首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Six potato trials, two in each of three years, were conducted in collaboration with the Agricultural Development and Advisory Service (ADAS) at sites infested with potato cyst nematodes (G. pallida Pa 2/3). The trials were part of a selective screen to identify PCN tolerant and intolerant clones with each trial consisting of four blocks divided into nematicide treated and untreated sub-blocks. A range of partially resistant and susceptible material was assessed for yield losses due to PCN damage to the roots and for the effect on the foliage by comparison between the nematicide treated and untreated areas. The relationships between the foliage symptoms, untreated yields, treated yields, proportional yield loss, initial PCN population and the post-harvest PCN population levels are examined. Significant correlation coefficients were obtained between foliage symptoms and yield of clones in PCN infected soil and also between foliage symptoms with percentage yield loss due to PCN infestation. The conclusions were that the assessment of PCN damage to foliage vigour/development can contribute positively to a more accurate identification of tolerant or intolerant potato genotypes.  相似文献   

2.
Potato plants growing in soil heavily infested with potato cyst nematode (PCN) contained less N, P and K in their leaf dry matter than plants growing in the same soil treated with a nematicide. These differences were less in tolerant than intolerant cultivars. Applying additonal fertiliser increased the growth of untreated plants more than that of nematicide-treated plants and nematicides increased growth most in plots receiving the lowest rate of fertiliser. Overall, the results are consistent with the hypothesis that damage by invading juveniles of PCN decreases the effectiveness of the potato root system leading to a chronic deficiency of one or more nutrients and a consequential reduction in the rate of top growth.  相似文献   

3.
The two species of the potato cyst nematodes (PCN) Globodera pallida and G rostochiensis are the most problematic pests of the potato crop in the UK. There are no commercially available cultivars with full resistance to G. pallida and both crop rotation and granular nematicides are less effective at controlling this species than G. rostochiensis. In situations of very high PCN levels it may be possible to reduce populations and yield losses by using an autumn application of the soil fumigant 1,3-dichloropropene (1,3-D) followed by a spring application of a granular nematicide. Two field experiments were done to look at the integration of methods for the control of PCN. The Common Field experiment (G. rostochiensis infested) compared the use of 1,3-D with the granular nematicides aldicarb, oxamyl and fosthiazate when growing the susceptible cv. Estima. The Four Gates experiment (infested with both PCN species but mainly G rostochiensis) compared the performance of cv. Santé (partially resistant to G. pallida, fully resistant to G. rostochiensis) with that of the susceptible cv. Estima when treated with 1,3-D and oxamyl at full and half-rates. The results of the experiments show that an integrated approach to nematode control on heavily infested sites, including granular and fumigant nematicides and cultivar resistance, can lead to significant decreases in nematode population densities and reduce yield losses. An economic evaluation of the experiments modelled the gross margins from the different nematicide treatments. In Common Field, the highest gross margins were achieved with the combined use of fumigant and granular nematicides. In Four Gates, there was a clear economic benefit for both cultivars from the use of 1,3-D. In this experiment, oxamyl was of economic value to Estima but not to Sante and full-rate oxamyl was of more benefit than half-rate to Estima.  相似文献   

4.
Potato cultivars with different degrees of resistance to Globodera pallida (PCN) were trialled at three infested sites in 1983, 1984 and 1985. These trials were primarily intended to assess the effects of PCN damage on the yield of tubers and consequently the sites chosen had high initial population densities of G. pallida. The population density of G. pallida was determined from samples taken both pre-planting and post-harvest and results showed that there were significant differences between the clones in the nematode multiplication rates. Although actual rates of multiplication varied between sites the relative differences between clones were maintained across sites. Under the susceptible control cultivars the populations generally increased even in the presence of nematicide. The partially resistant clones gave best control, as measured by nematode multiplication, at the sites with the highest initial population densities but gave good control at all sites when treated with nematicide irrespective of initial population density. The role of partial resistance in integrated control systems and the effectiveness of nematicides against G. pallida is discussed.  相似文献   

