首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rainbow trout have been introduced to six of the seven continents and currently are widely stocked for sport fishing. Despite their broad distribution, outside of New Zealand, little is known about the effects of rainbow trout on native species, especially fishes. We conducted experiments in an artificial stream to assess hypotheses that stocked rainbow trout significantly affected: (1) mesohabitat use, (2) foraging success, (3) social behavior, and (4) spatial organization of warpaint shiners (Luxilus coccogenis) a common native minnow found in southern Appalachian streams, with similar patterns of microhabitat use to rainbow trout. We replicated experiments at high and low natural densities (two and five warpaint shiners) and spring/fall (12 °C) and summer (17 °C) temperatures. Treatments included: (1) a control (five warpaint shiners), (2) trout (five warpaint shiners and one rainbow trout), (3) large fish control (five warpaint shiners and one river chub) and (4) density control (six warpaint shiners). The presence of rainbow trout produced a shift by warpaint shiners from pool mesohabitats to shallower, higher velocity habitats with more variable substrata, as well as reduced prey capture success, feeding efficiency, and distance from the front of the tank (i.e., warpaint shiners moved closer to food release points), and increased the distance to the additional fish (i.e., avoidance of the rainbow trout). Negative effects on foraging behaviors were stronger in 12 °C treatments. In a realistic stream flume the presence of rainbow trout produced effects that likely influenced individual fitness of warpaint shiners. The potential effects of stocking rainbow trout on native non-game fishes, such as warpaint shiners should be assessed when implementing or evaluating stocking programs.  相似文献   

2.
The Cosumnes River is the largest stream without a major dam on its mainstem in the Sacramento–San Joaquin drainage, central California, U.S.A. We studied its fishes over a 3-year period to answer the following questions: (1) Was the native fish fauna still present? (2) Why were alien fishes so abundant in a river system with a 'natural' flow regime, which elsewhere has been shown to favor native fishes? (3) Were there assemblages of fishes that reflected environmental differences created by the underlying geology? (4) Were there features of the watershed that consistently favored native fishes or that could be managed to favor native fishes? Of the 25 species collected, 17 were alien species; 14 species (five native) were abundant or widely distributed enough to use in detailed analyses. Of the native species, only rainbow trout, Oncorhynchus mykiss, still occupied much of its native range in headwater streams. Other native species have been extirpated or persisted mainly above barriers to alien invasions. The most widely distributed alien species was redeye bass, Micropterus coosae, previously unknown from the river, whose abundance was associated with low-numbers of native species. Other aliens were found primarily in low-land habitats on the valley floor or foothills. Canonical Correspondence Analysis indicated that both native and alien species located on environmental gradients determined largely by elevation, temperature, flow, and emergent vegetation, but the associations with these variables were not strong. While most alien fishes were found in lowland sections of river flowing through agricultural regions, the general relationships between species abundance and landscape-level variables were weak. Assemblages of fishes were poorly defined mixtures of native and alien species. The strikingly distinct geological regions of the basin no longer supported distinct fish assemblages. Species distributions were highly individualistic, reflecting dynamic patterns of introductions, invasions, and local extinctions, as well as physiological tolerances and life history patterns. Most native fishes are likely to persist in the Cosumnes River only if summer flows are increased and if populations above natural barriers are protected from further invasions by alien species, especially redeye bass. General conclusions from this study include: (1) altered habitats can support native species under some circumstances; (2) new fish assemblages with characteristics of 'natural' communities are likely to develop in invaded systems; (3) restoring flow regimes to favor native fishes may require restoring minimum summer flows as well as high channel-forming flows. However, reversing or even reducing, the impact of the predatory redeye bass, pre-adapted for California streams, is probably not possible.  相似文献   

