首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The heme uptake systems by which bacterial pathogens acquire and utilize heme have recently been described. Such systems may utilize heme directly from the host's hemeproteins or via a hemophore that sequesters and transports heme to an outer membrane receptor and subsequently to the translocating proteins by which heme is further transported into the cell. However, little is known of the heme binding and release mechanisms that facilitate the uptake of heme into the pathogenic organism. As a first step toward elucidating the molecular level events that drive heme binding and release, we have undertaken a spectroscopic and mutational study of the first purified periplasmic heme-binding protein (PBP), ShuT from Shigella dysenteriae. On the basis of sequence identity, the ShuT protein is most closely related to the class of PBPs typified by the vitamin B(12) (BtuF) and iron-hydroxamate (FhuD) PBPs and is a monomeric protein having a molecular mass of 28.5 kDa following proteolytic processing of the periplasmic signaling peptide. ShuT binds one b-type heme per monomer with high affinity and bears no significant homology with other known heme proteins. The resonance Raman, MCD, and UV-visible spectra of WT heme-ShuT are consistent with a five-coordinate high spin heme having an anionic O-bound proximal ligand. Site-directed ShuT mutants of the absolutely conserved Tyr residues, Tyr-94 (Y94A) and Tyr-228 (Y228F), which are found in all putative periplasmic heme-binding proteins, were subjected to UV-visible, resonance Raman, and MCD spectroscopic investigations of heme coordination environment and rates of heme release. The results of these experiments confirmed Tyr-94 as the only axial heme ligand and Tyr-228 as making a significant contribution to the stability of heme-loaded ShuT, albeit without directly interacting with the heme iron.  相似文献   

2.
To fulfill their nutritional requirement for iron, bacteria utilize various iron sources which include the host proteins transferrin and lactoferrin, heme, and low molecular weight iron chelators termed siderophores. The iron sources are transported into the Gram-negative bacterial cell via specific uptake pathways which include an outer membrane receptor, a periplasmic binding protein (PBP), and an inner membrane ATP-binding cassette (ABC) transporter. Over the past two decades, structures for the proteins involved in bacterial iron uptake have not only been solved, but their functions have begun to be understood at the molecular level. However, the elucidation of the three dimensional structures of all components of the iron uptake pathways is currently limited. Despite the low sequence homology between different bacterial species, the available three-dimensional structures of homologous proteins are strikingly similar. Examination of the current three-dimensional structures of the outer membrane receptors, PBPs, and ABC transporters provides an overview of the structural biology of iron uptake in bacteria.  相似文献   

3.
Structural biology of bacterial iron uptake   总被引:3,自引:0,他引:3  
To fulfill their nutritional requirement for iron, bacteria utilize various iron sources which include the host proteins transferrin and lactoferrin, heme, and low molecular weight iron chelators termed siderophores. The iron sources are transported into the Gram-negative bacterial cell via specific uptake pathways which include an outer membrane receptor, a periplasmic binding protein (PBP), and an inner membrane ATP-binding cassette (ABC) transporter. Over the past two decades, structures for the proteins involved in bacterial iron uptake have not only been solved, but their functions have begun to be understood at the molecular level. However, the elucidation of the three dimensional structures of all components of the iron uptake pathways is currently limited. Despite the low sequence homology between different bacterial species, the available three-dimensional structures of homologous proteins are strikingly similar. Examination of the current three-dimensional structures of the outer membrane receptors, PBPs, and ABC transporters provides an overview of the structural biology of iron uptake in bacteria.  相似文献   

4.
Iron is a versatile metal cofactor that is used in a wide range of essential cellular processes. During infections, many bacterial pathogens acquire iron from human hemoglobin (Hb), which contains the majority of the body's total iron content in the form of heme (iron protoporphyrin IX). Clinically important Gram‐positive bacterial pathogens scavenge heme using an array of secreted and cell‐wall‐associated receptors that contain NEAr‐iron Transporter (NEAT) domains. Experimentally defining the Hb binding properties of NEAT domains has been challenging, limiting our understanding of their function in heme uptake. Here we show that solution‐state NMR spectroscopy is a powerful tool to define the Hb binding properties of NEAT domains. The utility of this method is demonstrated using the NEAT domains from Bacillus anthracis and Listeria monocytogenes. Our results are compatible with the existence of at least two types of NEAT domains that are capable of interacting with either Hb or heme. These binding properties can be predicted from their primary sequences, with Hb‐ and heme‐binding NEAT domains being distinguished by the presence of (F/Y)YH(Y/F) and S/YXXXY motifs, respectively. The results of this work should enable the functions of a wide range of NEAT domain containing proteins in pathogenic bacteria to be reliably predicted.  相似文献   

