首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein folding and quality control in the endoplasmic reticulum   总被引:17,自引:0,他引:17  
The endoplasmic reticulum (ER) is a highly versatile protein factory that is equipped with chaperones and folding enzymes essential for protein folding. ER quality control guided by these chaperones is essential for life. Whereas correctly folded proteins are exported from the ER, misfolded proteins are retained and selectively degraded. At least two main chaperone classes, BiP and calnexin/calreticulin, are active in ER quality control. Folding factors usually are found in complexes. Recent work emphasises more than ever that chaperones act in concert with co-factors and with each other.  相似文献   

2.
The influenza hemagglutinin precursor (HA0) and many other glycoproteins fold and oligomerize in the endoplasmic reticulum (ER). Only correctly folded oligomers are transported to the cell surface. To analyse the rules which determine this type of ER sorting, we have extended our analysis of hemagglutinin transport to two soluble, anchor-free recombinant HA0s derived from X31/A/Aichi/68 and A/Japan/305/57 influenza A. The results showed that individual monomers rapidly acquired a folded structure similar to that of monomeric membrane-anchored HA0. They were efficiently transported and secreted, but oligomerization was not required for secretion. Trimers or higher order complexes were either not formed (X31 HA0), or appeared during passage through the late compartments of the secretory pathway, with no effect on the rate of transport (Japan HA0). However, when initial folding was disturbed by inhibition of N-linked glycosylation, anchor-free X31 HA0 was misfolded and retained in the ER as disulfide-linked complexes associated with binding protein, BiP (GRP78). The complexes were similar to those seen for the nonglycosylated membrane-bound HA0, but instead of forming immediately after synthesis they appeared with a half-time of 6 min. Taken together, the data demonstrate that the structural criteria that makes the anchor-free HA0 transport competent are less stringent than those for the membrane form; they must fold correctly but do not need to oligomerize.  相似文献   

3.
Accumulation of misfolded secretory proteins causes cellular stress and induces the endoplasmic reticulum (ER) stress pathway, the unfolded protein response (UPR). Although the UPR has been extensively studied, little is known about the molecular changes that distinguish the homeostatic and stressed ER. The increase in levels of misfolded proteins and formation of complexes with chaperones during ER stress are predicted to further crowd the already crowded ER lumen. Surprisingly, using live cell fluorescence microscopy and an inert ER reporter, we find the crowdedness of stressed ER, treated acutely with tunicamycin or DTT, either is comparable to homeostasis or significantly decreases in multiple cell types. In contrast, photobleaching experiments revealed a GFP-tagged variant of the ER chaperone BiP rapidly undergoes a reversible quantitative decrease in diffusion as misfolded proteins accumulate. BiP mobility is sensitive to exceptionally low levels of misfolded protein stressors and can detect intermediate states of BiP availability. Decreased BiP availability temporally correlates with UPR markers, but restoration of BiP availability correlates less well. Thus, BiP availability represents a novel and powerful tool for reporting global secretory protein misfolding levels and investigating the molecular events of ER stress in single cells, independent of traditional UPR markers.  相似文献   

4.
The endoplasmic reticulum (ER) has an elaborate quality control system, which retains misfolded proteins and targets them to ER-associated protein degradation (ERAD). To analyze sorting between ER retention and ER exit to the secretory pathway, we constructed fusion proteins containing both folded carboxypeptidase Y (CPY) and misfolded mutant CPY (CPY*) units. Although the luminal Hsp70 chaperone BiP interacts with the fusion proteins containing CPY* with similar efficiency, a lectin-like ERAD factor Yos9p binds to them with different efficiency. Correlation between efficiency of Yos9p interactions and ERAD of these fusion proteins indicates that Yos9p but not BiP functions in the retention of misfolded proteins for ERAD. Yos9p targets a CPY*-containing ERAD substrate to Hrd1p E3 ligase, thereby causing ER retention of the misfolded protein. This ER retention is independent of the glycan degradation signal on the misfolded protein and operates even when proteasomal degradation is inhibited. These results collectively indicate that Yos9p and Hrd1p mediate ER retention of misfolded proteins in the early stage of ERAD, which constitutes a process separable from the later degradation step.  相似文献   

