首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Tryptase from human mast cells is stabilized by negatively charged macromolecules such as heparin and is not affected by the protein inhibitors of serine proteinases normally present in human extracellular fluids. The current study demonstrated inhibition of tryptase-catalyzed cleavage of tosyl-Gly-Pro-Lys-p-nitroanilide by histamine and calcium, and destablization only by calcium. Calcium-mediated inhibition was competitive with a Ki of 30 mM. Cooperation of calcium with other extracellular cations or concentrations of calcium possible within cells or granules may permit calcium-mediated inhibition to occur in vivo. In contrast, only 5 mM calcium is needed to cause an irreversible 50% loss of tryptase activity after 60 min at room temperature. Histamine and N-methyl histamine concentrations of 2 mM to 10 mM inhibited tryptase activity by a different mechanism than calcium, resulting in sigmoid rather than hyperbolic kinetics. Whether this reflects cooperative binding of histamine to tryptase or conformational alterations of tryptase is not known. These concentrations of histamine are most relevant to those in mast cell secretory granules estimated at 100 mM, where tryptase is stored fully active and where histamine may play a role in attenuating tryptase activity.  相似文献   

2.
Proton nuclear magnetic resonance studies of mast cell histamine   总被引:2,自引:0,他引:2  
The state of histamine in mast cells was studied by 1H NMR spectroscopy. Spectra were measured for histamine in situ in intact mast cells, for histamine in suspensions of mast cell granule matrices that had been stripped of their membranes, and for histamine in solutions of heparin. The 1H NMR spectrum of intact mast cells is relatively simple, consisting predominantly of resonances for intracellular histamine superimposed on a weaker background of resonances from heparin and proteins of the cells. All of the intracellular histamine contributes to the NMR signals, indicating it must be relatively mobile and not rigidly associated with the negatively charged granule matrix. Spectra for intracellular histamine and for histamine in granule matrices are similar, indicating the latter to be a reasonable model for the in situ situation. The dynamics of binding of histamine by granule matrices and by heparin are considerably different; exchange of histamine between the bulk water and the granule matrices is slow on the 1H NMR time scale, whereas exchange between the free and bound forms in heparin solution is fast. The chemical shifts of resonances for histamine in mast cells are pH dependent, decreasing as the intragranule pH increases without splitting or broadening. The results are interpreted to indicate that histamine in mast cells is relatively labile, with rapid exchange between bound histamine and pools of free histamine in water compartments confined in the granule matrix.  相似文献   

3.
To study why neonatal and young rats are resistant to the effects of some secretagogues, such as compound 48/80 and 2.5-S nerve growth factor, we examined peritoneal mast cells from 14–15-day-old rats (young rats) and compared them to peritoneal mast cells from adults. Peritoneal mast cells from young rats contain approximately one-tenth of the amount of histamine observed in adult peritoneal mast cells. However, both cell populations contained similar low levels of the mucosal mast cell-associated protease rat mast cell protease II. Histochemical analysis of peritoneal mast cells from young rats using safranin O and berberine sulphate suggested that only a portion of the granules of these cells contained heparin. At an ultrastructural level the young rat peritoneal mast cell contains relatively few granules. The majority of mast cells from young rats have a bilobed or indented nucleus which is only rarely observed in adult cells. Functionally, the young rat peritoneal mast cell demonstrates a significantly reduced histamine release in response to the connective tissue mast cellspecific secretagogues compound 48/80 and 2.5-S nerve growth factor. In contrast, the percent histamine release in response to the neurotransmitter substance P, which degranulates both connective tissue mast cells and intestinal mucosal mast cells, was similar in the adult cells and the young rat cells. This study demonstrates substantial differences between the young rat and adult peritoneal mast cells which may explain the ability of very young animals to withstand large doses of certain secretagogues.  相似文献   

4.
The antineoplastic drug adriamycin induces exocytosis in rat peritoneal mast cells followed by a significant uptake of the drug into the secretory granules. The drug is fluorescent, allowing visualization of its accumulation and binding to mast cell granules by fluorescence microscopy. At the same time, the well known inorganic dye ruthenium red was used as a probe because of its great affinity for heparin in the mast cell secretory granules as visualized by bright field microscopy. Competition between adriamycin and ruthenium red for binding to the negatively charged matrix of granules was demonstrated. Biochemical studies were also performed to confirm microscopic observations. Adriamycin may be of interest for studying mast cell secretion; it is not only a strong fluorescent dye for mast cell granules that are in communication with the extracellular space, but it also induces mast cell exocytosis.  相似文献   

