首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The potential role of degradative mechanisms in controlling the level of the dolichyl pyrophosphate-linked Glc3Man9GlcNAc2 required for protein N-glycosylation has been explored in thyroid slices and endoplasmic reticulum (ER) vesicles, focusing on cleavage of the oligosaccharide from its lipid attachment and on the enzymatic removal of peripheral monosaccharide residues. Vesicle incubations demonstrated a substantial release of free Glc3Man9GlcNAc2 (at 30 min approximately 35% of that transferred to protein) which was inhibited in the presence of exogenous peptide acceptor and was sensitive to disruption of membrane integrity by detergent. In thyroid slices glucosylated oligosaccharides terminating in the di-N-acetylchitobiose sequence were also noted and these continued to be formed even during inhibition by puromycin of both protein synthesis and the attendant N-glycosylation. These observations indicated that the oligosaccharide originated from the lipid donor and suggested, together with previously reported similarities in substrate specificity and cofactor requirements, that the oligosaccharyltransferase can carry out in vivo both the hydrolytic and transfer functions. In addition to the release of the intact Glc3Man9GlcNAc2, we also obtained evidence that the lipid-linked oligosaccharide can be modified by the in vivo action of ER glycosidases. Since radiolabeling of the oligosaccharide-lipid in thyroid slices indicated a preferential turnover of the glucose residues, the possible existence of a glucosyltransferase-glucosidase shuttle was explored with the use of castanospermine. In the presence of this glucosidase inhibitor, the formation of under-glucosylated and nonglucosylated oligosaccharides was not observed, even under conditions of energy deprivation in which they accumulate. Glucosidase inhibition in ER vesicle incubations likewise prevented the appearance of incompletely glucosylated oligosaccharide-lipids. Studies employing the mannosidase inhibitor 1-deoxymannojirimycin in thyroid slices furthermore indicated that in vivo removal of at least one mannose residue from the dolichyl pyrophosphate-linked oligosaccharide can occur.  相似文献   

2.
Calf thyroid slices incubated with [U-14C]glucose synthesized protein-bound Glc3Man9GlcNAc2, Glc2-Man9GlcNAc2, Glc1Man9GlcNAc2, Glc1Man8GlcNAc2, and Glc1Man7GlcNAc2. Although label in the glucose residues of the last three compounds could be detected within 5 min of incubation, appearance of radioactivity in the mannose residues of the alpha-mannosidase-resistant cores of Glc1Man8GlcNAc2 and Glc1Man7GlcNAc2 took more than 30 and 60 min, respectively, to appear after label was detected in the same mannose residues of Glc1Man9GlcNAc2. The glucose residues were removed upon chasing the slices with unlabeled glucose. The last compound to disappear was Glc1Man9GlcNAc2. Calf thyroid microsomes incubated with UDP-[U-14C]Glc synthesized the five protein-bound oligosaccharides mentioned above. Although addition to GDP-Man to the incubation mixtures greatly diminished the formation of Glc3Man9GlcNAc2 bound either to dolichol-P-P or to protein, labeling of Glc1Man9GlcNAc2, Glc1Man8GlcNAc2, and Glc1Man7GlcNAc2 was not affected. Addition of kojibiose prevented deglucosylation of protein-bound Glc3Man9GlcNAc2 without affecting the formation of Glc1Man8GlcNAc2 and Glc1Man7GlcNAc2 and only partially diminishing that of Glc1Man9GlcNAc2. These results indicate that Glc1Man8GlcNAc2 and Glc1Man7GlcNAc2 were formed by glucosylation of the unglucosylated species and not be demannosylation of Glc1Man9GlcNAc2 and that probably part of the latter compound was formed in the same way.  相似文献   