5.
A range of potato cultivars and clones was grown at three sites infested with Globodera pallida in each of four years (1983 – 1986). Comparison of yields from nematicide treated plots with those of untreated plots provided estimates of yield losses due to G. pallida. The proportional yield losses were calculated for each genotype at each site as a measure of nematode tolerance. There were significant differences between genotypes with regard to tolerance of damage by G. pallida. There were also significant interactions between the different genotypes and the sites and years, but the interactions between years and genotypes represented only a small proportion of the observed variation. The interactions between sites and years indicate that not all of the genotypes behaved consistently between sites and years. The extent of yield losses caused by the nematodes varied significantly between sites. The implications of these results are discussed in relation to potato breeding programmes and assessing resistance and tolerance to G. pallida.  相似文献   

6.
In field trials Cara, Brio, Maris Piper and Pentland Javelin were consistently more tolerant of damage by Globodera rostochiensis yielding more than Corsair, Pentland Dell, Maris Anchor and Maris Peer, in untreated, heavily infested soil and giving the smallest increases to nematicide treatment. No yield or growth differences were found between plants in untreated and nematicide treated plots at a nematode-free site. The most tolerant cultivars all had a gene (H1) for resistance to G. rostochiensis derived from Solanum tuberosum ssp. andigena and in soil infested with G. pallida the tolerance of at least one resistant cultivar (Maris Piper) appeared to be lessened. However, some resistant cultivars were comparatively intolerant, even to G. rostochiensis. Early cultivars were generally less tolerant than late maturing cultivars but there were exceptions. Amongst cultivars with resistance derived from Solanum vernei the early cultivar Guardian was more tolerant than the main crop cultivar Corsair. The effect on the yield of several cultivars of a range of densities of G. rostochiensis, produced either by applying different rates of a nematicide or by cropping in the previous year, was examined at two sites. The results indicated that the slope of the regression for yield in relation to nematode density was less for tolerant than intolerant cultivars. At sites infested with G. rostochiensis Maris Piper was found to be consistently more tolerant than Pentland Crown.  相似文献   

7.
The greatest constraint to potato production in the United Kingdom (UK) is damage by the potato cyst nematodes (PCN) Globodera pallida and G. rostochiensis. Management of PCN depends heavily on nematicides, which are costly. Of all the inputs in UK agriculture, nematicides offer the largest potential cost savings from spatially variable application, and these savings would be accompanied by environmental benefits. We mapped PCN infestations in potato fields and monitored the changes in population density and distribution that occurred when susceptible potato crops were grown. The inverse relationship between population density before planting and multiplication rate of PCN makes it difficult to devise reliable spatial nematicide application procedures, especially when the pre-planting population density is just less than the detection threshold. Also, the spatial dependence found suggests that the coarse sampling grids used commercially are likely to produce misleading distribution maps.  相似文献   