5.
To study the interaction between low-density lipoprotein (LDL) and granules from rat serosal mast cells in vitro, mast cells were stimulated with the degranulating agent 48/80 to induce exocytosis of the secretory granules. Subsequent incubation of the exocytosed granules with 125I-LDL resulted in binding of the labelled LDL to the granules. When increasing amounts of agent 48/80 were added to mast-cell suspensions, a dose-dependent release of granules was observed and a parallel increase in the amount of 125I-LDL bound to granules resulted. 125I-LDL bound to a single class of high-affinity binding sites on the granules. At saturation, 105 ng of LDL were bound per microgram of granule protein. The lipoprotein binding to mast-cell granules was apolipoprotein(apo)-B + E-specific. Thus 125I-LDL binding to the granules was effectively compared for by LDL (apo-B) or by dimyristoyl phosphatidylcholine vesicles containing apo-E, but not by high-density lipoprotein (HDL3) containing apo-AI as their major protein component. Neutralization by acetylation of the positively charged amino groups of apo-B of LDL or presence of a high ionic strength in the incubation medium prevented LDL from binding to the granules, indicating the presence of ionic interactions between the positively charged amino acids of LDL and negatively charged groups of the granules. It could be demonstrated that LDL bound to the negatively charged heparin proteoglycan of the granules. Thus treatment of granules with heparinase resulted in loss of their ability to bind LDL, and substances known to bind to heparin, such as Toluidine Blue, avidin, lipoprotein lipase, fibronectin and protamine, all effectively competed with LDL for binding to the granules. The results show that LDL is efficiently bound to the heparin proteoglycan component of mast-cell granules once the mast cells are stimulated to release their granules into the extracellular space.  相似文献   

6.
According to current teaching biogenic amines are released by exocytosis, i.e. by evacuation of amine storing vesicles or granules into the extracellular space. The release of transmitter amines is quantal, i.e. occurs in packs of transmitter molecules. These packs are assumed to be identical with vesicle contents, in other words, the smallest releasable quantum equals the amine content of one vesicle. However, there are experimental observations which do not fit in with this version of an exocytotic release theory. Observed quantitative discrepancies could be explained if the release mechanism allowed a fractional release of transmitter amine from several vesicles instead of the total evacuation of a few. The lack of adequate knowledge about the mechanisms of storage of biogenic amines within the vesicles has up til now rendered it difficult to envisage the machinery behind a fractional release of the amine content of a vesicle. In extensive in-vitro studies we have found that the matrices of amine storing granules (i.e. from mast cells, chromaffin cells and nerve terminals) show the properties of weak cation exchanger materials, carboxyl groups serving as amine binding ionic sites. When exposed to cations like sodium and potassium ions, the amines are released from their storage sites according to kinetics characteristic of weak cation exchangers. In vivo, amine release from cat adrenals on splanchnic nerve stimulation also occurs according to ion exchange kinetics. Histamine release from mast cells is considered to occur as the result of degranulation, i.e. the expulsion of histamine storing granules to the extracellular space, a typical example of exocytosis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The interaction of alpha-thrombin with connective tissue-type mast cells (CTMC) purified by Ficoll density gradient centrifugation has been examined. It was demonstrated that exposure of CTMC to polymixin (widely used histamine liberator) (3 mg/ml) induced the release of heparin and histamine. Exposure of CTMC to 10(-11) M alpha-thrombin resulted in increase of heparin secretion by 75.5% in relation to basal level. CTMC which were stimulated by very low concentrations of alpha-thrombin (10(-11)-10(-8) M) can release high level of heparin, but not histamine. We have a suggestion that the thrombin specificity is connected with the additional recognition binding site for high molecular substrates (HMS) distinct from the active centre. Unlike alpha-thrombin which has both the active centre and the recognition site for HMS, beta/gamma-thrombin with catalytic activity but with disrupted recognition site induced the heparin release from mast cells only at higher concentrations than alpha-thrombin. It was revealed that DIP-alpha-thrombin without proteolytic activity was unable to activate mast cells in contrast to alpha-thrombin. We consider that alpha-thrombin induced release of heparin by CTMC account for proteolytic and hormone-like activity enzyme by means of both the active centre and the additional recognition site for HMS.  相似文献   