5.
The periplasmic binding protein HmuT from Yersinia pestis (YpHmuT) is a component of the heme uptake locus hmu and delivers bound hemin to the inner-membrane-localized, ATP-binding cassette (ABC) transporter HmuUV for translocation into the cytoplasm. The mechanism of this process, heme transport across the inner membrane of pathogenic bacteria, is currently insufficiently understood at the molecular level. Here we describe the crystal structures of the substrate-free and heme-bound states of YpHmuT, revealing two lobes with a central binding cleft. Superposition of the apo and holo states reveals a minor tilting motion of the lobes surrounding concomitant with heme binding. Unexpectedly, YpHmuT binds two stacked hemes in a central binding cleft that is larger than those of the homologous periplasmic heme-binding proteins ShuT and PhuT, both of which bind only one heme. The hemes bound to YpHmuT are coordinated via a tyrosine side chain that contacts the Fe atom of one heme and a histidine that contacts the Fe atom of the other heme. The coordinating histidine is only conserved in a subset of periplasmic heme binding proteins suggesting that its presence predicts the ability to bind two heme molecules simultaneously. The structural data are supported by spectroscopic binding studies performed in solution, where up to two hemes can bind to YpHmuT. Isothermal titration calorimetry suggests that the two hemes are bound in discrete, sequential steps and with dissociation constants (KD) of ∼ 0.29  and ∼ 29 nM, which is similar to the affinities observed in other bacterial substrate binding proteins. Our findings suggest that the cognate ABC transporter HmuUV may simultaneously translocate two hemes per reaction cycle.  相似文献   

6.
Iron and heme are essential nutrients for most pathogenic microorganisms and play a pivotal role in microbial pathogenesis. To survive within the iron-limited environment of the host, bacteria utilize iron-siderophore complexes, iron-binding proteins (transferrin, lactoferrin), free heme and heme bound to hemoproteins (hemoglobin, haptoglobin, hemopexin). A mechanism of iron and heme transport depends on the structures of Gram-negative bacterial membranes. Siderophores, hemophores and outer membrane receptors take part in iron or heme binding. The transport of these ligands across the outer membrane involves outer membrane receptors. The energy for this transport is delivered from the inner membrane by a TonB-ExbB-ExbD complex. The transport across the cytoplasmic membrane involves periplasmic and inner membrane proteins comprising the ABC systems, which utilize the energy derived from ATP hydrolysis. The major regulatory role in iron homeostasis plays a Fur-Fe2+ repressor.  相似文献   

7.
TonB is a cytoplasmic membrane protein required for active transport of various essential substrates such as heme and iron siderophores through the outer membrane receptors of Gram-negative bacteria. This protein spans the periplasm, contacts outer membrane transporters by its C-terminal domain, and transduces energy from the protonmotive force to the transporters. The TonB box, a relatively conserved sequence localized on the periplasmic side of the transporters, has been shown to directly contact TonB.While Serratia marcescens TonB functions with various transporters, HasB, a TonB-like protein, is dedicated to the HasR transporter. HasR acquires heme either freely or via an extracellular heme carrier, the hemophore HasA, that binds to HasR and delivers heme to the transporter. Here, we study the interaction of HasR with a HasB C-terminal domain and compare it with that obtained with a TonB C-terminal fragment. Analysis of the thermodynamic parameters reveals that the interaction mode of HasR with HasB differs from that with TonB, the difference explaining the functional specificity of HasB for HasR. We also demonstrate that the presence of the substrate on the extracellular face of the transporter modifies, via enthalpy-entropy compensation, the interaction with HasB on the periplasmic face. The transmitted signal depends on the nature of the substrate. While the presence of heme on the transporter modifies only slightly the nature of interactions involved between HasR and HasB, hemophore binding on the transporter dramatically changes the interactions and seems to locally stabilize some structural motifs. In both cases, the HasR TonB box is the target for those modifications.  相似文献   