3.
Fish growth in river ecosystems is influenced by a multitude of environmental drivers, including the heterogeneity of these drivers. Globally, river ecosystems are subject to anthropogenic stressors that can simplify riverine landscapes, homogenize riverine communities, and favor nonnative fishes. Yet, how anthropogenically driven simplification of riverine landscapes affects fish life-history traits remains largely unknown. The aim of this study was to examine the character of fish growth along the entire main channel of an Anthropocene River. We collected four species of potamodromous fish from different functional feeding guilds, from each of six functional process zones (FPZs) – unique large-scale hydrogeomorphic patches – along the entire length of the Illinois River (Illinois, USA), and calculated three growth metrics: growth rate (k), maximum size (L), and a relative growth index. The majority (7 of 12) of species-growth metric combinations did not differ among FPZs. Of the five species-growth metric combinations that were different, none exhibited more than three distinct groups of values. The limited difference in growth along the main channel of the Illinois River reflects a homogenization of ecosystem function, and is associated with the systemic simplification of physical heterogeneity of the river channel. The fishes studied from the Illinois River also tended to have faster growth rates (k) and smaller maximum sizes (L) relative to other North American freshwater ecosystems. Our results reveal spatial constraints to life-history traits and changes to ecosystem interactions, which are evidence of being in a new regime or state. This has implications for the reproductive output and resilience of native fishes in Anthropocene Rivers.  相似文献   

4.
We used direct observation via snorkeling surveys to quantify microhabitat use by native brook (Salvelinus fontinalis) and non‐native brown (Salmo trutta) and rainbow (Onchorynchus mykiss) trout occupying natural and restored pool habitats within a large, high‐elevation Appalachian river, United States. Permutational multivariate analysis of variance (PERMANOVA) and subsequent two‐way analysis of variance (ANOVA) indicated a significant difference in microhabitat use by brook and non‐native trout within restored pools. We also detected a significant difference in microhabitat use by brook trout occupying pools in allopatry versus those occupying pools in sympatry with non‐native trout—a pattern that appears to be modulated by size. Smaller brook trout often occupied pools in the absence of non‐native species, where they used shallower and faster focal habitats. Larger brook trout occupied pools with, and utilized similar focal habitats (i.e. deeper, slower velocity) as, non‐native trout. Non‐native trout consistently occupied more thermally suitable microhabitats closer to cover as compared to brook trout, including the use of thermal refugia (i.e. ambient–focal temperature >2°C). These results suggest that non‐native trout influence brook trout use of restored habitats by: (1) displacing smaller brook trout from restored pools, and (2) displacing small and large brook trout from optimal microhabitats (cooler, deeper, and lower velocity). Consequently, benefits of habitat restoration in large rivers may only be fully realized by brook trout in the absence of non‐native species. Future research within this and other large river systems should characterize brook trout response to stream restoration following removal of non‐native species.  相似文献   

5.
The possible links between river flow, zooplankton abundance and the responses of zooplanktivorous fishes to physico‐chemical and food resource changes are assessed. To this end, the seasonal abundance, distribution and diet of the estuarine round‐herring Gilchristella aestuaria and Cape silverside Atherina breviceps were studied in the Kariega Estuary. Spatio‐temporal differences were determined for selected physico‐chemical variables, zooplankton abundance and zooplanktivorous fish abundance and distribution. Results indicated that, following a river flood event in winter (>30 m3 s?1), altered physico‐chemical conditions occurred throughout the estuary and depressed zooplankton stocks. Abundance of G. aestuaria was highest in spring, with this species dominant in the upper and middle zones of the estuary, while A. breviceps was dominant in summer and preferred the middle and lower zones. The catch per unit of effort of both zooplanktivores also declined significantly following the flooding, thus suggesting that these fishes are reliant on zooplankton as a primary food source for healthy populations. Copepods dominated the stomach contents of both fish species, indicating a potential for strong interspecific competition for food, particularly in the middle reaches. Temporal differences were evident in dietary overlap between the two zooplanktivorous fish species and were correlated with river flow, zooplankton availability and fish distribution. The findings of this study emphasize the close trophic linkages between zooplankton and zooplanktivorous fishes under changing estuarine environmental conditions, particularly river flow and provide important baseline information for similar studies elsewhere in South Africa and the rest of the world.  相似文献   