8.
Defensins are endogenous antimicrobial peptides stored in neutrophil granules. Here we report that a panel of defensins from human, rat, guinea pig, and rabbit neutrophils all have histamine-releasing activity, degranulating rat peritoneal mast cells with EC50 ranging from 70 to 2500 nM, and between 45 and 60% of the total histamine released. The EC50 for defensin-induced histamine secretion correlates with their net basic charge at neutral pH. There is no correlation between histamine release and antimicrobial potency. Degranulation induced by defensins has characteristics similar to those of activation by substance P. The maximum percent histamine release is achieved in <10 s, and it can be markedly inhibited by pertussis toxin (100 ng/ml) and by pretreatment of mast cells with neuraminidase. These properties differ from those for degranulation induced by IgE-dependent Ag stimulation and by the calcium ionophore A23187. GTPase activity, a measure of G protein activation, was induced in a membrane fraction from mast cells following treatment with defensin. Thus, neutrophil defensins are potent mast cell secretagogues that act in a manner similar to substance P and 48/80, through a rapid G protein-dependent response that is mechanistically distinct from Ag/IgE-dependent mast cell activation. Defensins may provide important pathways for communication between neutrophils and mast cells in defenses against microbial agents and in acute inflammatory responses.  相似文献   

9.
The subcellular localization of human skin chymase to mast cell granules was established by immunoelectron microscopy, and binding of chymase to the area of the dermo-epidermal junction, a basement membrane, was demonstrated immunocytochemically in cryosections incubated with purified proteinase prior to immunolabeling. Because heparin and heparan sulfate proteoglycans are major constituents of mast cell granules and basement membranes, respectively, the ability of chymase to bind to glycosaminoglycans (GAG) was investigated. Among a variety of GAGs, only binding of chymase to heparin and heparan sulfate appears physiologically significant. Binding was ionic strength-dependent, involved amino groups on the proteinase, and correlated with increasing GAG sulfate content, indicating a predominantly electrostatic association. Interaction with heparin was observed in solutions containing up to 0.5 M NaCl, and interaction with heparan sulfate was observed in solutions containing up to 0.3 M NaCl. Binding of heparin did not detectably affect catalysis of peptide substrates, but may reduce accessibility of proteinase to protein substrates. Measurements among a series of serine class proteinases indicated that heparin binding was a more common property of mast cell proteinases than proteinases stored in other secretory granules. Binding of chymase to heparin is likely to have a storage as well as a structural role within the mast cell granule, whereas binding of chymase to heparan sulfate may have physiological significance after degranulation.  相似文献   

10.
Mature connective tissue mast cells (CTMC) have not been previously available as a cell line from any species. Here we describe 15 novel mast cell lines (KiSV-MC) that were derived by coculturing murine splenocytes with fibroblasts that produce a Ki-ras-containing murine sarcoma virus. Some of the KiSV-MC lines are similar to CTMC in that they synthesize predominantly heparin proteoglycans, and contain up to 35 micrograms of histamine and 2.2 units of carboxypeptidase A/10(6) cells in secretory granules which stain red with Safranin. Other cell lines display phenotypic characteristics intermediate to CTMC and mucosal-like mast cells in being predominantly Safranin-, having lower amounts of histamine and carboxypeptidase A, and in synthesizing chondroitin sulfate E proteoglycans in preference to heparin proteoglycans. When the individual KiSV-MC lines were compared, a linear relationship was found between the number of Safranin+ granules, the cellular contents of histamine and carboxypeptidase A, and the biosynthesis of heparin relative to chondroitin sulfate E proteoglycans. Upon sensitization with monoclonal IgE and exposure to hapten-specific antigen, the cells exocytose the contents of their secretory granules. Thus, these immortalized cells provide the first source of CTMC-like lines for chemical and functional analysis and illustrate that murine mast cells can express a continuum of phenotypes.  相似文献   

11.
Previously, we demonstrated that through binding a novel intracellular receptor of microM affinity (HIC), histamine mediates, and the HIC antagonist N,N-diethyl-2-[4-(phenylmethyl)phenoxy]ethanamine. HCl (DPPE) inhibits, platelet aggregation and serotonin granule secretion; the latter response is dependent upon the same processes that mediate histamine release from mast cell granules. We now show that, as for platelet serotonin release, DPPE blocks concanavalin A-stimulated mast cell histamine release with a potency (IC50 = 30 microM) greater than the H1-antagonist, pyrilamine (IC50 = 150 microM) or the H2-antagonist cimetidine (IC50 = 5 mM), correlating with rank order of potency to inhibit 3H-histamine binding in rat brain membranes and liver microsomes. We postulate that histamine release from mast cells is mediated at HIC by second messenger intracellular histamine. However, unlike platelets, mast cells do not appear to rely on newly synthesized histamine. Rather, as for calcium, histamine may be mobilized from bound stores to mediate histamine secretion.  相似文献   

