine and the inhibitor of phosphatidylinositol 3-kinases, LY-294002, selectively inhibited the effects of Cd7MT-1 on MT immunoreactivity and apoptosis. PT cells accumulated 109Cd7MT-1 in membrane vesicles associated with the late endo/lysosomal marker LAMP1 but less with the early endosomal marker Rab5a, which was abolished by chloroquine or LY-294002. Thus development of apoptosis followed the uptake kinetics of Cd2+ and Cd7MT-1. Endo/lysosomal inhibitors prevented uptake of Cd7MT-1 into endo/lysosomes and apoptosis but had no effect on these parameters with Cd2+, suggesting that apoptosis of PT cells is triggered by free cytosolic Cd2+, either by direct apical transport or by translocation of free Cd2+ from endo/lysosomes after endocytosis of Cd7MT-1.  相似文献   

6.
镉胁迫下萝卜基因组DNA甲基化敏感扩增多态性分析   总被引:27,自引:0,他引:27  
应用甲基化敏感扩增多态性(MSAP)技术分析了重金属镉(cd)胁迫处理后萝卜基因组DNA甲基化程度的变化。结果表明,经50、250和500mg/L CdCl_2处理后,MSAP比率分别为37%、43%和51%,均高于对照(34%);全甲基化率(双链C~mCGG)分别为23%、25%和27%,而其对照为22%,表明重金属CdCl_2胁迫后,某些位点发生了重新甲基化。萝卜叶片DNA中总甲基化水平的增加与CdCl_2处理浓度呈显著正相关。甲基化变异可分为重新甲基化、去甲基化、不定类型以及与对照相同的甲基化模式等类型,Cd胁迫处理引起的植株基因组DNA甲基化程度的提高主要是重新甲基化。  相似文献   

7.
In order to investigate the role of phytochelatins in short-time uptake of Cd(2+) into the cytosol of wheat protoplasts, a new method was applied, using fluorescence microscopy and the heavy metal-specific fluorescent dye, 5-nitrobenzothiazole coumarin, BTC-5N. The uptake of Cd(2+) into protoplasts from 5- to 7-day-old wheat seedlings (Triticum aestivum, L. cv. Kadett) was lower in protoplasts from seedlings raised in the presence of 1 microM CdCl(2), than in the absence. Presence of CdCl(2) in the cultivation medium increased the content of phytochelatins (PCs) in the protoplasts. When seedlings were raised in the presence of both Cd(2+) and buthionine sulfoximine (BSO), an inhibitor of glutathione (GSH) synthesis, only little PC was found in the protoplasts. Pre-treatment with BSO alone did not affect the content of PC, but inhibited that of GSH. The inhibition of GSH was independent of pre-treatment with Cd(2+). Unidirectional flux analyses, using (109)Cd(2+), showed approximately the same uptake pattern of Cd(2+) as did the fluorescence experiments showing the cytosolic uptake of Cd(2+). Thus, the diminished uptake of Cd(2+) into protoplasts from cadmium-pre-treated plants was not depending on PCs. Instead, it is likely that pre-treatment with Cd(2+) causes a down-regulation of the short-term Cd(2+) uptake, or an up-regulation of the Cd(2+) extrusion. Moreover, since addition of Cd(2+) to protoplasts from control plants caused a cytosol acidification, it is likely that a Cd(2+/)H(+)-antiport mechanism is involved in the extrusion of Cd(2+) from these protoplasts.  相似文献   

8.
The effects of cadmium chloride concentration on root, bulb and shoot growth of garlic (Allium sativum L.), and the uptake and accumulation of Cd2+ by garlic roots, bulbs and shoots were investigated. The range of cadmium chloride (CdCl2 x 2.5H2O) concentrations was 10(-6) - 10(-2) M. Cadmium stimulated root length at lower concentrations (10(-6) - 10(-5) M) significantly (P < 0.005) during the entire treatment period. The seedlings exposed to 10(-3) - 10(-2) M Cd exhibited substantial growth reduction (P < 0.005), but did not develop chlorosis. Garlic has considerable ability to remove Cd from solutions and accumulate it. The Cd content in roots of garlic increased with increasing solution concentration of Cd2+. The roots in plants exposed to 10(-2) M Cd accumulated a large amount of Cd. approximately 1,826 times the control. The Cd contents in roots of plants treated with 10(-3), 10(-4), 10(-5) and 10(-6) M Cd were approximately 114, 59, 24 and 4 times the control, respectively. However, the plants transported only a small amount of Cd to their bulbs and shoots and concentrations in these tissues were low.  相似文献   

