首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cryptomonads is a well-defined lineage of unicellular eukaryotes, composed of several marine and freshwater groups. However, the evolutionary relationships among these groups are unclear due to conflicting inferences between morphological and molecular phylogenies. Here, we have inferred the evolutionary relationships among marine and freshwater species in order to better understand the importance of the marine-freshwater boundary on the historical diversification patterns of cryptomonads. We have constructed improved molecular phylogenies by taking into account rate variation both across sites and across sequences (covarion substitutions), and by analysing the vast majority of publicly available cryptomonad 18S rRNA sequences and related environmental phylotypes. The resulting phylogenies included 55 sequences, and revealed two novel freshwater cryptomonad clades (CRY1 and CRY2) and a large hidden diversity of cryptomonads. CRY1 was placed deeply within the cryptomonad phylogeny together with all the major freshwater lineages (i.e. Goniomonas and Cryptomonas), while CRY2 was placed within a lineage of marine species identified as Plagioselmis-like with the aid of a new sequence generated from a cultured species. The inferred phylogenies suggest only few successful marine-freshwater transitions over the history of cryptomonads. Most of the transitions seem to have occurred from marine to fresh waters, but re-colonizations of marine habitats have also taken place. This implies that the differences in the biogeophysical conditions between marine and fresh waters constitute a substantial barrier for the cross-colonization of these environments by cryptomonads.  相似文献   

2.
We investigated the phylogeny of tintinnids (Ciliophora, Tintinnida) with 62 new SSU-rDNA sequences from single cells of 32 marine and freshwater species in 20 genera, including the first SSU-rDNA sequences for Amphorides, Climacocylis, Codonaria, Cyttarocylis, Parundella, Petalotricha, Undella and Xystonella, and 23 ITS sequences of 17 species in 15 genera. SSU-rDNA phylogenies suggested a basal position for Eutintinnus, distant to other Tintinnidae. We propose Eutintinnidae fam. nov. for this divergent genus, keeping the family Tintinnidae for Amphorellopsis, Amphorides and Steenstrupiella. Tintinnopsis species branched in at least two separate groups and, unexpectedly, Climacocylis branched among Tintinnopsis sensu stricto species. Tintinnopsis does not belong to the family Codonellidae, which is restricted to Codonella, Codonaria, and also Dictyocysta (formerly in the family Dictyocystidae). The oceanic genus Undella branched close to an undescribed freshwater species. Metacylis, Rhabdonella and Cyttarocylis formed a well supported clade with several Tintinnopsis species at a basal position. Petalotricha ampulla and Cyttarocylis cassis SSU-rDNA and ITS sequences were identical or almost identical. Therefore, we propose Cyttarocylis ampulla comb. nov. for them. Intensive use of single-cell isolation and sequencing revealed unexpected complexity in the evolutionary history of these relatively well-studied ciliates. Notably, the diversity of freshwater forms suggests multiple marine-freshwater invasions.  相似文献   

3.
The thalassiosiroid centric diatoms are distinguished by at least one synapomorphy, the strutted process or fultoportula. Variously classified as a family (Thalassiosiraceae) or an order (Thalassiosirales) among centric diatoms, it is generally conceded that the group of several hundred fossil and living species is monophyletic as a whole. There are two ecological groups of thalassiosiroids, marine and freshwater. It has been hypothesized, based on an ecletic, non-rigorous, evolutionary taxonomy perspective that both the marine and freshwater ecological groups are also monophyletic, but this hypothesis has never been tested in a rigorous framework. Likewise, the freshwater thalassiosiroid species have been grouped into several genera and subgenera using an evolutionary taxonomic approach, but these hypotheses have not fully been tested using cladistic analysis. Focusing mainly on freshwater species, but including at least one representative of each marine genus and one representative from each of several proposed subgeneric groupings of the genus Thalassiosira , we scored morphological characters for fossil and living marine and freshwater Thalassiosiraceae to test these hypotheses. Our cladistic results provide strong support for monophyly for the freshwater group, but it seems unlikely that the marine group is monophyletic. The cladistic results are corroborated to greater or lesser degrees by the fossil record. The implications for evolution in the group and for taxon sampling in molecular studies we are conducting will be discussed.  相似文献   