3.
Incubations of thyroid microsomes with radiolabeled dolichyl pyrophosphoryl oligosaccharide (Glc3Man9-GlcNAc2) under conditions optimal for the N-glycosylation of protein resulted in the release, by apparently independent enzymatic reactions, of two types of neutral glucosylated polymannose oligosaccharides which differed from each other by terminating either in an N-acetylglucosamine residue (Glc3Man9GlcNAc1) or a di-N-acetylchitobiose moiety (Glc3Man9GlcNAc2). The first mentioned oligosaccharide, which was released in a steady and slow process unaffected by the addition of EDTA, appeared to be primarily the product of endo-beta-N-acetylglucosaminidase action on newly synthesized glycoprotein and such an enzyme with a neutral pH optimum capable of hydrolyzing exogenous glycopeptides and oligosaccharides (Km = 18 microM) was found in the thyroid microsomal fraction. The Glc3Man9GlcNAc2 oligosaccharide, in contrast, appeared to originate from the oligosaccharide-lipid by a rapid hydrolysis reaction which closely paralleled the N-glycosylation step, progressing as long as oligosaccharide transfer to protein occurred and terminating when carbohydrate attachment ceased either due to limitation of lipid-saccharide donor or addition of EDTA. There was a striking similarity between oligosaccharide release and transfer to protein with lipid-linked Glc3Man9GlcNAc2 serving as a 10-fold better substrate for both reactions than lipid-linked Man9-8GlcNAc2. The coincidence of transferase and hydrolase activities suggest the possibility of the existence of one enzyme with both functions. The physiological relevance of oligosaccharide release was indicated by the formation of such molecules in thyroid slices radiolabeled with [2-3H]mannose. Large oligosaccharides predominated (12 nmol/g) and consisted of two families of components; one group terminating in N-acetylglucosamine, ranged from Glc1Man9GlcNAc1 to Man5GlcNAc1 while the other contained the di-N-acetylchitobiose sequence and included Glc3Man9GlcNAc2, Glc1Man9GlcNAc2, and Man9GlcNAc2.  相似文献   

4.
A new membrane preparation from Saccharomyces cerevisiae was developed, which effectively catalyzes the synthesis of large oligosaccharide-lipids from GDP-Man and UDP-Glc allowing a detailed study of their formation and size. The oligosaccharide from an incubation with GDP-Man could be separated by gel filtration chromatography into several species consisting of two N-acetylglucosamine (GlcNAc) residues at the reducing end and differing by one mannos unit; the major compound formed has the composition (Man)9(GlcNAc)2. Upon incubation with UDP-Glc, three oligosaccharides corresponding to the size of (Glc)1-3(Man)9(GlcNAc)2 are formed. Thus, the oligosaccharides generated in vitro by the yeast membranes appear to be identical in size with the oligosaccharides found in animal systems. In addition the results indicate that dolichyl phosphate mannoe (DolP-Man) is the immediate donor in assembling the oligosaccharide moiety from (Man)5(GlcNAc)2 to (Man)9(GlcNAc)2. All three glucose residues are transferred from DolP-Glc. Experiments with isolated [Glc-14C]oligosaccharide-lipid as substrate demonstrated that the oligosaccharide chain is transferred to an endogenous membrane protein acceptor. Moreover, transfer is followed by an enzymic removal of glucose residues, due to a glucosidase activity associated with the membranes. Glucose release from the free [Glc-14C]oligosaccharide is less effective than from protein-bound oligosaccharide. Glycosylation was also observed using [Man-14C]oligosaccharide-lipid or DolPP-(GlcNAc)2 as donor. However, transfer in the presence of glucose seems to be more rapid. The mannose-containing oligosaccharide, released from the lipid, was shown to function as a substrate for further chain elongation reactions utilizing GDP-Man but not DolPP-Man as donor. It is suggested that the immediate precursor in the synthesis of the heterogeneous core region, (Man)12-17(GlcNAc)2, of yeast mannoproteins is a glucose-containing lipid-oligosaccharide with the composition (Glc)3(Man)9(GlcNAc)2, i.e. only part of what has been defined as inner core is built up on the lipid carrier. After transfer to protein the oligosaccharide is modified by excision of the glucose residues, followed subsequently by further elongation from GDP-Man to give the size of th oligosaccharide chains found in native mannoproteins.  相似文献   

