首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
In the past, silencing of granule-bound starch synthase (GBSSI) in potato was achieved by antisense technology, where it was observed that inclusion of the 3' end of the GBSSI coding region increased silencing efficiency. Since higher silencing efficiencies were desired, GBSSI inverted repeat constructs were designed and tested in potato. First, large inverted repeats comprising the 5' and the 3' half of the GBSSI cDNA were tested. The 5' IR construct gave a significantly higher silencing efficiency than the 3' IR construct. Since it was not known whether the observed difference was due to the sequence or the orientation of the inverted repeat, the GBSSI cDNA was divided into three regions, after which each region was tested in small inverted repeats in two orientations. To this end large numbers of independent transformants were produced for each construct. The results suggested that there was no effect of inverted repeat orientation on silencing efficiency. The percentage of transformants showing strong inhibition varied from 48% for a 3'-derived construct to 87% for a 5' as well as a middle region-derived construct. Similar to the large inverted repeats, the 3' sequences induced the least efficient silencing implying that the observed differences in silencing efficiency are caused by sequence differences. The small inverted repeat constructs with a repeat size of 500-600 bp and a spacer of about 150 bp were more efficient silencing inducers than the large inverted repeat constructs where the size of the repeat was 1.1 or 1.3 kb whilst the size of spacer was 1.3 or 1.1 kb. The results presented here show that size and sequence of the inverted repeat influenced silencing efficiency.  相似文献   

4.
5.
RNA-mediated gene silencing has been demonstrated to serve as a defensive mechanism against viral pathogens by plants. It is known that specifically expressed endogenous siRNAs and miRNAs are involved in the self-defense process during viral infection. However, research has been rarely devoted to the endogenous siRNA and miRNA expression changes under viral infection if the resistance has already been genetically engineered in plants. Aiming to gain a deeper understanding of the RNA-mediated gene silencing defense process in plants, the expression profiles of siRNAs and miRNAs before and after viral infection in both wild type and transgenic anti-Rice stripe virus (RSV) rice plants were examined by small RNA high-throughput sequencing. Our research confirms that the newly generated siRNAs, which are derived from the engineered inverted repeat construct, is the major contributor of the viral resistance in rice. Further analysis suggests the accuracy of siRNA biogenesis might be affected when siRNAs machinery is excessively used in the transgenic plants. In addition, the expression levels of many known miRNAs are dramatically changed due to RSV infection on both wild type and transgenic rice plants, indicating potential function of those miRNAs involved in plant-virus interacting process.  相似文献   

6.
Constructs and methods for high-throughput gene silencing in plants   总被引:29,自引:0,他引:29  
Gene silencing can be achieved by transformation of plants with constructs that express self-complementary (termed hairpin) RNA containing sequences homologous to the target genes. The DNA sequences encoding the self-complementary regions of hairpin (hp) RNA constructs form an inverted repeat. The inverted repeat can be stabilized in bacteria through separation of the self-complementary regions by a "spacer" region. When the spacer sequence encodes an intron, the efficiency of gene silencing is very high. There are at least three ways in which hpRNA constructs can be made. The construct may be generated from standard binary plant transformation vectors in which the hairpin-encoding region is generated de novo for each gene. Alternatively, generic gene-silencing vectors such as the pHANNIBAL and the pHELLSGATE series can be used. They simply require the insertion of PCR products, derived from the target gene, into the vectors by conventional cloning or by using the Gateway directed recombination system. In this article, we describe and evaluate the advantages of these vectors and then provide the protocols for their efficient use.  相似文献   

7.
8.
9.
10.
The application of RNA-mediated resistance against Cucumber mosaic virus (CMV) by using single transgene constructs generally results in only a small portion of resistant individuals. Inverted repeat constructs encoding self-complementary double-stranded RNA have been demonstrated a potential way to obtain RNA-mediated resistance at high efficiency. To test this observation as a possible method for high frequency induction of CMV resistance, Nicotiana benthamiana plants were transformed with transgenes designed to produce double strand RNA molecules of CMV RNA 2 or coat protein (CP) gene sequences. Seventy-five percent of the tested R0 plants transformed with an RNA 2-derived inverted repeat construct (1534 nt CMV sequence) showed extreme resistance to CMV, while a lower percentage of resistance (30%) was observed in R0 lines transformed with a similar construct of a shorter viral RNA 2 sequence (490 nt). The resistance level conferred by CP sequences was also efficient by using a dsRNA construct, reaching a level of 50%. Self-pollinated (S1) progenies obtained from most resistant R0 plants all showed resistance levels of 100%, perfectly correlating with the expression of transgenic siRNAs. The results indicate that the use of inverted repeat viral transgenes is a highly efficient approach to obtain CMV resistant transgenic plants. Consequently, only a handful of transgenic plants will have to be generated using such constructs for successful resistance, which enables the implementation of this protocol for crops that are difficult to transform, such as ornamental plants in which CMV is an important pathogen.  相似文献   