4.
Heterotrophic flagellates are key components of all ecosystems. Understanding the patterns of biodiversity of these organisms is thus particularly important. Here we analyzed the intraspecific diversity of 10 morphospecies of heterotrophic flagellates comprising representatives of the Apusozoa (2 morphospecies) and Kinetoplastea (8 morphospecies), all belonging to the most common flagellates with worldwide distribution. Most morphospecies showed a mixing of lineages isolated from diverse habitats, indicating that some lineages of these morphospecies had been able to colonize different habitats several times. Furthermore, our results revealed remarkable levels of genetic divergence within most of the morphospecies studied, underlining the difficulty of correctly determining species by means of morphology alone. Many cryptic or pseudocryptic species seem to occur. Our results revealed clear divergence between marine and freshwater lineages of the morphospecies Ancyromonas sigmoides, showing that freshwater lineages have not been able to colonize marine environments and marine lineages have not been able to colonize freshwater environments for a long time.  相似文献   

5.
Heterotrophic flagellates are key components of all ecosystems. Understanding the patterns of biodiversity of these organisms is thus particularly important. Here we analyzed the intraspecific diversity of 10 morphospecies of heterotrophic flagellates comprising representatives of the Apusozoa (2 morphospecies) and Kinetoplastea (8 morphospecies), all belonging to the most common flagellates with worldwide distribution. Most morphospecies showed a mixing of lineages isolated from diverse habitats, indicating that some lineages of these morphospecies had been able to colonize different habitats several times. Furthermore, our results revealed remarkable levels of genetic divergence within most of the morphospecies studied, underlining the difficulty of correctly determining species by means of morphology alone. Many cryptic or pseudocryptic species seem to occur. Our results revealed clear divergence between marine and freshwater lineages of the morphospecies Ancyromonas sigmoides, showing that freshwater lineages have not been able to colonize marine environments and marine lineages have not been able to colonize freshwater environments for a long time.  相似文献   

6.
Here, we have identified a protist (dinoflagellate) lineage that has diversified recently in evolutionary terms. The species members of this lineage inhabit cold-water marine and lacustrine habitats, which are distributed along a broad range of salinities (0–32) and geographic distances (0–18 000 km). Moreover, the species present different degrees of morphological and sometimes physiological variability. Altogether, we analysed 30 strains, generating 55 new DNA sequences. The nuclear ribosomal DNA (nrDNA) sequences (including rapidly evolving introns) were very similar or identical among all the analysed isolates. This very low nrDNA differentiation was contrasted by a relatively high cytochrome b (COB) mitochondrial DNA (mtDNA) polymorphism, even though the COB evolves very slowly in dinoflagellates. The 16 Maximum Likelihood and Bayesian phylogenies constructed using nr/mtDNA indicated that the studied cold-water dinoflagellates constitute a monophyletic group (supported also by the morphological analyses), which appears to be evolutionary related to marine-brackish and sometimes toxic Pfiesteria species. We conclude that the studied dinoflagellates belong to a lineage which has diversified recently and spread, sometimes over long distances, across low-temperature environments which differ markedly in ecology (marine versus lacustrine communities) and salinity. Probably, this evolutionary diversification was promoted by the variety of natural selection regimes encountered in the different environments.  相似文献   