5.
Microsomal membrane preparations from rat livers, when incubated with labelled sugar-nucleotides, were shown to synthesize labelled oligosaccharide-lipids in the presence of excess exogenous dolichyl phosphate. Under the incubation conditions defined in the present study, dolichyl pyrophosphoryl(DolPP)GlcNAc2-Man5, DolPPGlcNAc2Man9 and DolPPGlcNAc2Man9Glc3 were the principal oligosaccharide-lipids formed by both control and vitamin A-deficient membranes. However, deficient membranes synthesized 3.2 +/- 0.8 times as much oligosaccharide-lipids and 2.6 +/- 0.7 times as much dolichyl phosphate mannose (DolPMan) and dolichyl phosphate glucose (DolPGlc) as the controls. The transfer of the oligosaccharide chain from the dolichol carrier to the endogenous protein acceptors in vitamin A-deficient microsomes (microsomal fractions) was only 57.5 +/- 9.5% of that of controls. After endo-beta-N-acetylglucosaminidase treatment, only one oligosaccharide species was isolated from both control and vitamin A-deficient microsomal glycoproteins, and was characterized as GlcNAcMan9Glc3. We conclude that the decreased incorporation of labelled mannose and glucose from sugar-nucleotides into the glycoproteins must be due to decreased transfer of GlcNAc2Man9Glc3 from the dolichol carrier to the protein acceptors. This conclusion was further substantiated by the finding that control membranes transferred 4-6 times as much labelled oligosaccharides from exogenously added dolichol-linked substrate (DolPPGlcNAc2Man9Glc3) to endogenous microsomal protein acceptors as compared with the vitamin A-deficient membranes. Attempts to reverse this defect by addition of retinol or retinyl phosphate (a source of retinyl phosphate mannose) to the incubations were unsuccessful.  相似文献   

6.
Golgi membranes from rat liver have been shown to contain an endo-alpha-D-mannosidase which can convert Glc1Man9GlcNAc to Man8GlcNAc with the release of Glc alpha 1----3Man (Lubas, W. A., and Spiro, R. G. (1987) J. Biol. Chem. 262, 3775-3781). We now report that this enzyme has the capacity to cleave the alpha 1----2 linkage between the glucose-substituted mannose residue and the remainder of the polymannose branch in a wide range of oligosaccharides (Glc3Man9GlcNAc to Glc1Man4GlcNAc) as well as glycopeptides and oligosaccharide-lipids. Whereas the tri- and diglucosylated species (Glc3Man9GlcNAc and Glc2Man9GlcNAc), which yielded Glc3Man and Glc2Man, respectively, were processed more slowly than Glc1Man9GlcNAc, the monoglucosylated components with truncated mannose chains (Glc1Man8GlcNAc to Glc1Man4GlcNAc) were trimmed at an increased rate which was inversely related to the number of mannose residues present. The endomannosidase was not inhibited by a number of agents which are known to interfere with N-linked oligosaccharide processing by exoglycosidases, including 1-deoxynojirimycin, castanospermine, bromoconduritol, 1-deoxymannojirimycin, swainsonine, and EDTA. However, Tris and other buffers containing primary hydroxyl groups substantially decreased its activity. After Triton solubilization, the endomannosidase was observed to be bound to immobilized wheat germ agglutinin, indicating the presence of a type of carbohydrate unit consistent with Golgi localization of the enzyme. The Man8GlcNAc isomer produced by endomannosidase action was found to be processed by Golgi enzymes through a different sequence of intermediates than the rough endoplasmic reticulum-generated Man8GlcNAc variant, in which the terminal mannose of the middle branch is absent. Whereas the latter oligosaccharide is converted to Man5GlcNAc via Man7GlcNAc and Man6GlcNAc at an even rate, the processing of the endomannosidase-derived Man8GlcNAc stalls at the Man6GlcNAc stage due to the apparent resistance to Golgi mannosidase I of the alpha 1,2-linked mannose of the middle branch. The results of our study suggest that the Golgi endomannosidase takes part in a processing route for N-linked oligosaccharides which have retained glucose beyond the rough endoplasmic reticulum; the distinctive nature of this pathway may influence the ultimate structure of the resulting carbohydrate units.  相似文献   