8.
Uptake of iron complexes into the Gram-negative bacterial cell requires highly specific outer membrane receptors and specific ATP-dependent (ATP-Binding-Cassette (ABC)) transport systems located in the inner membrane. The latter type of import system is characterized by a periplasmic binding protein (BP), integral membrane proteins, and membrane-associated ATP-hydrolyzing proteins. In Gram-positive bacteria lacking the periplasmic space, the binding proteins are lipoproteins tethered to the cytoplasmic membrane. To date, there is little structural information about the components of ABC transport systems involved in iron complex transport. The recently determined structure of the Escherichia coli periplasmic ferric siderophore binding protein FhuD is unique for an ABC transport system (Clarke et al. 2000). Unlike other BP's, FhuD has two domains connected by a long -helix. The ligand binds in a shallow pocket between the two domains. In vivo and in vitro analysis of single amino acid mutants of FhuD identified several residues that are important for proper functioning of the protein. In this study, the mutated residues were mapped to the protein structure to define special areas and specific amino acid residues in E. coli FhuD that are vital for correct protein function. A number of these important residues were localized in conserved regions according to a multiple sequence alignment of E. coli FhuD with other BP's that transport siderophores, heme, and vitamin B12. The alignment and structure prediction of these polypeptides indicate that they form a distinct family of periplasmic binding proteins.  相似文献   

9.

Background

Gram negative bacteria require iron for growth and virulence. It has been shown that certain pathogenic bacteria such as Neisseria gonorrhoeae possess a periplasmic protein called ferric binding protein (FbpA), which is a node in the transport of iron from the cell exterior to the cytosol.

Scope of review

The relevant literature is reviewed which establishes the molecular mechanism of FbpA mediated iron transport across the periplasm to the inner membrane.

Major conclusions

Here we establish that FbpA may be considered a bacterial transferrin on structural and functional grounds. Data are presented which suggest a continuum whereby FbpA may be considered as a naked iron carrier, as well as a Fe–chelate carrier, and finally a member of the larger family of periplasmic binding proteins.

General significance

An investigation of the molecular mechanisms of action of FbpA as a member of the transferrin super family enhances our understanding of bacterial mechanisms for acquisition of the essential nutrient iron, as well as the modes of action of human transferrin, and may provide approaches to the control of pathogenic diseases. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders.  相似文献   

10.
We have exploited the intrinsic conformational flexibility of leghemoglobin to reengineer the heme active site architecture of the molecule by replacement of the mobile His61 residue with tyrosine (H61Y variant). The electronic absorption spectrum of the ferric derivative of H61Y is similar to that observed for the phenolate derivative of the recombinant wild-type protein (rLb), consistent with coordination of Tyr61 to (high-spin) iron. EXAFS data clearly indicate a 6-coordinate heme geometry and a Fe-O bond length of 185pm. MCD and EPR spectroscopies are consistent with this assignment and support ligation by an anionic (tyrosinate) group. The alteration in heme ligation leads to a 148mV decrease in the reduction potential for H61Y (-127+/-5mV) compared to rLb and destabilisation of the functional oxy-derivative. The results are discussed in terms of our wider understanding of other heme proteins with His-Tyr ligation.  相似文献   

11.
The TT1485 gene from Thermus thermophilus HB8 encodes a hypothetical protein of unknown function with about 20 sequence homologs of bacterial or archaeal origin. Together they form a family of uncharacterized proteins, the cluster of orthologous group COG3253. Using a combination of amino acid sequence analysis, three-dimensional structural studies and biochemical assays, we identified TT1485 as a novel heme-binding protein. The crystal structure reveals that this protein is a pentamer and each monomer exhibits a β-barrel fold. TT1485 is structurally similar to muconolactone isomerase, but this provided no functional clues. Amino acid sequence analysis revealed remote homology to a heme enzyme, chlorite dismutase. Strikingly, amino acid residues that are highly conserved in the homologous hypothetical proteins and chlorite dismutase cluster around a deep cavity on the surface of each monomer. Molecular modeling shows that the cavity can accommodate a heme group with a strictly conserved His as a heme ligand. TT1485 reconstituted with iron protoporphyrin IX chloride gave a low chlorite dismutase activity, indicating that TT1485 catalyzes a reaction other than chlorite degradation. The presence of a possible Fe–His–Asp triad in the heme proximal site suggests that TT1485 functions as a novel heme peroxidase to detoxify hydrogen peroxide within the cell.  相似文献   