6.
A priority issue in ecology and biogeography is understanding the patterns in species diversity and the causal factors of their distribution, which allows the generation of information for conservation strategies. The longitudinal distribution of fishes and their relationships with environmental variables were studied in the Guayalejo-Río Tamesí system (northeastern Mexico) from February 2000 to July 2001. A total of 5918 fish were caught in 27 collections along an altitudinal gradient in the main river course, from high mountain (1500 masl) to coastal plain near Tampico. Forty-three native and five exotic species, belonging to 35 genera in 23 families, were identified. Cluster analyses identified four major fish habitats in the river system. A distinctive euryhaline marine fish habitat (1) occurs near the mouth with native and two exotic species. Two other habitats consist essentially of freshwater fish species that are distributed along the longitudinal gradient. One of these habitats (habitat 4) shows greater diversity, as per the Shannon index value, and also includes amphidromous fish, in addition to two exotic freshwater fish; the other (habitat 2) includes freshwater, euryhaline and three exotic species. The changes in the frequency of occurrence and the abundance of Gambusia vittata, Astyanax mexicanus, and Xiphophorus variatus contribute to explaining differences between these habitats. Another habitat (3) is represented by two sampling sites located near the mouth and consist of freshwater and euryhaline fish and three exotic cyprinids with broad salinity tolerance. The low abundance and richness of exotic species suggest little impact on native fish fauna in this river. The fish assemblage of the Guayalejo-Tamesí river system species changes along a longitudinal gradient with the addition, replacement and presence of indicator species. Upstream fish fauna is mostly composed of freshwater species, some of them generalists that inhabit the entire longitudinal gradient, others that are restricted to certain sites, and the remainder of species is an assemblage composed of a mixture of euryhaline freshwater and marine species near the mouth.  相似文献   

7.
We evaluated overlap in microhabitat use between nonnative rainbow trout, Oncorhynchus mykiss, and native Little Colorado spinedace, Lepidomeda vittata, a federally threatened cyprinid, in natural and experimental settings. In natural settings, we also examined occurrence and microhabitat use of two other native fishes, speckled dace, Rhinichthys osculus, and bluehead sucker, Catostomus discobolus. Native species co-occurred, as did rainbow trout and bluehead sucker. However, occurrences of Little Colorado spinedace and speckled dace were not significantly correlated with occurrence of rainbow trout. Total lengths of all three native species were significantly smaller at allopatric sites than at sites sympatric with rainbow trout. Microhabitat characteristics at sites with rainbow trout did not differ from those where the other three species were found, but did differ among the native species. In laboratory experiments with Little Colorado spinedace and rainbow trout, rainbow trout used the lower depth zone most, and spinedace increased use of the lower depth zone upon addition of rainbow trout. In addition, species tended to co-occur in zones, but used cover independently of one-another, suggesting a low level of agonistic interactions. However, after addition of a high density of rainbow trout, spinedace tended to use cover less than before. We suggest that the species can coexist at low rainbow trout densities. Potential negative effects of rainbow trout on Little Colorado spinedace likely increase with increasing densities of rainbow trout, and rainbow trout likely affect smaller size classes of Little Colorado spinedace more than larger ones.  相似文献   

8.
Brown trout and food web interactions in a Minnesota stream   总被引:1,自引:0,他引:1  
1. We examined indirect, community‐level interactions in a stream that contained non‐native brown trout (Salmo trutta Linnaeus), native brook trout (Salvelinus fontinalis Mitchill) and native slimy sculpin (Cottus cognatus Richardson). Our objectives were to examine benthic invertebrate composition and prey selection of fishes (measured by total invertebrate dry mass, dry mass of individual invertebrate taxa and relative proportion of invertebrate taxa in the benthos and diet) among treatments (no fish, juvenile brook trout alone, juvenile brown trout alone, sculpin with brook trout and sculpin with brown trout). 2. We assigned treatments to 1 m2 enclosures/exclosures placed in riffles in Valley Creek, Minnesota, and conducted six experimental trials. We used three designs of fish densities (addition of trout to a constant number of sculpin with unequal numbers of trout and sculpin; addition of trout to a constant number of sculpin with equal numbers of trout and sculpin; and replacement of half the sculpin with an equal number of trout) to investigate the relative strength of interspecific versus intraspecific interactions. 3. Presence of fish (all three species, alone or in combined‐species treatments) was not associated with changes in total dry mass of benthic invertebrates or shifts in relative abundance of benthic invertebrate taxa, regardless of fish density design. 4. Brook trout and sculpin diets did not change when each species was alone compared with treatments of both species together. Likewise, we did not find evidence for shifts in brown trout or sculpin diets when each species was alone or together. 5. We suggest that native brook trout and non‐native brown trout fill similar niches in Valley Creek. We did not find evidence that either species had an effect on stream communities, potentially due to high invertebrate productivity in Valley Creek.  相似文献   