7.
Regulation of Glc transfer from UDP-Glc via Glc-P-Dolichol to form Glc3-Man9-oligosaccharide-lipid has been studied during estrogen-induced chick oviduct differentiation. The process was studied as two distinct reactions: transfer of Glc from UDP-Glc to Dol-P, forming Glc-P-Dol; and transfer of Glc from Glc-P-Dol to Man9-OL (oligosaccharide-lipid), forming a series of glucosylated oligosaccharide-lipids. Kinetic analysis of [14C]Glc transfer from UDP-[14C]Glc to endogenous Dol-P shows that Dol-P is limiting in membrane preparations and that, concomitant with estrogen-induced differentiation, there is an increase in Dol-P available for Glc transfers. There is also greater glucosyl transferase activity present in membranes from mature hens and estrogenized chicks than in membranes from immature chicks. In order to study the second phase of glucosylation, transfer to the oligosaccharide, it was necessary to develop an assay in which membranes could be reacted with exogenously added substrates, [14C]Glc-P-Dol and [3H]Man9-OL. This reaction is dependent on detergent (0.02% NP-40 was used) and is stimulated by EDTA. The apparent Km for Glc-P-Dol was about 1.5 microM. A series of double-labeled oligosaccharides having sizes consistent with Glc1-, Glc2-, and Glc3-Man9-OL were formed. Chemical and enzymatic analysis of [14C]Glc oligosaccharides formed by incubation with the exogenous substrates, or by incubation with UDP-[14C]Glc and endogenous acceptors, indicated that the glucosylated oligosaccharides were similar. Assays of membranes from estrogenized chicks, mature hens, and hormone-withdrawn chicks showed increased glucosyl transferase activity upon hormone treatment. Similar assays in the absence of exogenous Man9-OL indicated that hormone treatment was also accompanied by increased levels of endogenous oligosaccharide-lipid acceptors.  相似文献   

8.
A CHO mutant MI8-5 was found to synthesize Man9-GlcNAc2-P-P-dolichol rather than Glc3Man9GlcNAc2-P-P-dolichol as the oligosaccharide-lipid intermediate in N-glycosylation of proteins. MI8-5 cells were incubated with labeled mevalonate, and the prenol was found to be dolichol. The mannose-labeled oligosaccharide released from oligosaccharide-lipid of MI8-5 cells was analyzed by HPLC and alpha-mannosidase treatment, and the data were consistent with a structure of Man9GlcNAc2. In addition, MI8-5 cells did not incorporate radioactivity into oligosaccharide- lipid during an incubation with tritiated galactose, again consistent with MI8-5 cells synthesizing an unglucosylated oligosaccharide-lipid. MI8-5 cells had parental levels of glucosylphosphoryldolichol synthase activity. However, in two different assays, MI8-5 cells lacked dolichol- P-Glc:Man9GlcNAc2-P-P-dolichol glucosyltransferase activity. MI8-5 cells were found to synthesize glucosylated oligosaccharide after they were transfected with Saccharomyces cerevisiae ALG 6, the gene for dolichol-P-Glc:Man9GlcNAc2-P-P-dolichol glucosyltransferase. MI8-5 cells were found to incorporate mannose into protein 2-fold slower than parental cells and to approximately a 2-fold lesser extent.   相似文献   

9.
Transmembrane movement of oligosaccharide-lipids during glycoprotein synthesis   总被引:11,自引:0,他引:11  
M D Snider  O C Rogers 《Cell》1984,36(3):753-761
The transport of sugar residues into the endoplasmic reticulum (ER) during glycoprotein synthesis was studied by examining the transmembrane orientations of the oligosaccharide-lipid precursors of asparagine-linked oligosaccharides. Using the lectin concanavalin A, the lipid-linked oligosaccharides Man3-5GlcNAc2 were found on the cytoplasmic side of ER-derived vesicles in vitro while lipid-linked Man6-9GlcNAc2 and Glc1-3Man9GlcNAc2 were found facing the lumen. These results suggest that Man5GlcNAc2-lipid is synthesized on the cytoplasmic side of the ER membrane and then translocated to the luminal side. Glc3Man9GlcNAc2-lipid is then completed on the luminal side where it serves as the donor in peptide glycosylation. Translocation of Man5GlcNAc2-lipid offers a mechanism for the export of sugar residues from the cytoplasm during glycoprotein synthesis. This translocation may be the reason for the participation of lipid-linked mono- and oligosaccharides in glycoprotein synthesis.  相似文献   