12.
CcmE is a heme chaperone involved in the periplasmic maturation of c-type cytochromes in many bacteria and plant mitochondria. It binds heme covalently and subsequently transfers it to the apo form of cytochromes c. To examine the role of the C-terminal domain of CcmE in the binding of heme, in vitro heme binding to the apo form of a truncated (immediately before Pro-136) version of the periplasmic domain of the heme chaperone from Escherichia coli was studied. Removal of the C-terminal domain dramatically altered the ligation of non-covalently bound heme in CcmE' (the soluble form lacking the membrane anchor) but only slightly affected its affinity for protoporphyrin IX and 8-anilino-1-naphthalenesulfonate. This finding has significant mechanistic implications for in vivo holo-CcmE formation and indicates that the C-terminal region is not required for the recruitment and docking of heme into its binding site but is likely to contain amino acid(s) involved in heme iron axial coordination. Removal of the C-domain significantly impaired in vivo heme binding to CcmE and conversion of apocytochrome to holoprotein by a similar factor, suggesting that the C-terminal domain of the chaperone is primarily involved in heme binding to CcmE rather than in heme transfer to the apo cytochrome.  相似文献   

13.
A conserved glutamate covalently attaches the heme to the protein backbone of eukaryotic CYP4 P450 enzymes. In the related Bacillus megaterium P450 BM3, the corresponding residue is Ala264. The A264E mutant was generated and characterized by kinetic and spectroscopic methods. A264E has an altered absorption spectrum compared with the wild-type enzyme (Soret maximum at approximately 420.5 nm). Fatty acid substrates produced an inhibitor-like spectral change, with the Soret band shifting to 426 nm. Optical titrations with long-chain fatty acids indicated higher affinity for A264E over the wild-type enzyme. The heme iron midpoint reduction potential in substrate-free A264E is more positive than that in wild-type P450 BM3 and was not changed upon substrate binding. EPR, resonance Raman, and magnetic CD spectroscopies indicated that A264E remains in the low-spin state upon substrate binding, unlike wild-type P450 BM3. EPR spectroscopy showed two major species in substrate-free A264E. The first has normal Cys-aqua iron ligation. The second resembles formate-ligated P450cam. Saturation with fatty acid increased the population of the latter species, suggesting that substrate forces on the glutamate to promote a Cys-Glu ligand set, present in lower amounts in the substrate-free enzyme. A novel charge-transfer transition in the near-infrared magnetic CD spectrum provides a spectroscopic signature characteristic of the new A264E heme iron ligation state. A264E retains oxygenase activity, despite glutamate coordination of the iron, indicating that structural rearrangements occur following heme iron reduction to allow dioxygen binding. Glutamate coordination of the heme iron is confirmed by structural studies of the A264E mutant (Joyce, M. G., Girvan, H. M., Munro, A. W., and Leys, D. (2004) J. Biol. Chem. 279, 23287-23293).  相似文献   

14.
Plants, bacteria, fungi, and yeast utilize organic iron chelators (siderophores) to establish commensal and pathogenic relationships with hosts and to survive as free-living organisms. In Gram-negative bacteria, transport of siderophores into the periplasm is mediated by TonB-dependent receptors. A complex of three membrane-spanning proteins TonB, ExbB and ExbD couples the chemiosmotic potential of the cytoplasmic membrane with siderophore uptake across the outer membrane. The crystallographic structures of two TonB-dependent receptors (FhuA and FepA) have recently been determined. These outer membrane transporters show a novel fold consisting of two domains. A 22-stranded antiparallel β-barrel traverses the outer membrane and adjacent β-strands are connected by extracellular loops and periplasmic turns. Located inside the β-barrel is the plug domain, composed primarily of a mixed four-stranded β-sheet and a series of interspersed α-helices. Siderophore binding induces distinct local and allosteric transitions that establish the structural basis of signal transduction across the outer membrane and suggest a transport mechanism.  相似文献   