7.
ABSTRACT. Perkinsids and colpodellids are lineages that diverged near the origins of dinoflagellates and apicomplexans, respectively, and provide compelling insights into the earliest stages of alveolate evolution. Perkinsids, including Perkinsus and Parvilucifera , are intracellular parasites of animals and dinoflagellates and possess traits also known in syndineans, dinokaryotes (mainly free living dinoflagellates), and colpodellids. An improved understanding of perkinsid biodiversity and phylogeny is expected to shed considerable light on the evolutionary origins of syndineans and dinokaryotes as well as the cellular identities of environmental sequences derived from marine and freshwater habitats. Accordingly, the small subunit (SSU) rDNA sequence from Parvilucifera prorocentri , a tube-forming intracellular parasite of the marine benthic dinoflagellate Prorocentrum fukuyoi , was determined. Molecular phylogenetic analyses demonstrated, with very high statistical support, that P. prorocentri branched as a sister lineage to a divergent clade consisting of Parvilucifera infectans and Parvilucifera sinerae . The entire Parvilucifera clade was nested within a more inclusive and modestly supported clade consisting of Perkinsus and several environmental sequences. Because P. prorocentri possessed a novel combination of ultrastructural features known in Perkinsus, Parvilucifera , and/or syndineans (i.e. germ tubes, trichocysts, and a syndinean-like nucleus), establishing the molecular phylogenetic position of this species enabled us to build a more comprehensive framework for understanding the earliest stages in the evolution of myzozoans.  相似文献   

8.
The evolutionary relationships among members of the red algal genus Hildenbrandia have not been well understood for several reasons. For example, the genus contains both marine and freshwater representatives, all of which are non-calcified and crustose, and few have definitive morphological characters for classification. Hildenbrandia is also assumed to be completely asexual (reproduction by tetrasporangia in marine forms and by gemmae in freshwater populations), and characters of the female gametangial system and post-fertilization structures are not available for comparative studies. Currently there are 14 marine and five freshwater species and infraspecific taxa recognized within the genus. We used phylogenetic analyses (parsimony, distance and maximum likelihood) of DNA sequences of commonly employed genes ( rbc L and 18S rRNA) to examine the evolutionary relationships among representatives of many of these taxa. In addition, we employed morphometrics (principal co-ordinates and cluster analyses) of several measured characters of these same representatives, as well as all available type specimens, to determine the number of morphologically-delimited entities within the genus. Thus far our results indicate that some characters traditionally used to distinguish species of Hildenbrandia , such as tetrasporangial division pattern, may not be useful in some cases, and a revision of the taxonomy of the genus will be necessary. Although the marine and freshwater species of Hildenbrandia appear to be well separated in our molecular analyses of European specimens, this trend was not observed for North American specimens. High sequence divergence values were calculated for both the rbc L and 18S rRNA genes of Hildenbrandia , compared to other red algal genera.  相似文献   

9.
There are at least 40,000 species of microalgae in the aquatic environment. Fifteen species of marine dinoflagellates and freshwater cyanobacteria are known to produce paralytic shellfish toxins (PSTs) and represent a threat to human and/or livestock health. Although known toxic species are regularly monitored, the wider cross‐section of microalgae has not been systematically tested for PSTs. Advances in rapid screening techniques have resulted in the development of highly sensitive and specific methods to detect PSTs, including the sodium channel and saxiphilin binding assays. These assays were used in this study in 96‐well formats to screen 234 highly diverse isolates of Australian freshwater and marine microalgae for PSTs. The screening assays detected five toxic species, representing one freshwater cyanobacterium (Anabaena circinalis Rabenhorst) and four species of marine dinoflagellates (Alexandrium minutum Halim, A. catenella Balech, A. tamarense Balech, and Gymnodinium catenatum Graham). Liquid chromatography‐fluorescence detection was used to identify 14 saxitoxin analogues across the five species, and each species exhibited distinct toxin profiles. These results indicate that PST production is restricted to a narrow range of microalgal species found in Australian waters.  相似文献   