8.
Eight trials were conducted in commercial potato fields infested with the white potato cyst nematode (wPCN, Globodera pallida) and one in a field infested with the yellow PCN (yPCN, Globodera rostochiensis). Our aims were to produce data to validate and refine a computer‐based program (The Model) for the long‐term management of PCN, to determine nematicide effectiveness and to assess rates of PCN population decline between potato crops. Prior to planting, each farmer applied an overall nematicide treatment to his field, except for ten untreated plots that were widely spaced to encompass a range of PCN population densities. Each untreated plot was paired with a similar plot in the adjacent treated area and all plots were intensively sampled for PCN population densities at planting (Pi) and again at harvest (Pf) when tuber yields were determined. Four trials were re‐sampled 2–4 years later to determine PCN population decline rates. Regressions that form the basis of ‘The Model’ and described the relationship between Pi and tuber yield and PCN population density at harvest were fitted to the results from both the untreated and nematicide treated plots. These regressions also enabled us to estimate the yield potential at each site in the absence of PCN and showed that nematicide treatment generally did not increase yield potential and that both tuber yield and PCN multiplication decreased with increasing Pi. However, there were major differences between sites and cultivars. When untreated, the yield of cv. Maris Piper was hardly affected in a highly organic soil with Pi > 200 eggs g?1 whereas the yield of partially resistant cv. Santé was decreased from a potential of c. 60 t ha?1 to c. 20 t ha?1 in a light silt with Pi = 20 egg g?1 soil. Similarly, untreated wPCN multiplication rates at a low Pi ranged from 46‐fold to >100‐fold. Nematicide effectiveness was estimated from the regressions and, at several sites, yield was decreased despite nematicide treatment. Control of wPCN multiplication was even poorer. In only two of seven trials planted with susceptible cultivars was more than 50% control achieved – maximum populations in treated plots usually exceeded 250 eggs g?1. Partially resistant Santé decreased the multiplication rate of wPCN in the two trials where it was planted. An alternative analysis using Genstat indicated that The Model tended to underestimate the maximum multiplication rate and overestimate the maximum population density. When four sites were re‐sampled 2–4 years after harvest the populations of wPCN had declined by between 15% and 33.5% per annum with a mean of 26% per annum. Modelling indicated that rotations longer than 8 years were required to control wPCN unless other effective control measures, such as growing a partially resistant cultivar, were used.  相似文献   

9.
The effect of a pre-planting application of oxamyl on the yields of six potato cultivars was studied in co-operative field trials in 1981. Two sites were ‘uninfested’ with potato cyst nematodes (PCN), two were lightly infested (<25 eggs/g soil) and six were moderately to heavily infested (three with Globodera rostochiensis and three with G. pallida). At the uninfested and lightly infested sites oxamyl had little effect on mid-season haulm weights or on final tuber yields. At sites moderately to heavily infested with G. rostochiensis the haulm growth of all cultivars tended to be increased by a similar amount on plots treated with oxamyl, Pentland Dell being least responsive. Yield was increased by different amounts, the increases being least for cvs Cara and Maris Piper and most for Corsair and Pentland Dell. At the sites moderately to heavily infested with G. pallida Cara was again tolerant, its yield being increased little by oxamyl compared with the other cultivars. Maris Piper gave the largest yield increase. Final populations of PCN on non-resistant cultivars were reduced by oxamyl at some sites but not at others. Resistant cultivars also decreased the final numbers of PCN at most sites. Two cultivars derived from Solanum vernei with different degrees of resistance, appeared to be almost equally effective in controlling G. rostochiensis and G. pallida.  相似文献   

10.
Three field experiments were made to determine the effectiveness of small-plot trials in detecting differences between potato cultivars/clones in their tolerance of damage by potato cyst-nematodes. A nematicide (aldicarb) was applied at three rates to decrease nematode damage. The largest rate of aldicarb increased tuber yields most but the relationship between yield response and nematicide rate was not linear. The yield increases of the cultivars and clones differed, indicating that they have different degrees of tolerance of potato cyst nematodes. The results were analysed in several ways and the untreated yield as a proportion of the treated provided the best means of expressing and comparing tolerance; but whichever method was used the tolerance rankings of the cultivars and clones were similar. At two sites infested with Globodera rostochiensis, the rankings of the 10 cultivars and clones were similar but at a third site, heavily infested with G. pallida, they were different. Aldicarb decreased the nematode population density after harvest at the G. pallida site but was less effective at the G. rostochiensis sites, which were less heavily infested. Growing resistant or partially resistant potatoes usually prevented nematode increase, and the more resistant cultivars and clones decreased population densities markedly.  相似文献   