9.
Cells resistant to 3 x 10(-5) M CdCl2 (Cdr cells) were isolated from cultures of Chinese hamster V79 cells by a procedure that involved stepwise increase in the concentration of Cd2+ and subsequent mass selection. Cdr cells grew as fast as wild-type cells (Cds) in medium without cadmium. Cdr cells were not cross-resistant to other divalent metal ions, such as Hg2+, Ni2+, Pb2+, and Zn2+. Both Cds and Cdr cells induced similar levels of metallothioneins (MT) in response to zinc. Depletion of glutathione (GSH) did not significantly influence the sensitivity of Cdr cells to Cd2+ but markedly enhanced the sensitivity to Cd2+ of Cds cells. Furthermore, the rate of synthesis of GSH after depletion did not differ greatly between sensitive and resistant cells. The rate of uptake of 109Cd2+ by Cdr cells was only 10-15% that by Cds cells. The difference in rates of uptake between Cds and Cdr cells was observed irrespective of the presence or absence of serum in the culture medium. These results indicate that, in this system, resistance to Cd2+ is attributable neither to increased inducibility of MT nor to increases in intracellular levels of GSH, and that only a decrease in the rate of uptake of Cd2+ contributes to the acquisition of resistance to Cd2+. Uptake of Cd2+ by cells was dependent on temperature and the rate of uptake of Cd2+ by Cdr cells was lower at all temperatures examined than the rate of uptake by Cds cells. Cycloheximide did not suppress the uptake of Cd2+, suggesting that uptake does not require synthesis of cell proteins de novo. Preincubation of cells with N-ethylmaleimide suppressed the uptake of Cd2+ to some extent, a result that suggests the involvement of surface SH groups in the uptake of Cd2+ by these cells.  相似文献   

10.
The water budget of soil, the uptake in plants and the leaching to groundwater of cadmium (Cd) and lead (Pb) were simulated simultaneously using a physiological plant uptake model and a tipping buckets water and solute transport model for soil. Simulations were compared to results from a ten-year experimental field study, where four organic amendments were applied every second year. Predicted concentrations slightly decreased (Cd) or stagnated (Pb) in control soils, but increased in amended soils by about 10% (Cd) and 6% to 18% (Pb). Estimated plant uptake was lower in amended plots, due to an increase of Kd (dry soil to water partition coefficient). Predicted concentrations in plants were close to measured levels in plant residues (straw), but higher than measured concentrations in grains. Initially, Pb was mainly predicted to deposit from air into plants (82% in 1998); the next years, uptake from soil became dominating (30% from air in 2006), because of decreasing levels in air. For Cd, predicted uptake from air into plants was negligible (1–5%).  相似文献   

11.
To determine the mechanisms prescribing the movement and uptake of chemicals in the soil of the rootzone, controlled experiments were carried out in four lysimeters growing tomatoes. Each lysimeter had a depth-wise array of 9 Time Domain Reflectometry (TDR) probes to monitor the soil's water content. Chloride was used as an inert tracer, and was applied with the nutrient solution used for irrigation. Sulphate was used as a reactive tracer, and was applied as a pulse resident in the upper 100 mm of the soil. The measured water contents and the concentrations of the chemicals in the soil profile at the end of the experiment were compared to a deterministic model based on Richards' equation and the convection–dispersion equation linked with various macroscopic sink terms for root water and chemical uptake. The uptake function based on matric pressure head seems to describe the uptake of water and chemicals of our tomato plants best. At high soil solution concentration chloride and sulphate exclusion occurred. Our simple model could be used to describe the major features of coupled water and chemical uptake. However, our approach of inverse modelling to infer the parameters for solute transport and root uptake could not be used to distinguish between soil-based mechanisms and plant uptake mechanisms. The choice of the root water uptake model had only a small effect on the final water content profiles, but led to differences in the final solute profiles of sulphur and chloride. This indicates that tracers might provide improved determination of the uptake mechanisms.  相似文献   