10.
Formation of protein-linked Glc1Man9GlcNAc2 , Glc1Man8GlcNAc2 , and Glc1Man7GlcNAc2 was detected in rat liver slices and Phaseolus vulgaris seeds incubated with [U-14C]glucose. Similar compounds were not synthesized in Saccharomyces cerevisiae cells incubated under similar conditions. Rat liver microsomes were incubated with [glucose-U-14C] Glc3Man9GlcNAc2-P-P-dolichol or UDP-[U-14C]Glc as glycosyl donors. Only in the latter condition protein-linked Glc1Man8GlcNAc2 and Glc1Man7GlcNAc2 were formed. Addition of mannooligosaccharides that strongly inhibited alpha 1-2-mannosidases to incubation mixtures containing rat liver microsomes and UDP-[U-14C]Glc did not prevent formation of protein-bound Glc1Man8GlcNAc2 and Glc1Man7GlcNAc2 . Furthermore, the presence of amphomycin in reaction mixtures containing liver membranes and UDP-[U-14C]Glc completely abolished synthesis of glucosylated derivatives of dolichol without affecting formation of protein-linked Glc1Man9GlcNAc2 , Glc1Man8GlcNAc2 , and Glc1Man7GlcNAc2 . The results reported above indicated that under the experimental conditions employed protein-bound Glc1Man9GlcNAc2 , Glc1Man8GlcNAc2 , and Glc1Man7GlcNAc2 were formed by glucosylation of unglucosylated oligosaccharides. Results obtained in pulse-chase experiments performed in vitro also supported this conclusion. UDP-Glc appeared to be the donor of the glucosyl residues. The rough endoplasmic reticulum was found to be the main subcellular site of protein glucosylation. It is tentatively suggested that this process could prevent extensive degradation of oligosaccharides by mannosidases during transit of glycoproteins through the endoplasmic reticulum.  相似文献   

11.
Studies on N-linked oligosaccharide processing were undertaken in HepG2 cells and calf thyroid slices to explore the possibility that the recently described Golgi endo-alpha-D-mannosidase (Lubas, W.A., and Spiro, R.G. (1987) J. Biol. Chem. 262, 3775-3781) is responsible for the frequently noted failure of glucosidase inhibitors to achieve complete cessation of complex carbohydrate unit synthesis. We have found that in the presence of the glucosidase inhibitors, castanospermine (CST) or 1-deoxynojirimycin, there is a substantial production of the glucosylated mannose saccharides (Glc3Man, Glc2Man, and Glc1Man) which are the characteristic products of endomannosidase action. Furthermore, in HepG2 cells, a secretion of these components into the medium could be demonstrated. Characterization of the N-linked polymannose oligosaccharides produced by HepG2 cells in the presence of CST (as well as 1-deoxymannojirimycin to prevent processing by alpha-mannosidase I) indicated the occurrence, in addition to the expected glucosylated species, of substantial amounts of Man8GlcNAc and Man7GlcNAc. Since Man9GlcNAc was almost completely absent and the Man8GlcNAc isomer was shown to be identical with that formed by the in vitro action of endomannosidase on glucosylated polymannose oligosaccharides, we concluded that this enzyme was actively functioning in the intact cells and could provide a pathway for circumventing the glucosidase blockade. Indeed, quantitative studies in HepG2 cells supported this contention as the continued formation of complex carbohydrate units (50% of control) during CST inhibition could be accounted for by the deglucosylation effected by endomannosidase.  相似文献   