9.
  1. Determining the appropriate measurement scale to assess habitat variables is critical for ecologists assessing biological or ecological conditions. Depth, velocity, substrate, woody debris and other fish cover variables occur on both reach and microhabitat scales, and fish habitat associations with these variables may be scale-dependent. The aim of this work was to better understand the importance of scale for fish–habitat associations with these variables in a framework consistent with environmental filtering and to test the hypothesis that habitat variable importance is scale-dependent.
  2. I used prepositioned areal electrofishing in wadeable streams of the Delaware River basin to evaluate the associations of fish with the same variables summarised on different reach and microhabitat scales. The importance of scale for fish–habitat associations was assessed using two approaches that approximate an environmental filtering framework: variance partitioning with (1) ordination and (2) generalised linear mixed models.
  3. Variables on both the reach and microhabitat scales explained a significant fraction of the total variation in fish community composition (p < 0.05). Variation decomposition of reach- and microhabitat-scale effects revealed 20.2% and 2.0% of all variation were due uniquely to reach and microhabitat scales, respectively. Measures of coarseness, embeddedness, amount of riffle and areal coverage of five fish cover variables were significant explanatory variables of community composition at the reach scale only (p < 0.05). Velocity and mesohabitat (amount or presence of riffle) were the only two habitat features that were significant explanatory variables of fish community composition at both the reach and microhabitat scales (p < 0.05). Individual models of species occurrence revealed similar patterns as seen with analyses of community composition.
  4. For many fishes, habitat features quantified at the reach scale were more explanatory than at the microhabitat scale. Longnose dace (Rhinichthys cataractae) were more dependent upon microhabitat variables than reach-scale variables, relative to other fishes. Mean velocity at the reach scale was the most important explanatory variable for explaining fish community composition and indicated support for the concept of environmental filtering at the reach and microhabitat scales.
  5. Few studies of fish occurrence have incorporated a study design and analytical framework that approximates the hierarchical nature of habitat. This study identifies important scales and predictors, demonstrates the importance of a multiscale approach, and provides support for the environmental filtering concept at the reach and microhabitat scales. These findings will allow ecologists to better account for scale-dependent habitat associations and justify the use of fish habitat associations on reach and microhabitat scales for assessing biotic integrity, restoration and conservation of fishes.
  相似文献   

10.
Habitat use by four grazing fishes in a rainforest stream was determined by direct observation (snorkeling) and microhabitat measurements for individual fish. Significant species heterogeneity (P?<?0.004) occurred along two principal component gradients of velocity, depth and substrate and most pairwise species contrasts were significant. Abundant Paracrossochilus acerus (Cyprinidae) occupied the slower, deeper end of the gradient and Gastromyzon punctulatus (Balitoridae) the fast, shallow end with common G. cranbrooki and rare G. aeroides intermediate. However, overlap was substantial and as many as three species grazed on a single rock with no apparent interaction. All species were primarily day-active. Incomplete experiments suggest the fishes rapidly abandon rocks with reduced algal cover. Frequent spates with high discharge, turbidity and bedload movement disturbed the river. Disturbance, rather than biotic interactions, may be the dominant factor in the ecology of these fishes.  相似文献   