11.
Field experiments were carried out in 1991 and 1992 on sandy soil highly infested with the potato cyst nematode Globodera pallida. Half the trial area was fumigated with nematicide to establish two levels of nematode density. Three levels of soil compaction were made by different combinations of artificial compaction and rotary cultivation. Two potato cultivars were used in 1991 and four in 1992. Both high nematode density and soil compaction caused severe yield losses, of all cultivars except cv. Elles which was tolerant of nematode attack. The effects of the two stress factors were generally additive. Analysis of the yield loss showed that nematodes mainly reduced cumulative interception of light while compaction mainly reduced the efficiency with which intercepted light was used to produce biomass. This indicates that nematodes and compaction affect growth via different damage mechanisms. Nematodes reduced light interception by accelerating leaf senescence, by decreasing the specific leaf area and indirectly by reducing overall crop growth rate. Partitioning of biomass between leaves, stems and tubers was not affected by nematode infestation but compaction decreased partitioning to leaves early in the growing season while increasing it during later growth stages. The effects of nematodes and compaction on root length dynamics and nutrient uptake were also additive. This suggests that the commonly observed variation in yield loss caused by nematodes on different soil types is not related to differences in root system expansion between soils of various strength. Cv. Elles, which showed tolerance of nematodes by relatively low yield losses in both experiments, was characterised by high root length density and thick roots. These characteristics did not confer tolerance of soil compaction, since compaction affected root lengths and tuber yields equally in all cultivars. In the first experiment only, high nematode density led to decreased root lengths and lower plant nutrient concentrations. The yield loss which occurred in the second experiment was attributed to the effects of nematodes on other aspects of plant physiology.  相似文献   

12.
Field trials evaluated the effect of four plant-based bio-fumigants/stimulants on population levels of G. pallida and the resulting potato yields and quality. Three formulations contained seaweed biostimulants (Algifol, Nutridip and Metastim) and one bio-fumigant containing mustard and chilli pepper extracts (Dazitol). These were compared with the fumigant nematicide Nemathorin and untreated control plots. The effect of G. pallida on growing potato crops was assessed by recording haulm characteristics which indicated that the nematicide treatment gave most protection. Levels of PCN juveniles and migratory nematodes were assessed during the trial. Plots treated with Nemathorin and Dazitol had fewest PCN, whilst the highest number of migratory nematodes occurred in fallow plots. Sixteen weeks after planting the nematicide treatment produced highest yield and tuber numbers. Dazitol treatment produced a lower yield but the largest tubers.  相似文献   

13.
Potato cyst-nematode (Globodera rostochiensis) was shown to damage potato plants in several ways. A major cause of damage, affecting all cultivars to a similar extent, was a reduction in the top to root weight ratio. Intolerant cultivars also suffered a reduction in the weight and length of their root systems when grown in heavily infested soil, the combined damage resulting in a marked decrease in nutrient uptake and top growth. In addition intolerant cultivars tended to senesce prematurely when heavily infested, further decreasing their leaf area duration and yield. Cultivars tolerant of potato cyst-nematode (PCN) differed from intolerant cultivars in that their root systems tended to grow larger in heavily infested soil than in lightly infested or nematicide-treated soil, so partly compensating for the reduction in the top/root ratio. In a growth cabinet experiment Maris Anchor was more severely damaged at a soil temperature of 10 than at 15 °C. In a glasshouse, without temperature control, differences were obtained between cultivars in small pots (10 cm) in the effect of PCN on root growth which correlated well with differences in tolerance obtained in field trials.  相似文献   