12.
N-Glycans in nearly all eukaryotes are derived by transfer of a precursor Glc(3)Man(9)GlcNAc(2) from dolichol (Dol) to consensus Asn residues in nascent proteins in the endoplasmic reticulum. The Saccharomyces cerevisiae alg (asparagine-linked glycosylation) mutants fail to synthesize oligosaccharide-lipid properly, and the alg9 mutant, accumulates Man(6)GlcNAc(2)-PP-Dol. High-field (1)H NMR and methylation analyses of Man(6)GlcNAc(2) released with peptide-N-glycosidase F from invertase secreted by Deltaalg9 yeast showed its structure to be Manalpha1,2Manalpha1,2Manalpha1, 3(Manalpha1,3Manalpha1,6)-Manbeta1,4GlcNAcbeta1, 4GlcNAcalpha/beta, confirming the addition of the alpha1,3-linked Man to Man(5)GlcNAc(2)-PP-Dol prior to the addition of the final upper-arm alpha1,6-linked Man. This Man(6)GlcNAc(2) is the endoglycosidase H-sensitive product of the Alg3p step. The Deltaalg9 Hex(7-10)GlcNAc(2) elongation intermediates were released from invertase and similarly analyzed. When compared with alg3 sec18 and wild-type core mannans, Deltaalg9 N-glycans reveal a regulatory role for the Alg3p-dependent alpha1,3-linked Man in subsequent oligosaccharide-lipid and glycoprotein glycan maturation. The presence of this Man appears to provide structural information potentiating the downstream action of the endoplasmic reticulum glucosyltransferases Alg6p, Alg8p and Alg10p, glucosidases Gls1p and Gls2p, and the Golgi Och1p outerchain alpha1,6-Man branch-initiating mannosyltransferase.  相似文献   

13.
Structure of Saccharomyces cerevisiae alg3, sec18 mutant oligosaccharides   总被引:3,自引:0,他引:3  
Asparagine-linked oligosaccharides are synthesized by transfer of Glc3Man9GlcNAc2 from dolichol pyrophosphate to nascent polypeptides. Assembly of the precursor proceeds by highly ordered sequential addition of mannose and glucose to form Glc3Man9GlcNAc2-P-P-dolichol. Yeast mutants in asparagine-linked glycosylation (alg), generated by an 3H-Man suicide technique, were assigned to eight complementation groups which define steps in oligosaccharide-lipid synthesis (Huffaker, T.C., and Robbins, P.W. (1982) J. Biol. Chem. 257, 3203-3210). Alg3 invertase oligosaccharides are resistant to endo-beta-N-acetylglucosaminidase H, and the lipid-oligosaccharide pool yields Man5Glc-NAc2, suggesting its structure may be that from mammalian cells lacking Man-P-dolichol (Chapman, A., et al. (1980) J. Biol. Chem. 255, 4441-4446). To test this supposition, the endoplasmic reticulum form of invertase derepressed in alg3,sec18 yeast at 37 degrees C was isolated as a source of oligosaccharides whose processing beyond glucose and/or mannose trimming, if involved, would be prevented. Man8GlcNAc2 and Man5GlcNAc2 were released by peptide-N-glycosidase F from alg3,sec18 invertase in a 1:5 molar ratio. 1H NMR spectroscopy revealed Man8GlcNAc2 to be the alpha 1,2-mannosidase-trimming product described earlier (Byrd, J. C., Tarentino, A. L., Maley, F., Atkinson, P. H., and Trimble, R. B. (1982) J. Biol. Chem. 257, 14657-14666), while Man5GlcNAc2 was Man alpha 1, 2Man alpha 1,2Man alpha 1,3(Man alpha 1,6)Man beta 1,4GlcNAc beta 1, 4GlcNAc. This provides a structural proof for the lipid-linked Man5GlcNAc2 originally proposed from enzymatic and chemical analyses of the radiolabeled mammalian precursor. Experimental evidence indicates that, unlike the mammalian cell mutants which are unable to synthesize Man-P-dolichol, alg3 yeast accumulate Man5GlcNAc2-P-P-dolichol due to a defective alpha 1,3-mannosyltransferase required for the next step in oligosaccharide-lipid elongation.  相似文献   