11.
Salmonids were first introduced into the Chilean fresh waters in the 1880s, and c. 140 years later, they are ubiquitous across Chilean rivers, especially in the southern pristine fresh waters. This study examined the brown trout (Salmo trutta) and native taxa ecology in two adjacent but contrasting rivers of Chilean Patagonia. During spring 2016 and spring–fall 2017 we examined the variation in benthic macroinvertebrate and fish community composition and characterized fish size structure, stomach contents, and stable isotopes (δ13C and δ15N) to understand population structure, fish diet, and trophic interactions between S. trutta and native taxa. The native Galaxias maculatus (puye) dominated the fish community (74% of abundance). S. trutta was less abundant (16% of survey catch) but dominated the fish community (over 53%) in terms of biomass. S. trutta showed distinct diets (stomach content analysis) in the two rivers, and individuals from the larger river were notably more piscivorous, consuming native fish with a relatively small body size (<100-mm total length). Native fishes were isotopically distinct from S. trutta, which showed a wider isotopic niche in the smaller river, indicating that their trophic role was more variable than in the larger river (piscivorous). This study provides data from the unstudied pristine coastal rivers in Patagonia and reveals that interactions between native and introduced species can vary at very local spatial scales.  相似文献   

12.
Branching scleractinians provide fish with critical refuge against predation. While in the Caribbean and Indo-Pacific regions they are conspicuous elements of the reef community, in the tropical Southwestern Atlantic (Brazil) branching corals are lacking and massive forms dominate. The only branching forms that occur in Brazil are stinging fire-corals of genus Millepora (Hydrozoa). Preliminary observations showed that several fish species seek refuge within fire-corals in Brazil, suggesting that they may replace the functional role played by scleractinians in other regions. Here, the association of fishes to individual fire-coral colonies (Millepora alcicornis and M. brasiliensis) and the relationship between fire-coral cover and fish abundance was studied in eastern Brazil. A total of 38 fish species from 18 families (37?% of the regional species pool) were recorded within fire-corals. Most records were of relatively small-bodied fishes and juveniles of large-bodied fishes. Comparative observations between day and night indicated that fire-corals are used as sleeping sites by a few species. Volume of colonies was positively correlated with fish abundance and species richness. Over a large spatial scale (tens of kilometers) fire-coral cover had a positive and significant influence on the abundance of three fish species only (Abudefduf saxatilis, Acanthurus coeruleus and Microspatodon chrysurus). Although physical attributes of colonies and fire-coral cover may help to account for some of the spatial variability in fish abundance, fire-corals may be considered as an alternative instead of a critical microhabitat for fish. The advantages and drawbacks of living in a branching and stinging environment are discussed.  相似文献   

13.
Synopsis We examined the influence of biotic and abiotic factors on the distribution, abundance, and condition of salmonid fishes along a stream gradient. We observed a longitudinal change in fish distribution with native cutthroat trout, Oncorhynchus clarki utah, and introduced brown trout, Salmo trutta, demonstrating a distinct pattern of allopatry. Cutthroat trout dominated high elevation reaches, while reaches at lower elevations were dominated by brown trout. A transition zone between these populations was associated with lower total trout abundance, consistent changes in temperature and discharge, and differences in dietary preference. Variation in cutthroat trout abundance was best explained by a model including the abundance of brown trout and diel temperature, whereas variation in brown trout abundance was best explained by a model including the abundance of cutthroat trout and discharge. These results suggest the potential for condition-mediated competition between the two species. The results from our study can aid biologists in prioritizing conservation activities and in developing robust management strategies for cutthroat trout.  相似文献   

14.
Effects of local habitat variables on the structure of fish assemblage were evaluated from 50 sampling sites in a tropical River of Central India of the Ganges basin with limited anthropogenic disturbance covering premonsoon, monsoon and postmonsoon periods. Data were analyzed for 5,186 fish individuals of 24 freshwater fish species of conservation and fishery management interest. Out of the total fish species, seven belong to the ??endangered?? and 8 belong to the vulnerable category. A Cyprinid, Puntius sarana, was the most widely distributed species (frequency of occurrence 76%) out of the total species in this study. We used canonical correspondence analyses to determine the influence of environmental conditions on species occurrences and assemblage characteristics. Regarding the microhabitat, hydromorphological parameters (depth and current velocity) followed by temperature, turbidity and total dissolve solid were of significant for the structure of the fish community. Conductivity was another important factor that explained the major proportion of the variability affecting fish in their habitat choice. The other local habitat variables like overhanging vegetation and land use were of secondary but significantly important for the assemblage of the fishes. Our results suggests the importance of local environment influences on the fishes of conservation importance and their assemblage characteristics in an unimpacted river and provide a framework and reference conditions to support restoration efforts of relatively altered fish habitats in tropical rivers of India.  相似文献   