12.
13.
Cytofluorometric quantitation of 5-hydroxytryptamine (5-HT) and heparin in individual mast cell granules is described. The technique is based on micromanipulation of intact mast cells reacted with formaldehyde or stained with Berberine sulfate and the use of a cytofluorometer equipped with a sensitive peak detecting device. The quantities of 5-HT and heparin contained in mast cell granules which are of the order of 10(-16) and 10(-13) g, respectively were expressed as relative fluorescence guanta. The results of measurements on representative samples of mast cell granules indicate that all granules contain heparin as well as 5-HT, and that there are large variations in both 5-HT and heparin content within the granule populations of individual cells. A dose dependent increase in 5-HT content in both cells and individual mast cell granules occurred 24 hr after the injection of 10--50 mg L-5-hydroxytryptophan/kg intraperitoneally. There was no evidence for an increase in the heparin content of granules or cells, indicating that a new synthesis of granular macromolecules is not required for the 5-HT uptake. The results further suggest that 5-HT may be stored initially in a cytoplasmic extragranular pool and then taken up in the mast cell granules.  相似文献   

14.
Stimulation of rat serosal mast cells in vitro with compound 48/80, a degranulating agent, resulted in an immediate increase in binding of low density lipoproteins (LDL) to the stimulated mast cells. The increase in binding was dose-dependent and closely followed the increase in histamine release, i.e., the exocytosis of mast cell granules. It could be demonstrated that the LDL were bound to exocytosed secretory granules which remained cell-associated. During the recovery period the granule-bound LDL were internalized by the mast cells along with the granules. A single stimulation of mast cells rendered their cytoplasm to be filled with granular material showing positive staining for both apoB and neutral lipid. This change was accompanied by a 30-fold increase in the cellular content of cholesteryl esters. Thus, rat serosal mast cells possess a specific mechanism for uptake of LDL that is activated by stimuli that lead to degranulation, the result being massive uptake of LDL by stimulated mast cells during recovery from degranulation.  相似文献   

15.
1H NMR spectroscopy was used to evaluate histamine release and lactate production in intact mast cells isolated from rats. The resonance lines of the aromatic histamine protons in mast cells, detected by the selective spin-excitation technique, were broader and located in a lower magnetic field than those in free histamine solution. When exocytosis of mast-cell granules was induced by compound 48/80, free histamine appeared, with a corresponding decrease in the amount of histamine in the mast cells; the lactate signal was also detected in the spectrum. On the addition of compound 48/80, there was a further release of histamine from mast cells, accompanied by further production of lactate. This result indicates that the mechanisms which induce the exocytosis of granules, and/or the events following exocytosis, activate glycolysis.  相似文献   

16.
1H NMR spectroscopy was used to evaluate histamine release and lactate production in intact mast cells isolated from rats. The resonance lines of the aromatic histamine protons in mast cells, detected by the selective spin-excitation technique, were broader and located in a lower magnetic field than those in free histamine solution. When exocytosis of mast-cell granules was induced by compound 48/80, free histamine appeared, with a corresponding decrease in the amount of histamine in the mast cells; the lactate signal was also detected in the spectrum. On the addition of compound 48/80, there was a further release of histamine from mast cells, accompanied by further production of lactate. This result indicates that the mechanisms which induce the exocytosis of granules, and/or the events folowing exocytosis, activate glycolysis.  相似文献   

17.
DIFFERENTIATION AND PROLIFERATION OF EMBRYONIC MAST CELLS OF THE RAT   总被引:14,自引:5,他引:9  
Histochemical reactions and radioautography were used to investigate the sequence of mast cell development in rat embryos. Mast cells arise ubiquitously in and are confined to the loose connective tissue in the embryo. The alcian blue-safranin reaction distinguishes between weakly sulfated and strongly sulfated mucopolysaccharides by a shift from alcian blue to safranin staining. Based on this reaction and morphologic characteristics, four stages were identified. Stage I mast cells are lymphocyte-like cells with cytoplasmic granules which invariably stain blue with the alcian blue-safranin reaction. In Stage II cells the majority of granules are alcian blue-positive, but some safranin-positive granules have appeared. Stage III mast cells are distinguished by a majority of safranin-positive cytoplasmic granules; some alcian blue-positive granules still remain. Stage IV cells contain only safranin-positive granules. Thymidine-H3 uptake and identification of mitotic figures indicates that mast cells in Stages I and II comprise a mitotic pool while those in Stages III and IV are mitotically inactive. The pattern of S35O4 incorporation and the sequence of appearance of histochemically identifiable mast cell constituents corroborates division of the proliferation and differentiation of embryonic mast cells into the four stages described above. The process of formation of mast cell granules is interpreted as reflecting the synthesis and accumulation of a heparin precursor in alcian blue positive granules followed by the synthesis and accumulation of highly N-sulfated heparin along with mast cell chymase and finally histamine in safranin-positive granules.  相似文献   