5.
BACE457 is a recently identified pancreatic isoform of human beta-secretase. We report that this membrane glycoprotein and its soluble variant are characterized by inefficient folding in the ER, leading to proteasome-mediated ER-associated degradation (ERAD). Dissection of the degradation process revealed that upon release from calnexin, extensively oxidized BACE457 transiently entered in disulfide-bonded complexes associated with the lumenal chaperones BiP and protein disulfide isomerase (PDI) before unfolding and dislocation into the cytosol for degradation. BACE457 and its lumenal variant accumulated in disulfide-bonded complexes, in the ER lumen, also when protein degradation was inhibited. The complexes were disassembled and the misfolded polypeptides were cleared from the ER upon reactivation of the degradation machinery. Our data offer new insights into the mechanism of ERAD by showing a sequential involvement of the calnexin and BiP/PDI chaperone systems. We report the unexpected transient formation of covalent complexes in the ER lumen during the ERAD process, and we show that PDI participates as an oxidoreductase and a redox-driven chaperone in the preparation of proteins for degradation from the mammalian ER.  相似文献   

6.
Proteins synthesized in the ER are generally transported to the Golgi complex and beyond only when they have reached a fully folded and assembled conformation. To analyze how the selective retention of misfolded proteins works, we monitored the long-term fate of a membrane glycoprotein with a temperature-dependent folding defect, the G protein of tsO45 vesicular stomatitis virus. We used indirect immunofluorescence, immunoelectron microscopy, and a novel Nycodenz gradient centrifugation procedure for separating the ER, the intermediate compartment, and the Golgi complex. We also employed the folding and recycling inhibitors dithiothreitol and AIF4-, and coimmunoprecipitation with calnexin antibodies. The results showed that the misfolded G protein is not retained in the ER alone; it can move to the intermediate compartment and to the cis-Golgi network but is then recycled back to the ER. In the ER it is associated with calnexin and BiP/GRP78. Of these two chaperones, only BiP/GRP78 seems to accompany it through the recycling circuit. Thus, the retention of this misfolded glycoprotein is the result of multiple mechanisms including calnexin binding in the ER and selective retrieval from the intermediate compartment and the cis-Golgi network.  相似文献   

7.
The endoplasmic reticulum (ER) chaperone binding protein (BiP) binds exposed hydrophobic regions of misfolded proteins. Cycles of ATP hydrolysis and nucleotide exchange on the ATPase domain were shown to regulate the function of the ligand-binding domain in vitro. Here we show that ATPase mutants of BiP with defective ATP-hydrolysis (T46G) or ATP-binding (G235D) caused permanent association with a model ligand, but also interfered with the production of secretory, but not cytosolic, proteins in vivo. Furthermore, the negative effect of BiP(T46G) on secretory protein synthesis was rescued by increased levels of wild-type BiP, whereas the G235D mutation was dominant. Unexpectedly, expression of a mutant BiP with impaired ligand binding also interfered with secretory protein production. Although mutant BiP lacking its ATPase domain had no detrimental effect on ER function, expression of an isolated ATPase domain interfered with secretory protein synthesis. Interestingly, the inhibitory effect of the isolated ATPase was alleviated by the T46G mutation and aggravated by the G235D mutation. We propose that in addition to its role in ligand release, the ATPase domain can interact with other components of the protein translocation and folding machinery to influence secretory protein synthesis.  相似文献   

8.
9.
As a part of our studies on the folding of glycoproteins in the ER, we analyzed the fate of viral glycoproteins that have misfolded either spontaneously or through inhibition of N-linked glycosylation. Newly synthesized Semliki Forest virus spike glycoproteins E1 and p62 and influenza hemagglutinin were studied in infected and transfected tissue culture cells. Misfolded proteins aggregated in less than 1 min after release from polysomes and aberrant interchain disulfide bonds were formed immediately. When more than one protein was misfolded, mixed aggregates were generated. This indicated that the formation of complexes was nonspecific, random, and not restricted to products from single polysomes. The size of the aggregates varied from small oligomers to complexes of several million daltons. BiP was associated noncovalently with the aggregates and with some of the nonaggregated products. We conclude that aggregation reflects the poor solubility of incompletely folded polypeptide chains.  相似文献   