15.
Native fishes worldwide have declined as a consequence of habitat loss and degradation and introduction of non-native species. In response to these declines, river restoration projects have been initiated to enhance habitat and remove introduced fishes; however, non-native fish removal is not always logistically feasible or socially acceptable. Consequently, managers often seek to enhance degraded habitat in such a way that native fishes can coexist with introduced species. We quantified dynamics of fish communities to three newly constructed side channels in the Provo River, Utah, USA, to determine if and how they promoted coexistence between native fishes (nine species) and non-native brown trout (Salmo trutta L.). Native and introduced fishes responded differently in each side channel as a function of the unique characteristics and histories of side channels. Beaver activity in two of the three side channels caused habitat differentiation or channel isolation that facilitated the establishment of native species. The third side channel had greater connectivity to and similar habitat as the main channel of the Provo River, resulting in a similar fish community to main channel habitats (i.e. dominated by brown trout with only a few native fish species). These results demonstrate the importance of understanding habitat preferences for each species in a community to guide habitat enhancement projects and the need to create refuge habitats for native fishes.  相似文献   

16.
Disruption to a river’s natural flow regime changes its ecological character, which becomes unfavourable for previously adapted biota. The zooplankton particularly are affected, and survival of larval and juvenile fish is largely determined by their availability. Alien fishes can also impact on recruitment in native fishes, sometimes through competition. In this regard, the invasive eastern Gambusia Gambusia holbrooki is linked to the decline of several fish species. It can have a substantial influence in shaping plankton communities, which implies that it competes with native fish that rely on the microfauna. The effects of river regulation and over abstraction of water in the Murray–Darling Basin, south-eastern Australia, were exacerbated by drought from 1997 to 2010. Consequently, the endangered Murray hardyhead Craterocephalus fluviatilis underwent substantial population decline and extirpations. The purpose of this study is to determine if a link exists between zooplankton response to flooding of a drought refuge and the recruitment success of C. fluviatilis in the presence of G. holbrooki. Flooding triggered sharp and substantial increases in the zooplankton and their eggs, which was the sole food of C. fluviatilis. This apparently benefitted the recruitment of C. fluviatilis, and sometimes alleviated diet overlap with G. holbrooki. Conversely, the zooplankton in a nearby non-flooded refuge was low in abundance and diversity, and all fish species were extirpated. The findings indicate that the flooding of drought refugia with relatively small volumes of water can be timed with ecological cues that would otherwise be desynchronized in highly regulated rivers, particularly during drought.  相似文献   

17.
Management of multiple exploited stocks of anadromous salmonids in large catchments requires understanding of movement and catchment use by the migrating fish and of their harvesting. The spawning migration of sea trout (Salmo trutta) and Atlantic salmon (Salmo salar) was studied in the River Tweed, UK, using acoustic telemetry to complement exploitation rate data and to quantify catchment penetration. Salmon (n = 79) and sea trout (n = 65) were tagged in the tidal-influenced Tweed in summer–autumn. No tagged salmon left the river before spawning, but 3% (2010) and 8% (2011) of pre-spawning sea trout dropped out. Combined tag regurgitation/fish mortality in salmon was 12.5%, while trout mortality was 6% (2010) and 0% (2011). The estimated spawning positions of salmon and sea trout differed; tagged salmon were mostly in the main channel while trout occurred mostly in the upper Tweed and tributaries. Early fish migrated upstream slower than later fish, but sea trout moved through the lower-middle river more quickly than salmon, partly supporting the hypothesis that the lower exploitation rate in autumn of trout (1 vs 3.3% for salmon) there is generated by differences in migration behaviour.  相似文献   