10.
11.
Planktonic members of most algal groups are known to harbor intracellular symbionts, including viruses, bacteria, fungi, and protozoa. Among the dinoflagellates, viral and bacterial associations were recognized a quarter century ago, yet their impact on host populations remains largely unresolved. By contrast, fungal and protozoan infections of dinoflagellates are well documented and generally viewed as playing major roles in host population dynamics. Our understanding of fungal parasites is largely based on studies for freshwater diatoms and dinoflagellates, although fungal infections are known for some marine phytoplankton. In freshwater systems, fungal chytrids have been linked to mass mortalities of host organisms, suppression or retardation of phytoplankton blooms, and selective effects on species composition leading to successional changes in plankton communities. Parasitic dinoflagellates of the genus Amoebophrya and the newly described Perkinsozoa, Parvilucifera infectans, are widely distributed in coastal waters of the world where they commonly infect photosynthetic and heterotrophic dinoflagellates. Recent work indicates that these parasites can have significant impacts on host physiology, behavior, and bloom dynamics. Thus, parasitism needs to be carefully considered in developing concepts about plankton dynamics and the flow of material in marine food webs.  相似文献   

12.
Many dinoflagellate species form dormant resting cysts as a part of their life cycle, and in some freshwater species, hatching of these cysts can be delayed by the presence of water-borne signals from grazing zooplankton. Some marine dinoflagellates can form temporary cysts, which may function to resist unfavourable short-term environmental conditions. We investigated whether the marine dinoflagellate Alexandrium ostenfeldii is able to induce an increased resistance to the parasitic flagellate Parvilucifera infectans by forming temporary cysts. We performed several laboratory experiments where dinoflagellates were exposed either to direct contact with parasites or to filtered water from cultures of parasite-infected conspecifics (parasite-derived signals). Infection by P. infectans is lethal to motile A. ostenfeldii cells, but temporary cysts were more resistant to parasite infection. Furthermore, A. ostenfeldii induced a shift in life-history stage (from motile cells to temporary cysts) when exposed to parasite-derived water-borne signals. The response was relaxed within a couple of hours, indicating that A. ostenfeldii may use this behaviour as a short-term escape mechanism to avoid parasite infection. The results suggest that intraspecies chemical communication evoked by biotic interactions can be an important mechanism controlling life-history shifts in marine dinoflagellates, which may have implications for the development of toxic algal blooms.  相似文献   

13.
Habitat occupancy can have a profound influence on macroevolutionary dynamics, and a switch in major habitat type may alter the evolutionary trajectory of a lineage. In this study, we investigate how evolutionary transitions between marine and freshwater habitats affect macroevolutionary adaptive landscapes, using needlefishes (Belonidae) as a model system. We examined the evolution of body shape and size in marine and freshwater needlefishes and tested for phenotypic change in response to transitions between habitats. Using micro‐computed tomographic (µCT) scanning and geometric morphometrics, we quantified body shape, size, and vertebral counts of 31 belonid species. We then examined the pattern and tempo of body shape and size evolution using phylogenetic comparative methods. Our results show that transitions from marine to freshwater habitats have altered the adaptive landscape for needlefishes and expanded morphospace relative to marine taxa. We provide further evidence that freshwater taxa attain reduced sizes either through dwarfism (as inferred from axial skeletal reduction) or through developmental truncation (as inferred from axial skeletal loss). We propose that transitions to freshwater habitats produce morphological novelty in response to novel prey resources and changes in locomotor demands. We find that repeated invasions of different habitats have prompted predictable changes in morphology.  相似文献   