12.
Labile pool of cadmium in sludge-treated soils   总被引:1,自引:0,他引:1  
Pandeya  S.B.  Singh  A.K.  Jha  P. 《Plant and Soil》1998,202(1):1-13
The labile pool of cadmium in sludge-treated soils was determined by application of isotopic dilution principle under laboratory and green house conditions using moong (Phaseolus aureus L.) as test crop. The laboratory indices like isotopic distribution coefficient (Kd) of 115Cd in 0.1 M CaCl2, labile pool (LP) of Cd in DTPA–CaCl2–Na acetate (adjusted to pH 5.0, 6.0 and 7.0) and supply parameter (SP) using Kd as intensity and LP as capacity factor of Cd in soils, were computed to compare these values with actual uptake of Cd by the crop to test them as indices of Cd availability. The path-ways of transfer of soil Cd from the discrete chemical pools to plants were also computed. The LP (pH 7.0) and the SP were significantly correlated with the concentration of Cd in plants and its uptake by the crop. They are, therefore, good indices of Cd availability in sludge treated vertisol soils and can be used as reference indices for standarization of chemical extractants. The water soluble + exchangeable Cd and the 0.05 M EDTA extractable Cd were observed to be the two major chemical pools of Cd in soils responsible for supply of this element to plants. As substantial part of 0.1 M Na4P2O7 extractable Cd applied to the soils remains in same form, they are not transfered into the food chain. The amounts of soil Cd extracted by DTPA–CaCl2–TEA (pH 7.3), EDTA–NH4OAC (pH 7.3) and Mg(NO3)2 (pH 6.0) were significantly correlated with concentration of Cd in plants and with uptake of Cd by moong crop.  相似文献   

13.
Cadmium accumulation and oxidative burst in garlic (Allium sativum)   总被引:13,自引:0,他引:13  
To investigate the temporal sequence of physiological reactions of garlic (Allium sativum) to cadmium (Cd) treatment, seedlings developed from cloves were grown in increasing concentrations of CdCl2, ranging from 1-10 mM, for up to 8 days in sand. Analysis of Cd uptake indicated that most Cd accumulated in roots, but some was also translocated and accumulated in leaves at longer exposure time (after 12h) and higher concentrations (5 and 10mM) of CdCl2. Changes in activities of antioxidative enzymes, including superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), were characterized in leaves of garlic seedlings. Cd (5 and 10 mM) initially inhibited the activities of SOD and CAT but thereafter recovered or even increased compared with control plants. POD activities at 5 and 10 mM of Cd increased more than 3-4 times over control plants within 12 h and then dropped, but were still higher than controls at the end of the experiment. Otherwise lipid peroxidation enhanced with the increasing of incubation time and concentrations of external Cd. Leaves exposed to 1 mM CdCl2 showed a less pronounced response and only a small reduction in shoot growth. These results suggested that in leaves of garlic seedlings challenged by CdCl2 at higher concentrations, induction of these various enzymes is part of a general defense strategy to cope with overproduction of reactive oxygen. The possible mechanism of antioxidative enzymes changing before Cd accumulation in leaves of garlic seedlings is discussed.  相似文献   

14.
Cadmium and zinc in plants and soil solutions from contaminated soils   总被引:5,自引:0,他引:5  
Lorenz  S.E.  Hamon  R.E.  Holm  P.E.  Domingues  H.C.  Sequeira  E.M.  Christensen  T.H.  McGrath  S.P. 《Plant and Soil》1997,189(1):21-31
In an experiment using ten heavy metal-contaminated soils from six European countries, soil solution was sampled by water displacement before and after the growth of radish. Concentrations of Cd, Zn and other elements in solution (K, Ca, Mg, Mn) generally decreased during plant growth, probably because of uptake by plants and the subsequent redistribution of ions onto soil exchange sites at lower ionic strength. Speciation analysis by a resin exchange method showed that most Cd and Zn in non-rhizosphere solutions was present as Cd2+ and Zn2+, respectively. The proportion of free ions was slightly lower in rhizosphere solutions, mainly due to an increase in dissolved organic carbon during plant growth. Solution pH increased during plant growth, although the bulk soil pH generally remained constant. Cd concentrations in leaves and tubers were more closely correlated with their total or free ionic concentrations in rhizosphere solutions (adjusted R2 0.90) than with their concentrations in soils (adj. R2 0.79). Cd concentrations in non-rhizosphere solutions were only poorly correlated with Cd concentrations in leaves and tubers. In contrast to Cd, there were no soil parameters that individually predicted Zn concentrations in leaves and tubers closely. However, multiple correlation analysis (including Zn concentrations in rhizosphere solutions and in bulk soils) closely predicted Zn concentrations in leaves and tubers (adj. R2 = 0.85 and 0.70, respectively). This suggests that the great variability among soils in the solubility of Zn affected the rate of release of Zn into solution, and thus Zn uptake. There was no such effect for Cd, for which solubility varied much less. Furthermore, the plants may have partly controlled Zn uptake, as they took up relatively less at high solution concentrations of Zn.Free ionic concentrations in soil solution did not predict concentrations of Cd or Zn in plants better than their total concentrations in solution. This suggests that with these soils, analysis of Cd and Zn speciation is of little practical importance when their bioavailability is assessed.  相似文献   