14.
Bragg soybeans were planted in nematicide-treated and nontreated plots on 15 May, 15 June, 1 July, and 15 July in 1980 and 1981 to determine the influence of planting date on damage caused by H. glycines. Although earlier studies showed the nematode was sensitive to high soil temperatures (> 34 C), late planting did not reduce damage caused by the nematode. Yields from plots treated with 1, 2-dibromo-3-chloropropane (57.5 kg a.i./ha) were 48, 118, 395, and 403% higher than yields from nontreated plots with planting dates of 15 May, 15 June, 1 July, and 15 July, respectively, when data were averaged over the 2 years. Increase in both seed size and number accounted for the yield increases in treated plots. Soil temperatures were highest during July in 1980, averaging 8.9 and 6.5 hours per day above 34 C at 10- and 20-cm depths, respectively. Larvae populations of H. glycines were reduced by the nematicide but not by late planting. These results indicate that damage caused by H. glycines may actually increase with later planting and that nematicides may be more beneficial when soybeans are planted late in a double-cropped production system.  相似文献   

15.
Over the last 30 years, there has been an epidemic of the white potato cyst nematode (wPCN, Globodera pallida). It has progressively replaced the yellow species (yPCN, G. rostochiensis) throughout most of England and Wales and is now a widespread problem. As damaging populations of wPCN are enormous (>109 eggs ha?1), several crops of potato cultivars resistant only to yPCN were required to produce this change. The threat it poses is reflected in an increase in the numbers of soil samples being tested and in nematicide use, which has increased to > 25 000 ha of potatoes being treated annually. Computer modelling shows that current management of wPCN is mostly ineffective and populations will continue to increase. The multiplication rate of wPCN is inversely related to its population density at planting and, because of this, modelling shows that sufficient eggs are likely to survive to enable large populations of wPCN to “rebound” following nematicide treatment. This is supported by recent trial results showing that wPCN population increase was almost as great in nematicides‐treated plots as in the untreated. Modelling also showed that current rotations (typically potatoes once every 5 or 6 years) are too short to prevent wPCN populations from progressively increasing, even when used in conjunction with a nematicide. Similarly, except with avirulent populations, the partially resistant cultivars currently available will not prevent wPCN from increasing. However, as the effectiveness of partially resistant cultivars is independent of population density, they can be very effective when integrated with a nematicide. Unfortunately, only c. 8% of the potato area is planted with partially resistant cultivars, and much of that is in land not known to be infested with wPCN. Consequently, the current epidemic of wPCN is likely to become progressively more serious. However, many farmers are failing to recognise and respond to this threat until it is too late because of the slow rate of increase of wPCN, the difficulties of detecting small populations and the costs of nematicides. To respond to the current epidemic of wPCN, the greatest priority is to have available an increased number of commercially‐attractive partially resistant cultivars.  相似文献   

16.
Organic acids and plant extracts, which have a nemacidal action and may be used instead of nematicides that pollute the environment, are one way for controlling the pepper root-knot nematode. We provide in this study for a first time a new strategy for management Meloidgyne incognita (Kofoid and White) by using organic acids and plant extract compared to nematicides on four peppers cultivars (Super amarr, Super mard, Super noura and Werta) under greenhouse conditions compared to nematicides. This study aimed to evaluate 0.1% of organic acids (humic and salicylic acid) and 0.1% of Linum usitatissimum extract on plant parameters of pepper varieties (Super amarr, Super mard, Super noura and Werta) and control of M. incognita under greenhouse conditions compared to four nematicides (Oxamyl 24% SL, Fosthiazates 75% EC, Ethoprophos N40% EC and Fenamiphos 40% EC). Our data obtained four nematicides were more effectiveness than other treatments in reduced galls and egg masses of M. incognita. Whilst, humic and salicylic acids have remarkably higher nematicidal activity than L. usitatissimum in all lines of pepper. Therefore, plant extract and organic acids may be used a best alternative of nematicides to control PPNs and caused the longitudinal growth of plant. Also, ultimately reduce environmental risk from nematicide pollution.  相似文献   