10.
Misfolded proteins are recognized in the endoplasmic reticulum (ER), transported back to the cytosol, and degraded by the proteasome. A number of proteins are processed and modified by a glycosylphosphatidylinositol (GPI) anchor in the ER, but the quality control mechanisms of GPI-anchored proteins remain unclear. Here, we report on the quality control mechanism of misfolded GPI-anchored proteins. We have constructed a mutant form of the beta-1,3-glucanosyltransferase Gas1p (Gas1*p) as a model misfolded GPI-anchored protein. Gas1*p was modified with a GPI anchor but retained in the ER and was degraded rapidly via the proteasome. Disruption of BST1, which encodes GPI inositol deacylase, caused a delay in the degradation of Gas1*p. This delay was because of an effect on the deacylation activity of Bst1p. Disruption of genes involved in GPI-anchored protein concentration and N-glycan processing caused different effects on the degradation of Gas1*p and a soluble misfolded version of carboxypeptidase Y. Furthermore, Gas1*p associated with both Bst1p and BiP/Kar2p, a molecular chaperone, in vivo. Our data suggest that GPI inositol deacylation plays important roles in the quality control and ER-associated degradation of GPI-anchored proteins.  相似文献   

11.
Protein disulfide isomerase (PDI) interacts with secretory proteins, irrespective of their thiol content, late during translocation into the ER; thus, PDI may be part of the quality control machinery in the ER. We used yeast pdi1 mutants with deletions in the putative peptide binding region of the molecule to investigate its role in the recognition of misfolded secretory proteins in the ER and their export to the cytosol for degradation. Our pdi1 deletion mutants are deficient in the export of a misfolded cysteine-free secretory protein across the ER membrane to the cytosol for degradation, but ER-to-Golgi complex transport of properly folded secretory proteins is only marginally affected. We demonstrate by chemical cross-linking that PDI specifically interacts with the misfolded secretory protein and that mutant forms of PDI have a lower affinity for this protein. In the ER of the pdi1 mutants, a higher proportion of the misfolded secretory protein remains associated with BiP, and in export-deficient sec61 mutants, the misfolded secretory protein remain bounds to PDI. We conclude that the chaperone PDI is part of the quality control machinery in the ER that recognizes terminally misfolded secretory proteins and targets them to the export channel in the ER membrane.  相似文献   

12.
Immunoglobulin heavy chain binding protein (BiP, GRP 78) coprecipitates with soluble and membrane-associated variants of the T-cell antigen receptor alpha chain (TCR-alpha) which are stably retained within the ER. Chelation of Ca2+ during solubilization of cells leads to the dissociation of BiP from the TCR-alpha variants, which is dependent upon the availability of Mg2+ and hydrolyzable ATP; this suggests that Ca2+ levels can serve to modulate the association/dissociation of these proteins with BiP. In vivo treatment of cells expressing either the soluble or membrane-anchored TCR-alpha variants with the Ca2+ ionophore, A23187, or an inhibitor of an ER Ca(2+)-ATPase, thapsigargin, or the membrane-permeant Ca2+ chelator BAPTA-AM, results in the redistribution of these proteins out of the ER and their subsequent secretion or cell surface expression. Under the same assay conditions, no movement of BiP out of the ER is observed. Taken together, these observations indicate that decreased Ca2+ levels result in the dissociation of a protein bound to BiP, leading to its release from ER retention. These data suggest that the intracellular fate of newly synthesized proteins stably associated with BiP can be regulated by Ca2+ levels in the ER.  相似文献   