18.
Non-native trout species have been associated with many negative effects in receiving ecosystems. The first aim of this study was to determine the impact of non-native rainbow trout Oncorhynchus mykiss on distribution and abundance of native mountain catfish Amphilius uranoscopus within Afro-montane streams in Nyanga Mountains, eastern Zimbabwe. The second aim was to compare macro-invertebrate community responses to the presence of the trout and the catfish. We examined trout impact on catfish’s habitat associations, whereas macro-invertebrate composition was compared using open fish and fish exclosure experiments in habitats with and without trout. Trout influenced both the distribution and abundance of the catfish that occupied shallow reaches possibly to avoid predation from trout that occurred in the deeper habitats. Within trout invaded reaches, most macro-invertebrate taxa were more abundant in exclosure than open treatments. By contrast, within trout-free reaches, most macro-invertebrates either did not differ between treatments or were generally more abundant in open than exclosure treatments. This suggests that the macro-invertebrate communities responded differently within invaded and non-invaded reaches. By influencing distribution and abundance of native biota, non-native rainbow trout may have wider ecological effects, such as influencing trophic interrelationships within invaded habitats.  相似文献   

19.
Trophic relations among introduced species may induce highly variable and complex effects in communities and ecosystems. However, studies that identify the potential impacts for invaded systems and illuminate mechanisms of coexistence with native species are scarce. Here, we examined trophic relations between two introduced fishes in streams of NW Patagonia, rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta). These species originate from different regions of the Northern Hemisphere but they now coexist as invading species over the world. We used gastric contents and stable isotopes analysis to compare the diets of two size‐classes of these two invaders in three localities of southern Chile. Both species displayed similar ontogenic diet shifts with smaller trout consuming mostly invertebrates and larger trout being more piscivorous and epibenthic feeders. However, piscivory was more prevalent in brown trout than in rainbow trout and highest at the site with the greatest density of native fishes suggesting that the availability of native fishes as trout prey may limit the occurrence of trout piscivory. We found an elevated dietary overlap between the two trout species at larger sizes while at smaller size a higher intraspecific dietary overlap occurred suggesting a potential interference competition among the two fish invaders especially at larger sizes. Our results highlight that the impacts of invading species on non‐native fishes are context specific (i.e. species and ontogenic stages) and thus, difficult to generalize.  相似文献   

20.
The presence of bluestreak cleaner wrasse, Labroides dimidiatus, on coral reefs increases total abundance and biodiversity of reef fishes. The mechanism(s) that cause such shifts in population structure are unclear, but it is possible that young fish preferentially settle into microhabitats where cleaner wrasse are present. As a first step to investigate this possibility, we conducted aquarium experiments to examine whether settlement-stage and young juveniles of ambon damselfish, Pomacentrus amboinensis, selected a microhabitat near a cleaner wrasse (adult or juvenile). Both settlement-stage (0 d post-settlement) and juvenile (~5 weeks post-settlement) fish spent a greater proportion of time in a microhabitat adjacent to L. dimidiatus than in one next to a control fish (a non-cleaner wrasse, Halichoeres melanurus) or one where no fish was present. This suggests that cleaner wrasse may serve as a positive cue during microhabitat selection. We also conducted focal observations of cleaner wrasse and counts of nearby damselfishes (1 m radius) to examine whether newly settled fish obtained direct benefits, in the form of cleaning services, from being near a cleaner wrasse. Although abundant, newly settled recruits (<20 mm total length) were rarely (2 %) observed being cleaned in 20 min observations compared with larger damselfishes (58 %). Individual damselfish that were cleaned were significantly larger than the median size of the surrounding nearby non-cleaned conspecifics; this was consistent across four species. The selection by settlement-stage fish of a microhabitat adjacent to cleaner wrasse in the laboratory, despite only being rarely cleaned in the natural environment, suggests that even rare cleaning events and/or indirect benefits may drive their settlement choices. This behaviour may also explain the decreased abundance of young fishes on reefs from which cleaner wrasse had been experimentally removed. This study reinforces the potentially important role of mutualism during the processes of settlement and recruitment of young reef fishes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号