14.
Synthesis of the N-linked oligosaccharides of Saccharomyces cerevisiae glycoproteins has been studied in vivo by labeling with [2-3H]mannose and gel filtration analysis of the products released by endoglycosidase H. Both small oligosaccharides, Man8-14GlcNAc, and larger products, Man greater than 20GlcNAc, were labeled. The kinetics of continuous and pulse-chase labeling demonstrated that Glc3Man9GlcNAc2, the initial product transferred to protein, was rapidly (t1/2 congruent to 3 min) trimmed to Man8GlcNAc2 and then more slowly (t1/2 = 10-20 min) elongated to larger oligosaccharides. No oligosaccharides smaller than Man8GlcNAc2 were evident with either labeling procedure. In confirmation of the trimming reaction observed in vivo, 3H-labeled Man9-N-acetylglucosaminitol from bovine thyroglobulin and [14C]Man9GlcNAc2 from yeast oligosaccharide-lipid were converted in vitro by broken yeast cells to 3H-labeled Man8-N-acetylglucosaminitol and [14C]Man8GlcNAc2. Man8GlcNAc and Man9GlcNAc from yeast invertase and from bovine thyroglobulin were purified by gel filtration and examined by high field 1H-NMR analysis. Invertase Man8GlcNAc (B) and Man9GlcNAc (C) were homogeneous compounds, which differed from the Man9GlcNAc (A) of thyroglobulin by the absence of a specific terminal alpha 1,2-linked mannose residue. The Man9GlcNAc of invertase (C) had an additional terminal alpha 1,6-linked mannose and appeared identical in structure with that isolated from yeast containing the mnn1 and mnn2 mutations (Cohen, R. E., Zhang, W.-j., and Ballou, C. E. (1982) J. Biol. Chem. 257, 5730-5737). It is concluded that Man8GlcNAc2, formed by removal of glucose and a single mannose from Glc3Man9GlcNAc2, is the ultimate product of trimming and the minimal precursor for elongation of the oligosaccharides on yeast glycoproteins. The results suggest that removal of a particular terminal alpha 1,2-linked mannose from Man9GlcNAc2 by a highly specific alpha-mannosidase exposes the nascent Man-alpha 1,6-Man backbone for elongation with additional alpha 1,6-linked mannose residues, according to the following scheme: (formula, see text).  相似文献   

15.
Endo-beta-N-acetylglucosaminidase H (endo H) was found to bring about the complete hydrolysis of dolichyl pyrophosphoryl oligosaccharides. Both glycosylated and unglucosylated polymannose oligosaccharides were released by the enzyme through cleavage of the di-N-acetylchitobiose sequence. The action of the endo H on the oligosaccharide-lipids was facilitated by the inclusion of Triton X-100 (maximal stimulation at concentrations greater than 0.03%) or small amounts of a variety of other detergents; however, sodium dodecyl sulfate (0.1%) was strongly inhibitory. Although incubations were routinely carried out at pH 5.2, the enzyme was noted to be equally effective at pH 6.5 and to retain 75% of its activity toward oligosaccharide-lipid at pH 7.4. While these results broaden the known specificity of the endo H for the aglycon moiety, it was observed that even under optimal conditions the rate of hydrolysis of lipid-linked Glc3Man9GlcNAc2 was substantially slower than that of the same oligosaccharide attached to asparagine in a peptide sequence. The use of endo H, an enzyme which can be obtained free of exoglycosidases, appears to have a number of advantages over mild acid hydrolysis as a tool for cleaving oligosaccharide-lipids. It was found that the latter procedure causes a small but detectable degradation of the sugar chains and, when carried out in the presence of methanol, leads to the release of about 10% of the oligosaccharide as its beta-methyl glycoside. Furthermore, the oligosaccharides released by the endo H can be directly compared to those liberated by this enzyme from glycoproteins; this may prove to be useful in metabolic studies dealing with oligosaccharide-lipid assembly and their involvement in the N-glycosylation of proteins.  相似文献   

16.
A gene for processing α-glucosidase I from a filamentous fungus, Aspergillus brasiliensis (formerly called Aspergillus niger) ATCC 9642 was cloned and fused to a glutathione S-transferase tag. The active construct with the highest production level was a truncation mutant deleting the first 16 residues of the hydrophobic N-terminal domain. This fusion enzyme hydrolyzed pyridylaminated (PA-) oligosaccharides Glc(3)Man(9)GlcNAc(2)-PA and Glc(3)Man(4)-PA and the products were identified as Glc(2)Man(9)GlcNAc(2)-PA and Glc(2)Man(4)-PA, respectively. Saturation curves were obtained for both Glc(3)Man(9)GlcNAc(2)-PA and Glc(3)Man(4)-PA, and the K (m) values for both substrates were estimated in the micromolar range. When 1 μM Glc(3)Man(4)-PA was used as a substrate, the inhibitors kojibiose and 1-deoxynojirimycin had similar effects on the enzyme; at 20 μM concentration, both inhibitors reduced activity by 50%.  相似文献   