13.
Tandem affinity purification (TAP) has been used to isolate proteins that interact with human hepatic lipase (HL) during its maturation in Chinese hamster ovary cells. Using mass spectrometry and Western blotting, we identified 28 proteins in HL-TAP isolated complexes, 16 of which localized to the endoplasmic reticulum (ER), the site of HL folding and assembly. Of the 12 remaining proteins located outside the ER, five function in protein translation or ER-associated degradation (ERAD). Components of the two major ER chaperone systems were identified, the BiP/Grp94 and the calnexin (CNX)/calreticulin (CRT) systems. All factors involved in CNX/CRT chaperone cycling were identified, including UDP-glucose:glycoprotein glucosyltransferase 1 (UGGT), glucosidase II, and the 57 kDa oxidoreductase (ERp57). We also show that CNX, and not CRT, is the lectin chaperone of choice during HL maturation. Along with the 78 kDa glucose-regulated protein (Grp78; BiP) and the 94 kDa glucose-regulated protein (Grp94), an associated peptidyl-prolyl cis-trans isomerase and protein disulfide isomerase were also detected. Finally, several factors in ERAD were identified, and we provide evidence that terminally misfolded HL is degraded by the ubiquitin-mediated proteasomal pathway. We propose that newly synthesized HL emerging from the translocon first associates with CNX, ERp57, and glucosidase II, followed by repeated posttranslational cycles of CNX binding that is mediated by UGGT. BiP/Grp94 may stabilize misfolded HL during its transition between cycles of CNX binding and may help direct its eventual degradation.  相似文献   

14.
The mechanism by which endoplasmic reticulum (ER) stress proteins are induced by the accumulation of incompletely assembled or malfolded proteins in the ER is poorly understood. The 78-kDa glucose-regulated protein (BiP), one of the ER stress proteins, has often been detected in stable complexes with these accumulated proteins. We have transfected COS cells with an immunoglobulin (Ig) mu heavy chain expression plasmid. Expressed mu-chain accumulated in the cells and formed stable complexes with BiP. As a result, the synthesis of three ER stress proteins, BiP, the 94-kDa glucose-regulated protein (GRP94/ERp99), and ERp72, was increased as were their mRNA levels. In addition, the degradation rate of BiP was increased, possibly because of its interaction with mu-chain. Cotransfection of the mu-chain plasmid with an Ig lambda light chain expression plasmid resulted in the appearance of mu-chain in the media in a covalent complex with lambda-chain. An intracellular consequence of this was a reduction in the levels of BiP.mu-chain complex, and a diminished stimulation in the synthesis of the ER stress proteins. These results suggest that the BiP.mu-chain complex in the ER may be involved in the signaling pathway for the induction of ER stress proteins and may represent one regulatory mechanism operating in differentiating B-lymphocytes.  相似文献   

15.
Quality control in the endoplasmic reticulum (ER) prevents the arrival of incorrectly or incompletely folded proteins at their final destinations and targets permanently misfolded proteins for degradation. Such proteins have a high affinity for the ER chaperone BiP and are finally degraded via retrograde translocation from the ER lumen back to the cytosol. This ER-associated protein degradation (ERAD) is currently thought to constitute the main disposal route, but there is growing evidence for a vacuolar role in quality control. We show that BiP is transported to the vacuole in a wortmannin-sensitive manner in tobacco (Nicotiana tabacum) and that it could play an active role in this second disposal route. ER export of BiP occurs via COPII-dependent transport to the Golgi apparatus, where it competes with other HDEL receptor ligands. When HDEL-mediated retrieval from the Golgi fails, BiP is transported to the lytic vacuole via multivesicular bodies, which represent the plant prevacuolar compartment. We also demonstrate that a subset of BiP-ligand complexes is destined to the vacuole and differs from those likely to be disposed of via the ERAD pathway. Vacuolar disposal could act in addition to ERAD to maximize the efficiency of quality control in the secretory pathway.  相似文献   

16.
The mechanism, in molecular terms of protein quality control, specifically of how the cell recognizes and discriminates misfolded proteins, remains a challenge. In the secretory pathway the folding status of glycoproteins passing through the endoplasmic reticulum is marked by the composition of the N-glycan. The different glycoforms are recognized by specialized lectins. The folding sensor UGGT acts as an unusual molecular chaperone and covalently modifies the Man9 N-glycan of a misfolded protein by adding a glucose moiety and converts it to Glc1Man9 that rebinds the lectin calnexin. However, further links between the folding status of a glycoprotein and the composition of the N-glycan are unclear. There is little unequivocal evidence for other proteins in the ER recognizing the N-glycan and also acting as molecular chaperones. Nevertheless, based upon a few examples, we suggest that this function is carried out by individual proteins in several different complexes. Thus, calnexin binds the protein disulfide isomerase ERp57, that acts upon Glc1Man9 glycoproteins. In another example the protein disulfide isomerase ERdj5 binds specifically to EDEM (which is probably a mannosidase) and a lectin OS9, and reduces the disulfide bonds of bound glycoproteins destined for ERAD. Thus the glycan recognition is performed by a lectin and the chaperone function performed by a specific partner protein that can recognize misfolded proteins. We predict that this will be a common arrangement of proteins in the ER and that members of protein foldase families such as PDI and PPI will bind specifically to lectins in the ER. Molecular chaperones BiP and GRp94 will assist in the folding of proteins bound in these complexes as well as in the folding of non-glycoproteins.  相似文献   