11.
12.
13.
Rhizomania caused by Beet necrotic yellow vein virus (BNYVV) is one of the most devastating sugar beet diseases. Sugar beet plants engineered to express a 0.4 kb inverted repeat construct based on the BNYVV replicase gene accumulated the transgene mRNA to similar levels in leaves and roots, whereas accumulation of the transgene-homologous siRNA was more pronounced in roots. The roots expressed high levels of resistance to BNYVV transmitted by the vector, Polymyxa betae. Resistance to BNYVV was not decreased following co-infection of the plants with Beet soil borne virus and Beet virus Q that share the same vector with BNYVV. Similarly, co-infection with the aphid-transmitted Beet mild yellowing virus, Beet yellows virus (BYV), or with all of the aforementioned viruses did not affect the resistance to BNYVV, while they accumulated in roots. These viruses are common in most of the sugar beet growing areas in Europe and world wide. However, there was a competitive interaction between BYV and BMYV in sugar beet leaves, as infection with BYV decreased the titres of BMYV. Other interactions between the viruses studied were not observed. The results suggest that the engineered resistance to BNYVV expressed in the sugar beets of this study is efficient in roots and not readily compromised following infection of the plants with heterologous viruses.  相似文献   

14.
为了研究中国胜红蓟黄脉病毒(Ageratum yellow vein Chin virus,AYVCNV)和假马鞭曲叶病毒(Stachytarpheta leafcurl virus,StaLCV)C4蛋白的功能,利用烟草脆裂病毒(Tobacco rattle virus,TRV)载体在本氏烟(Nicotianabenthamiana)中分别表达了这两种病毒的C4蛋白,结果发现它们均能在本氏烟中引起类似于病毒侵染的症状,推测AYVCNV和StaLCV的C4蛋白是病毒的致病因子;在RNA沉默的抑制试验中,AYVCNV和StaLCV的C4蛋白均能够在表达gfp基因的转基因本氏烟(16c)上抑制由gfp基因正义链引起的基因沉默的建立,证明它们都是RNA沉默的抑制子。  相似文献   

15.
Two gene constructs were made consisting of a 244-bp sense fragment from the 5′ end of a polygalacturonase cDNA, the 3′ end of which was ligated to a 414-bp fragment from the 5′ end of a phytoene synthase cDNA. In the first construct, the phytoene synthase fragment was in a sense orientation (sense/sense chimeric gene) and in the second construct the phytoene synthase fragment was in an antisense orientation (sense/antisense chimeric gene). Both chimeric genes were inserted between a cauliflower mosaic virus promoter and terminator. Tomato (Lycopersicon esculentum Mill. cv. Ailsa Craig) plants transformed with each construct gave rise to transformants with three distinct phenotypes: plants with red fruit, plants with pure yellow fruit and plants with red and yellow sectored fruit. For both chimeric constructs, expression of the endogenous polygalacturonase and phytoene synthase genes were found to be co-ordinately suppressed in yellow tissue, but showed normal expression in red tissue. Data from microscopic analyses of fruit chromoplasts, from the three phenotypes, implied that phytoene synthase suppression from each construct predominantly had two states within a cell: on or off. Received: 31 July 1997 / Accepted: 28 August 1997  相似文献   

16.
For the production of broad commercial resistance to cucumber mosaic virus (CMV) infection, tomato plants were transformed with a combination of two coat protein (CP) genes, representing both subgroups of CMV. The CP genes were cloned from the CMV-D strain and Italian CMV isolates (CMV-22 of subgroup I and CMV-PG of subgroup II) which have been shown to produce severe disease symptoms. Four plant transformation vectors were constructed: pMON18774 and pMON18775 (CMV-D CP), pMON18831 (CMV-PG CP) and pMON18833 (CMV-22 CP and CMV-PG CP). Transformed R0 plants were produced and lines were selected based on the combination of three traits: CMV CP expression at the R0 stage, resistance to CMV (subgroup I and/or II) infection in growth chamber tests in R1 expressing plants, and single transgene copy, based on R1 segregation. The results indicate that all four vector constructs generated plants with extremely high resistant to CMV infection. The single and double gene vector construct produced plants with broad resistance against strains of CMV from both subgroups I and II at high frequency. The engineered resistance is of practical value and will be applied for major Italian tomato varieties. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号