14.
Invasive species provide unique and useful systems by which to examine various ecological and evolutionary issues, both in terms of the effects on native environments and the subsequent evolutionary impacts. While biological invasions are an increasing agent of change in aquatic systems, alien species also act as vectors for new parasites and diseases. To date, colonizations by hosts and parasites have not been treated and reviewed together, although both are usually interwoven in various ways and may have unpredictable negative consequences. Fish are widely introduced worldwide and are convenient organisms to study parasites and diseases. We report a global overview of fish invasions with associated parasitological data. Data available on marine and freshwater are in sharp contrast. While parasites and diseases of inland freshwater fish, ornamental, reared and anadromous fish species are well documented, leading to the emergence of several evolutionary hypotheses in freshwater ecosystems during the last decade, the transfer of such organisms are virtually unexplored in marine ecosystems. The paucity of information available on the parasites of introduced marine fish reflects the paucity of information currently available on parasites of non-indigenous species in marine ecosystems. However, such information is crucial as it can allow estimations of the extent to which freshwater epidemiology/evolution can be directly transferred to marine systems, providing guidelines for adapting freshwater control to the marine environment.  相似文献   

15.
Rivers and lake systems in the southern cone of South America have been widely influenced by historical glaciations, carrying important implications for the evolution of aquatic organisms, including prompting transitions between marine and freshwater habitats and by triggering hybridization among incipient species via waterway connectivity and stream capture events. Silverside fishes (Odontesthes) in the region comprise a radiation of 19 marine and freshwater species that have been hypothesized on the basis of morphological or mitochondrial DNA data to have either transitioned repeatedly into continental waters from the sea or colonized marine habitats following freshwater diversification. New double digest restriction‐site associated DNA data presented here provide a robust framework to investigate the biogeographical history of and habitat transitions in Odontesthes. We show that Odontesthes silversides originally diversified in the Pacific but independently colonized the Atlantic three times, producing three independent marine‐to‐freshwater transitions. Our results also indicate recent introgression of marine mitochondrial haplotypes into two freshwater clades, with more recurring instances of hybridization among Atlantic‐ versus Pacific‐slope species. In Pacific freshwater drainages, hybridization with a marine species appears to be geographically isolated and may be related to glaciation events. Substantial structural differences of estuarine gradients between these two geographical areas may have influenced the frequency, intensity and evolutionary effects of hybridization events.  相似文献   

16.
Historical contingency and determinism are often cast as opposing paradigms under which evolutionary diversification operates. It may be, however, that both factors act together to promote evolutionary divergence, although there are few examples of such interaction in nature. We tested phylogenetic predictions of an explicit historical model of divergence (double invasions of freshwater by marine ancestors) in sympatric species of three-spined sticklebacks (Gasterosteus aculeatus) where determinism has been implicated as an important factor driving evolutionary novelty. Microsatellite DNA variation at six loci revealed relatively low genetic variation in freshwater populations, supporting the hypothesis that they were derived by colonization of freshwater by more diverse marine ancestors. Phylogenetic and genetic distance analyses suggested that pairs of sympatric species have evolved multiple times, further implicating determinism as a factor in speciation. Our data also supported predictions based on the hypothesis that the evolution of sympatric species was contingent upon 'double invasions' of postglacial lakes by ancestral marine sticklebacks. Sympatric sticklebacks, therefore, provide an example of adaptive radiation by determinism contingent upon historical conditions promoting unique ecological interactions, and illustrate how contingency and determinism may interact to generate geographical variation in species diversity  相似文献   

17.
18.
Dinophytes are one of few protist groups that have an extensive fossil record and are therefore appropriate for time estimations. However, insufficient sequence data and strong rate heterogeneity have been hindering to put dinophyte evolution into a time frame until now. Marine-to-freshwater transitions within this group are considered geologically old and evolutionarily exceptional due to strong physiological constraints that prevent such processes. Phylogenies based on concatenated rRNA sequences (including 19 new GenBank entries) of two major dinophyte lineages, Gymnodiniaceae and Peridiniales, were carried out using an uncorrelated molecular clock and five calibration points based on fossils. Contrarily to previous assumptions, marine-to-freshwater transitions are more frequent in dinophytes (i.e. five marine-freshwater transitions in Gymnodiniaceae, up to ten but seven strongly supported transitions in Peridiniales), and none of them occurred as early as 140 MYA. Furthermore, most marine-to-freshwater transitions, and the followed diversification, took place after the Cretaceous–Paleogene boundary. Not older than 40 MYA, the youngest transitions within Gymnodiniaceae and Peridiniales occurred under the influence of the Eocene climate shift. Our evolutionary scenario indicates a gradual diversification of dinophytes without noticeable impact of catastrophic events, and their freshwater lineages have originated several times independently at different points in time.  相似文献   