15.
The technique of diffusive gradients in thin films (DGT) has been shown to be a promising tool to assess metal uptake by plants in a wide range of soils. With the DGT technique, diffusion fluxes of trace metals through a diffusion layer towards a resin layer are measured. The DGT technique therefore mimics the metal uptake by plants if uptake is limited by diffusion of the free ion to the plant roots, which may not be the case at high metal supply. This study addresses the capability of DGT to predict cadmium (Cd) uptake by plants at varying Cd supply. To test the performance of DGT in such conditions, we used the chloride (Cl?) enhancement effect, i.e. the increase in Cd solution concentrations—due to chloride complexation of Cd—and Cd uptake with increasing Cl? concentrations, as previously characterized in pot, field and solution culture experiments. The uptake of Cd by spinach was assessed in soil amended with Cd (0.4–10.5 mg Cd kg?1) and NaCl (up to 120 mM) in a factorial design. Treatments with NaNO3 were included as a reference to correct for ionic strengths effects. The effect of Cl? on the shoot Cd concentrations was significant at background Cd but diminished with increasing soil Cd. Increasing Cl? concentrations increased the root area based Cd uptake fluxes by more than a factor of 5 at low soil Cd, but had no significant effect at high soil Cd. Short-term uptake of Cd in spinach from nutrient solutions confirmed these trends. In contrast, increasing Cl? concentrations increased the DGT measured fluxes by a factor of 5 at all Cd levels. As a result, DGT fluxes were able to explain soil Cl? effects on plant Cd concentrations at low but not at high Cd supply. This example illustrates under which conditions DGT mimics trace metal bioavailability. If biouptake is controlled by diffusive limitations, DGT should be a successful tool for predicting ion uptake across different conditions.  相似文献   

16.
Nonoilseed sunflower (Helianthus annuus L.) is naturally higher in cadmium (Cd) than many other grain crops. Because raising soil pH usually depresses Cd uptake by most species, a study was designed to determine if application of agricultural limestone to neutralize soil acidity would decrease Cd uptake by sunflower plants grown on different soils in the production area of North Dakota. The field experiments were conducted at 3 locations in 1991 and 2 locations in 1992. At each site, limestone was applied to bring soil pH to 6.5–7.0, or an additional 45 Mg ha-1 more limestone was applied, and these two treatments were compared to no-lime control. Commercial nonoilseed hybrid 954 was planted in these experiments. The rapid short-term lime-soil reaction occurred in first 12 weeks following limestone application. Mean kernel Cd concentration for each treatment varied from 0.35 to 1.45 mg kg-1 DW in the first year of the experiments, and from 0.37 to 1.23 mg kg-1 DW in the experiments of 1992 across all locations. Large variations in kernel Cd levels between locations were obtained. There were no significant differences among control and limestone treatments for kernel Cd, seedling leaf Cd and diagnostic leaf Cd within each location, respectively. In regression analysis, we found that kernel Cd level correlated with diagnostic leaf Cd concentration in each treatment, but poor correlations were obtained among other variables. These results indicated that limestone application did not reduce Cd uptake and transfer to kernels of sunflower, in contrast with most species studied.  相似文献   

17.
Cd2+ transport and storage in the chloroplast of Euglena gracilis   总被引:4,自引:0,他引:4  
Euglena gracilis lacks a plant-like vacuole and, when grown in Cd2+-containing medium, 60% of the accumulated Cd2+ is located inside the chloroplast. Hence, the biochemical mechanisms involved in Cd2+ accumulation in chloroplast were examined. Percoll-purified chloroplasts showed a temperature-sensitive uptake of the free 109Cd2+ ion. Kinetics of the uptake initial rate was resolved in two components, one hyperbolic and saturable (Vmax 11 nmol 109Cd2+ min(-1) mg protein (-1), Km 13 microM) and the other, linear and non-saturable. 109Cd2+ uptake was not affected by metabolic inhibitors or illumination. Zn2+ competitively inhibited 109Cd2+ uptake (Ki 8.2 microM); internal Cd2+ slightly inhibited 109Cd2+ uptake. Cadmium was partially and rapidly released from chloroplasts. These data suggested the involvement of a cation diffusion facilitator-like protein. Chloroplasts isolated from cells grown with 50 microM CdCl2 (ZCd50 chloroplasts) showed a 1.6 times increase in the uptake Vmax, whereas the Km and the non-saturable component did not change. In addition, Cd2+ retention in chloroplasts correlated with the amount of internal sulfur compounds. ZCd50 chloroplasts, which contained 4.4 times more thiol-compounds and sulfide than control chloroplasts, retained six times more Cd2+. The Cd2+ storage-inactivation mechanism was specific for Cd2+, since Zn2+ and Fe3+ were not preferentially accumulated into chloroplasts.  相似文献   