15.
Nosocomial diseases due to Candida albicans infections are in constant rise in hospitals, where they cause serious complications to already fragile intensive care patients. Antifungal drug resistance is fast becoming a serious issue due to the emergence of strains resistant to currently available antifungal agents. Thus the urgency to identify new potential protein targets, the function and structure of which may guide the development of new antifungal drugs. In this context, we initiated a comparative genomics study in search of promising protein coding genes among the most conserved ones in reference fungal genomes. The CA3427 gene was selected on the basis of its presence among pathogenic fungi contrasting with its absence in the non pathogenic Saccharomyces cerevisiae. We report the crystal 3D-structure of the Candida albicans CA3427 protein at 2.1 Å resolution. The combined analysis of its sequence and structure reveals a structural fold originally associated with periplasmic binding proteins. The CA3427 structure highlights a binding site located between the two protein domains, corresponding to a sequence segment conserved among fungi. Two crystal forms of CA3427 were found, suggesting that the presence or absence of a ligand at the proposed binding site might trigger a “Venus flytrap” motion, coupled to the previously described activity of bacterial periplasmic binding proteins. The conserved binding site defines a new subfamily of periplasmic binding proteins also found in many bacteria of the bacteroidetes division, in a choanoflagellate (a free-living unicellular and colonial flagellate eukaryote) and in a placozoan (the closest multicellular relative of animals). A phylogenetic analysis suggests that this gene family originated in bacteria before its horizontal transfer to an ancestral eukaryote prior to the radiation of fungi. It was then lost by the Saccharomycetales which include Saccharomyces cerevisiae.  相似文献   

16.
Siderophore production and utilization is one of the major strategies deployed by bacteria to get access to iron, a key nutrient for bacterial growth. The biological function of siderophores is to solubilize iron in the bacterial environment and to shuttle it back to the cytoplasm of the microorganisms. This uptake process for Gram-negative species involves TonB-dependent transporters for translocation across the outer membranes. In Escherichia coli and many other Gram-negative bacteria, ABC transporters associated with periplasmic binding proteins import ferrisiderophores across cytoplasmic membranes. Recent data reveal that in some siderophore pathways, this step can also be carried out by proton-motive force-dependent permeases, for example the ferrichrome and ferripyochelin pathways in Pseudomonas aeruginosa. Iron is then released from the siderophores in the bacterial cytoplasm by different enzymatic mechanisms depending on the nature of the siderophore. Another strategy has been reported for the pyoverdine pathway in P. aeruginosa: iron is released from the siderophore in the periplasm and only siderophore-free iron is transported into the cytoplasm by an ABC transporter having two atypical periplasmic binding proteins. This review presents recent findings concerning both ferrisiderophore and siderophore-free iron transport across bacterial cytoplasmic membranes and considers current knowledge about the mechanisms involved in iron release from siderophores.  相似文献   

17.
Periplasmic heme‐binding proteins (PBPs) in Gram‐negative bacteria are components of the heme acquisition system. These proteins shuttle heme across the periplasmic space from outer membrane receptors to ATP‐binding cassette (ABC) heme importers located in the inner‐membrane. In the present study, we characterized the structures of PBPs found in the pathogen Burkholderia cenocepacia (BhuT) and in the thermophile Roseiflexus sp. RS‐1 (RhuT) in the heme‐free and heme‐bound forms. The conserved motif, in which a well‐conserved Tyr interacts with the nearby Arg coordinates on heme iron, was observed in both PBPs. The heme was recognized by its surroundings in a variety of manners including hydrophobic interactions and hydrogen bonds, which was confirmed by isothermal titration calorimetry. Furthermore, this study of 3 forms of BhuT allowed the first structural comparison and showed that the heme‐binding cleft of BhuT adopts an “open” state in the heme‐free and 2‐heme‐bound forms, and a “closed” state in the one‐heme‐bound form with unique conformational changes. Such a conformational change might adjust the interaction of the heme(s) with the residues in PBP and facilitate the transfer of the heme into the translocation channel of the importer.  相似文献   

18.
Pathogenic Haemophilus influenzae, Neisseria spp. (Neisseria gonorrhoeae and N. meningitidis), Serratia marcescens, and other gram-negative bacteria utilize a periplasm-to-cytosol FbpABC iron transporter. In this study, we investigated the H. influenzae FbpABC transporter in a siderophore-deficient Escherichia coli background to assess biochemical aspects of FbpABC transporter function. Using a radiolabeled Fe3+ transport assay, we established an apparent Km=0.9 microM and Vmax=1.8 pmol/10(7)cells/min for FbpABC-mediated transport. Complementation experiments showed that hFbpABC is dependent on the FbpA binding protein for transport. The ATPase inhibitor sodium orthovanadate demonstrated dose-dependent inhibition of FbpABC transport, while the protonmotive-force-inhibitor carbonyl cyanide m-chlorophenyl hydrazone had no effect. Metal competition experiments demonstrated that the transporter has high specificity for Fe3+ and selectivity for trivalent metals, including Ga3+ and Al3+, over divalent metals. Metal sensitivity experiments showed that several divalent metals, including copper, nickel, and zinc, exhibited general toxicity towards E. coli. Significantly, gallium-induced toxicity was specific only to E. coli expressing FbpABC. A single-amino-acid mutation in the gene encoding the periplasmic binding protein, FbpA(Y196I), resulted in a greatly diminished iron binding affinity Kd=5.2 x 10(-4) M(-1), approximately 14 orders of magnitude weaker than that of the wild-type protein. Surprisingly, the mutant transporter [FbpA(Y196I)BC] exhibited substantial transport activity, approximately 35% of wild-type transport, with Km=1.2 microM and Vmax=0.5 pmol/10(7)cells/min. We conclude that the FbpABC complexes possess basic characteristics representative of the family of bacterial binding protein-dependent ABC transporters. However, the specificity and high-affinity binding characteristics suggest that the FbpABC transporters function as specialized transporters satisfying the strict chemical requirements of ferric iron (Fe3+) binding and membrane transport.  相似文献   