19.
  1. While fish reproduction has played a critical role in development of life-history theory, the collective effects of a marine-to-freshwater invasion on a clade's reproductive ecology have rarely been explored in a phylogenetic context. We analysed and compared a range of quantitative and qualitative components of reproductive ecology in the Australasian terapontid fishes, a family distributed widely across marine, estuarine and freshwater habitats in the Indo-Pacific region. We specifically tested hypotheses that life-history strategies such as larger egg sizes and reduced fecundities are a key characteristic of freshwater species in comparison with their close marine relatives, and also fit a range of currently available evolutionary models describing the processes of ecomorphological and macrohabitat-related diversification.
  2. Using recently developed phylogenetic comparative methods, differences in several quantitative reproductive traits were evident between marine and freshwater species, with reductions in average fecundity and increases in average egg size specifically characterising freshwater species. Evolutionary modelling of major trait axes, as well as specific traits across the family, highlighted significant increases in rates of evolutionary diversification across both freshwater lineages and within freshwater subclades. Modelling also supported the evolution of distinctive morpho-ecotype optima between marine and freshwater species over simpler models of random-walk evolution or single morphological optima.
  3. Review of life-history behaviour identified environmental stimuli related to photoperiod, temperature, and lunar-tidal cycles (and possibly combinations thereof) as playing an important role in stimulating spawning behaviour in most marine–euryhaline species. While some of these variables (temperature and photoperiod) continue to play an important role in some freshwater species, flow regime, particularly streamflow increases, appear more important in stimulating spawning responses, underlining the role of flow regime emerging as a master variable shaping evolutionary trajectories in freshwater clades.
  4. In this review and meta-analysis, we document that adaptation to an entirely freshwater existence has catalysed significant, and in several cases, relatively rapid adaptive evolution to very different life-history strategies within freshwater species. The invasion of freshwaters has had profound impacts on the trajectory of terapontid life-history evolution, driving significant changes in a range of traits relating to fecundity, egg size, spawning stimuli, and spawning substratum. Collective results suggest a distinct adaptive landscape difference between marine and freshwaters. Terapontids can provide a useful model for assessing the consistency of these outcomes with other freshwater-invading groups.
  相似文献   

20.
Diplonemids are considered marine protists and have been reported among the most abundant and diverse eukaryotes in the world oceans. Recently we detected the presence of freshwater diplonemids in Japanese deep freshwater lakes. However, their distribution and abundances in freshwater ecosystems remain unknown. We assessed abundance and diversity of diplonemids from several geographically distant deep freshwater lakes of the world by amplicon-sequencing, shotgun metagenomics and catalysed reporter deposition-fluorescent in situ hybridization (CARD-FISH). We found diplonemids in all the studied lakes, albeit with low abundances and diversity. We assembled long 18S rRNA sequences from freshwater diplonemids and showed that they form a new lineage distinct from the diverse marine clades. Freshwater diplonemids are a sister-group to a marine clade, which are mainly isolates from coastal and bay areas, suggesting a recent habitat transition from marine to freshwater habitats. Images of CARD-FISH targeted freshwater diplonemids suggest they feed on bacteria. Our analyses of 18S rRNA sequences retrieved from single-cell genomes of marine diplonemids show they encode multiple rRNA copies that may be very divergent from each other, suggesting that marine diplonemid abundance and diversity both have been overestimated. These results have wider implications on assessing eukaryotic abundances in natural habitats by using amplicon-sequencing alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号