17.
Almost all secreted proteins pass through the endoplasmic reticulum (ER), an organelle that is equipped to tolerate and/or degrade misfolded proteins. We report here that yeast expressing the cystic fibrosis transmembrane conductance regulator (CFTR) concentrate the protein at defined sites in the ER membrane that are not necessarily enriched for the ER molecular chaperone BiP. We propose that these sites are Russell bodies, an ER subcompartment in which misfolded proteins are stored and can be targeted for degradation.  相似文献   

18.
The Binding Protein Associates with Monomeric Phaseolin   总被引:10,自引:3,他引:7       下载免费PDF全文
Vitale A  Bielli A  Ceriotti A 《Plant physiology》1995,107(4):1411-1418
The association of the binding protein (BiP) with newly synthesized proteins in the endoplasmic reticulum (ER) of developing bean (Phaseolus vulgaris) cotyledonary cells was investigated. ATP-sensitive association with many polypeptides was detected. The fraction of newly synthesized polypeptides associated with BiP varies among different proteins. The relationship between subunit assembly and binding to BiP was investigated in the case of the vacuolar trimeric glycoprotein phaseolin. In spite of the presence of a significant pool of phaseolin trimers in the ER, only monomeric phaseolin is found in association with BiP. On the whole, our results point to a general role of BiP in the synthesis of plant secretory proteins and indicate that, in the case of phaseolin, BiP binding sites are concealed during structural maturation in the ER, either before or upon formation of trimers. Our results also indicate that trimerization does not constitute a rate-limiting step in the transport of phaseolin to the protein storage vacuoles.  相似文献   

19.
Parallel experiments in living cells and in vitro were undertaken to characterize the mechanism by which misfolded and unassembled glycoproteins are retained in the ER. A thermoreversible folding mutant of vesicular stomatitis virus (VSV) G protein called ts045 was analyzed. At 39 degrees C, newly synthesized G failed to fold correctly according to several criteria: intrachain disulfide bonds were incomplete; the B2 epitope was absent; and the protein was associated with immunoglobulin heavy chain binding protein (BiP), a heat shock-related, ER protein. When the temperature was lowered to 32 degrees C, these properties were reversed, and the protein was transported to the cell surface. Upon the shift up from 32 degrees C back to 39 degrees C, G protein in the ER returned to the misfolded form and was retained, while the protein that had reached a pre-Golgi compartment or beyond was thermostable and remained transport competent. The misfolding reaction could be reconstituted in a cell free system using ts045 virus particles and protein extracts from microsomes. Taken together, the results showed that ER is unique among the organelles of the secretory pathway in containing specific factors capable of misfolding G protein at the nonpermissive temperature and thus participating in its retention.  相似文献   

20.
When co-translationally inserted into endoplasmic reticulum (ER) membranes, newly synthesized proteins encounter the lumenal environment of the ER, which contains chaperone proteins that facilitate the folding reactions necessary for protein oligomerization, maturation and export from the ER. Here we show, using a temperature-sensitive variant of vesicular stomatitis virus G protein tagged with green fluorescent protein (VSVG-GFP), and fluorescence recovery after photobleaching (FRAP), the dynamics of association of folded and misfolded VSVG complexes with ER chaperones. We also investigate the potential mechanisms underlying protein retention in the ER. Misfolded VSVG-GFP complexes at 40 degrees C are highly mobile in ER membranes and do not reside in post-ER compartments, indicating that they are not retained in the ER by immobilization or retrieval mechanisms. These complexes are immobilized in ATP-depleted or tunicamycin-treated cells, in which VSVG-chaperone interactions are no longer dynamic. These results provide insight into the mechanisms of protein retention in the ER and the dynamics of protein-folding complexes in native ER membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号