18.
Electron microscopic observations suggest that venom from isolated nematocysts of the stinging tentacles of the Portuguese man-of-war, Physalia physalis, causes histamine release via a rapid, short-duration exocytosis of granules and a slower, long-duration lysis of mast cells. Fine structural changes in mast cells are concurrent with histamine release and are independent of the presence of leukocytes. Vesiculation of the plasma membrane and release of granules nearest the cell surface occur within 10 sec after exposure to 100 micrograms venom/10(5) cells. Released granules and granules retained in plasma membrane invaginations are fibrous and less electron opaque than more centrally located granules. Complex channels to the external medium continue to form, and within 1 min, characteristics of both degranulation and cytolysis are well advanced. Mitochondria are swollen or disrupted. Microridges are absent. Intracellular granules are significantly fewer in venom-treated mast cells, but are more widely separated than in controls. This suggests that degranulation occurs at early stages but is halted as cytolysis proceeds.  相似文献   

19.
Recent evidence and speculation regarding the dynamic structure of biological membranes is combined with information on the pharmacology and biochemistry of the allergic histamine release reaction to formulate a model which can explain many of the observed events in this reaction, and especially tie presumed early enzymological events to pharmacologically controlled subsequent events. It is proposed that the reaction of the cell-bound antibodies with suitable antigens causes a membrane deformation or a displacement of hydrophilic residues within the membrane in such a manner that there is a local clustering or polarization of charges. Biochemically, the earliest event may be the activation of a membrane-bound chymotrypsin-like proesterase. A speculative step in the proposed sequence is the activation of a membrane-bound pro-phospholipase A by the activated esterase. The local, limited action of the phospholipase A on the membrane lipids could influence the action of membrane-bound ATPase and nucleotide cyclases in several ways. The resulting local decrease in the concentration of cyclic AMP, is a condition which is known to modulate antigen-induced histamine release. It is proposed that the cyclic nucleotides may affect histamine release at more than one point in the sequence. First, they may regulate the contractility of the microtubles which have been shown to be involved in histamine release. Second, they may influence the state of aggregation and subcellular distribution of the microfilaments which play a role in the maintenance of the normal organization of the cell. As a result of the drop in the cyclic AMP concentration, or the accumulation of lysophosphatides, the cell membrane may be reorganized. This could lead to membrane invagination and an apparent “interiorization” of some of the aqueous milieu. The histamine-containing granules of the mast cells are thus brought into proximity of these deep invaginations by microtubule action, an energy-requiring process. The perigranular membranes fuse with the plasma membrane and the granules exchange their stored histamine for the extracellular sodium which enters the invaginations with the water. The histamine is then equilibrated with the external medium. A number of alternative mechanisms and testable corollaries of the theory are discussed.  相似文献   

20.
Mucosal mast cells of the gastrointestinal tract constitute a separate cell line within the mast cell system of the rat, differing in several respects from the classical connective tissue mast cells and, unlike the latter, requiring special fixation techniques for their demonstration. We have examined some histochemical properties of mucosal mast cells of the duodenum and compared them with connective tissue mast cells of the tongue or skin. The results indicate that the structural integrity of the granules of both types of mast cell is partly dependent on ionic linkages between glycosaminoglycan and protein. The so far unidentified glycosaminoglycan of mucosal mast cells appears to be more soluble than the heparin of connective tissue mast cells. The strongly fluorescent binding of Berberine to the granules of connective tissue mast cells and, depending on their content, of heparin is absent from mucosal mast cells, confirming previous findings which suggested that they contain a glycosaminoglycan with a lower degree of sulphation. Aldehyde fixation by routine procedures reversibly blocks the cationic dye binding of mucosal mast cell granules. The dye binding groups may be unmasked by trypsination or by long staining times of the order of several days. The results suggest that the blocking of staining by aldehydes is caused by a diffusion barrier of a protein nature. Mucosal and connective tissue mast cells thus differ with respect to the spatial arrangement of glycosaminoglycan and protein in their granules. As a result of the study a modified method for the demonstration of mucosal mast cells in tissue sections is described, based on normal formaldehyde fixation and staining in Toluidine Blue for a long time. It has some advantages over previous methods and preserves the structure of mucosal and connective tissue mast cells equally well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号