18.
Primary cultures of oligodendrocytes were used to study the toxic effects of cadmium chloride. Cell viability was evaluated by the mitochondrial dehydrogenase activity and confirmed by propidium iodide (PI) fluorescence staining. The expression of the 72 kDa stress protein, HSP72, was assayed by Western blot analysis. The results showed that Cd(2+)-induced toxicity was dependent on the time and dose of exposure, as well as on the developmental stage of the cultures. Oligodendrocyte progenitors were more vulnerable to Cd(2+) toxicity than were mature oligodendrocytes. Mature oligodendrocytes accumulated relatively higher levels of Cd(2+) than did progenitors, as determined by (109)CdCl(2) uptake; treatment with the metal ion caused a more pronounced reduction in intracellular glutathione levels and significantly higher free radical accumulation in progenitors. The latter could explain the observed differences in Cd(2+) susceptibility. HSP72 protein expression was increased both in progenitors and in mature cells exposed to Cd(2+). Pretreatment with N-acetylcysteine, a thiocompound with antioxidant activity and a precursor of glutathione, prevented Cd(2+)-induced (i) reduction in glutathione levels and (ii) induction of HSP72 and diminished (i) Cd(2+) uptake and (ii) Cd(2+)-evoked cell death. In contrast, buthionine sulfoximine, an inhibitor of gamma-glutamyl-cysteine synthetase, depleted glutathione, and potentiated the toxic effect of Cd(2+). These results strongly suggest that Cd(2+)-induced cytotoxicity in oligodendrocytes is mediated by reactive oxygen species and is modulated by glutathione levels.  相似文献   

19.
Water use and sodium chloride uptake by apple trees   总被引:2,自引:0,他引:2  
D. W. West 《Plant and Soil》1978,50(1-3):37-49
Summary Apple trees grown with their root systems split into halves were used to study the effects of non-uniform salinity stress within a root system upon salt and water uptake. Water uptake declined rapidly when sodium chloride solution (90 meq l−1) was added to any root zone but uptake increased correspondingly in the non-saline root zone of each tree. This changed pattern of water uptake with partial salinization did not change the total water use by the trees compared with their water use when neither root zone was salt stressed. After a‘steady-state’ condition of water uptake had been reached 80 to 85% of the water was taken up in the non-saline root zone. Irrigation at three soil matric potential intervals of −6.6, −33 and −66 kPa allowed to develop in the non-saline root zone of each tree did not affect water use responses. Leaf concentrations of Ca, Mg and K were unaffected by treatments. Chloride and Na concentrations increased in leaves with exposure to salinity stress in half root zones and with increasing soil matric potential stress. Some evidence was obtained using tritium enriched water that water was transferred from a non-saline root zone into a saline root zone but the volume involved was unmeasurable.  相似文献   

20.
McLaughlin  M. J.  Andrew  S. J.  Smart  M.K.  Smolders  E. 《Plant and Soil》1998,202(2):211-216
The impacts of both sulfate (SO4) and calcium (Ca) concentrations in solution on plant uptake of cadmium (Cd) vary according to effects on both sorption of Cd by soil and on uptake by the plant root. This study investigated how complexation of Cd by SO4 affected plant Cd uptake in nutrient solution. Swiss chard (Beta vulgaris L. cv. Fordhook Giant) was grown in nutrient solution with SO4 concentrations varying between 8 mM and 58 m M, with ionic strength maintained constant across treatments using nitrate (NO3). In a separate experiment, solution Ca concentrations was also varied to compensate for SO4 complexation by Ca. Plant growth was unaffected by increasing SO4 concentrations in solution. Despite considerable reductions in free Cd2+ ion activities in solution by increasing SO4 concentrations, plant Cd concentrations were unaffected. Similarly, plant Cd concentrations were unaffected by increasing Ca concentrations in solution to compensate for SO4 complexation of Ca. These data suggest that the CdSO40 complex is taken up by plants with equal efficiency to the free Cd2+ ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号