19.
Yeast damage-associated response protein (Dap1p) and mouse progesterone receptor membrane component-1 protein (mPGRMC1p) belong to a highly conserved class of putative membrane-associated progesterone binding proteins (MAPR), with Dap1p and inner zone antigen (IZA), the rat homologue of mPGRMC1p, recently being reported to bind heme. While primary structure analysis reveals similarities to the cytochrome b(5) motif, neither of the two axial histidines responsible for ligation to the heme is present in any of the MAPR proteins. In this paper, EPR, MCD, CD, UV-vis, and general biochemical methods have been used to characterize the nature of heme binding in both Dap1p and a His-tagged, membrane anchor-truncated mPGRMC1p. As isolated, Dap1p is a tetramer which can be converted to a dimer upon addition of 150 mM salt. The heme is noncovalently attached, with a maximal, in vitro, heme loading of approximately 30%, for both proteins. CD and fluorescence spectroscopies indicate a well-ordered structure, suggesting the low level of heme loading is probably not due to improperly folded protein. EPR confirmed a five-coordinate, high-spin, ferric resting state for both proteins, indicating one axial amino acid ligand, in contrast to the six-coordinate, low-spin, ferric state of cytochrome b(5). The MCD spectrum confirmed this conclusion for Dap1p and indicated the axial ligand is most likely a tyrosine and not a histidine, or a cysteine; however, an aspartic acid residue could not be conclusively ruled out. Potential axial ligands, which are conserved in all MAPRs, were mutated (Y78F, D118A, and Y138F) and purified to homogeneity. The Y78F and D118A mutants were found to bind heme; however, Y138F did not. This result is consistent with the MCD data and indicates that Tyr138 is most likely the axial ligand to the heme in Dap1p.  相似文献   

20.
Numerous sequences of the cytochrome bd quinol oxidase (cytochrome bd) have recently become available for analysis. The analysis has revealed a small number of conserved residues, a new topology for subunit I and a phylogenetic tree involving extensive horizontal gene transfer. There are 20 conserved residues in subunit I and two in subunit II. Algorithms utilizing multiple sequence alignments predicted a revised topology for cytochrome bd, adding two transmembrane helices to subunit I to the seven that were previously indicated by the analysis of the sequence of the oxidase from E. coli. This revised topology has the effect of relocating the N-terminus and C-terminus to the periplasmic and cytoplasmic sides of the membrane, respectively. The new topology repositions I-H19, the putative ligand for heme b595, close to the periplasmic edge of the membrane, which suggests that the heme b595/heme d active site of the oxidase is located near the outer (periplasmic) surface of the membrane. The most highly conserved region of the sequence of subunit I contains the sequence GRQPW and is located in a predicted periplasmic loop connecting the eighth and ninth transmembrane helices. The potential importance of this region of the protein was previously unsuspected, and it may participate in the binding of either quinol or heme d. There are two very highly conserved glutamates in subunit I, E99 and E107, within the third transmembrane helix (E. coli cytochrome bd-I numbering). It is speculated that these glutamates may be part of a proton channel leading from the cytoplasmic side of the membrane to the heme d oxygen-reactive site, now placed near the periplasmic surface. The revised topology and newly revealed conserved residues provide a clear basis for further experimental tests of these hypotheses. Phylogenetic analysis of the new sequences of cytochrome bd reveals considerable deviation from the 16sRNA tree, suggesting that a large amount of horizontal gene transfer has occurred in the evolution of cytochrome bd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号