17.
Four nonfumigant nematicides applied three times during the wet season were used to study dosage sequence and nematicide effectiveness. Control of Helicotylenchus multicinctus (Cobb) Thorne and Meloidogyne javanica (Treub) Chitwood increased plantain (Musa AAB) yields. The nematicide (aldicarb, carbofuran, oxamyl, and miral) performance and yield response varied with dosage sequences. Applications of 2, 3, and 2 g ai/tree in March, July, and October (sequence I), respectively, gave greater control of M. javanica than did applications of 3, 2, and 2 g ai/tree in March, June, and September (sequence II), respectively. However, the high initial dose sequence was effective against H. multicinctus. Persistence of the different nematicides differed over the 14-month experimental period. Miral, aldicarb, and carbofuran were the most effective treatments against either species by the end of the wet and dry seasons. Dry season residual nematode populations were significantly lower in nematicide treated than in control plots. Yield increases over controls were 96.9, 90.1, 78.4, and 70.1% for carbofuran applied by sequence II, aldicarb by II and I, and oxantyl by II, respectively. Nematode populations directly fluctuated with rainfall and dropped to low (H. multicinctus) or to undetectable (M. javanica juveniles) levels during the dry season. Of the two nematodes studied, the more serious pest to plantain was H. multicinctus; it was tolerant to drought and survived the dry season in untreated soils.  相似文献   

18.
Plant parasitic nematodes are major pests on upland cotton worldwide and in the United States. The reniform nematode, Rotylenchulus reniformis and the southern root-knot nematode Meloidogyne incognita are some of the most damaging nematodes on cotton in the United States. Current management strategies focus on reducing nematode populations with nematicides. The objective of this research was to integrate additional fertilizer and nematicide combinations into current practices to establish economical nematode management strategies while promoting cotton yield and profit. Microplot and field trials were run to evaluate fertilizer and nematicide combinations applied at the pinhead square (PHS) and first bloom (FB) plant growth stages to reduce nematode population density and promote plant growth and yield. Cost efficiency was evaluated based on profit from lint yields and chemical input costs. Data combined from 2019 and 2020 suggested a nematicide seed treatment (ST) ST + (NH4)2SO4 + Vydate® C-LV + Max-In® Sulfur was the most effective in increasing seed cotton yields in the R. reniformis microplot trials. In R. reniformis field trials, a nematicide ST + (NH4)2SO4 + Vydate® C-LV at PHS supported the largest lint yield and profit per hectare at $1176. In M. incognita field trials, a nematicide ST + 28-0-0-5 + Vydate® C-LV + Max-In® Sulfur at PHS and FB supported the largest lint yields and profit per hectare at $784. These results suggest that combinations utilizing fertilizers and nematicides applied together across the season in addition to current fertility management show potential to promote yield and profit in R. reniformis and M. incognita infested cotton fields.  相似文献   

19.
Recent advances in precision agriculture technologies and spatial statistics allow realistic, site-specific estimation of nematode damage to field crops and provide a platform for the site-specific delivery of nematicides within individual fields. This paper reviews the spatial statistical techniques that model correlations among neighboring observations and develop a spatial economic analysis to determine the potential of site-specific nematicide application. The spatial econometric methodology applied in the context of site-specific crop yield response contributes to closing the gap between data analysis and realistic site-specific nematicide recommendations and helps to provide a practical method of site-specifically controlling nematodes.  相似文献   

20.
Trials relating response to nematicide to potato cyst nematode density were conducted initially in the West Midlands and later in other Regions. Thirteen trials, only three of which were within the intensive potato growing areas, conformed to a general pattern with yield losses being largely recouped by nematicide treatment. Five trials, four within the intensive areas, gave no correlation between potato yield and nematode density and an unpredictable response to nematicide. The control of the nematode appeared to be poorer in the latter trials but other factors affecting yield and nematode multiplication may have been involved. It is speculated the main factor might be interaction with fungal organisms e.g. Rhizoctonia or Verticillium. Evidence is presented to show that on several trials the nematicide has an effect other than by controlling potato cyst nematodes. Yield losses caused by potato cyst nematodes are more variable than previous work indicated, probably due to varietal, seasonal or environmental influences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号