17.
Saccharomyces cerevisiae Man9-alpha-mannosidase, responsible for trimming Man9GlcNAc2 in the endoplasmic reticulum to Man8GlcNAc2, the substrate for oligosaccharide elongation, has been purified to homogeneity from stabilized microsomal membranes without employing autolytic digestion. The activity was solubilized by the zwitterionic detergent, 3-[(3-cholamidopropyl)dimethyl ammonio]-1-propanesulphonate (CHAPS), whose presence was necessary for maximal activity. Purification included Q-Sepharose ion-exchange chromatography, preparative isoelectric focusing and HPLC gel filtration on TSK 3000 matrix. Overall purification from post-nuclear supernatants was estimated to be 110,000-fold with a 50% recovery of activity. The purified enzyme hydrolysed Man9GlcNAc1,2 from thyroglobulin or oligosaccharide-lipid, but not invertase Man9GlcNAc, Man1 alpha 2Man1 alpha OCH3 or p-nitrophenyl-alpha-D-mannopyranoside. Conversion of thyroglobulin Man9GlcNAc to Man8GlcNAc was linear with time and enzyme concentration, with an apparent Km of 0.2 mM and a specific activity of 220 IU/mg. Glc3Man9GlcNAc2 from oligosaccharide-lipid was as good a substrate as Man9GlcNAc, but the lipid-linked Man7GlcNAc2 isomer was hydrolysed at only 10% of this rate. Hydrolysis of defined isomers of IgM and bovine thyroglobulin Man6,7,8GlcNAc indicated that, for maximal alpha 1,2-mannosidase activity, only the alpha 1,2-linked terminal mannoses on the alpha 3 branch of the Man9GlcNAc precursor were dispensable. Isomers lacking the terminal alpha 1,2-linked mannose on the alpha 6 branch were hydrolysed at only approximately 10% of the maximal rate. The enzyme exhibited a pI of 5.3 and a pH optimum at 6.5. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis in the absence of reducing agents gave a single sharp band at 66 kDa, while in the presence of beta-mercaptoethanol equimolar amounts of two peptides, one of 44 kDa and one of 23 kDa, were obtained. Sizing on Sephacryl SF300, Superose 12 and TSK 3000 provided a holoenzyme mol. wt of 60-68 kDa, indicating that the isolated active form of the Man9-alpha-mannosidase was composed of one each of the sulphydryl-bonded dissimilar peptides. The enzyme bound to concanavalin A (ConA)-Sepharose and was eluted with alpha-methylmannoside, indicating the presence of high-mannose oligosaccharides. The Man9-alpha-mannosidase required low levels of Ca2+, which could be removed by EGTA. Activity was restored by Ca2+ or Zn2+, but not by Mg2+ or Mn2+.  相似文献   

18.
Purification and properties of glucosidase I from mung bean seedlings   总被引:3,自引:0,他引:3  
The microsomal enzyme fraction from mung bean seedlings was found to contain glucosidase activity capable of releasing [3H]glucose from the glucose-labeled Glc3Man9GlcNAc. The enzymatic activity could be released in a soluble form by treating the microsomal particles with 1.5% Triton X-100. When the solubilized enzyme fraction was chromatographed on DE-52, it was possible to resolve glucosidase I activity (measured by the release of [3H]glucose from Glc3Man9GlcNAc) from glucosidase II (measured by release of [3H]glucose from Glc2Man9GlcNAc). The glucosidase I was purified about 200-fold by chromatography on hydroxylapatite, Sephadex G-200, dextran-Sepharose, and concanavalin A-Sepharose. The purified enzyme was free of glucosidase II and aryl-glucosidase activities. Only a single glucose residue could be released from the Glc3Man9GlcNAc by this purified enzyme and the other product was the Glc2Man9GlcNAc. Furthermore, this enzyme was inhibited in a dose-dependent manner by kojibiose, an alpha-1,2-linked glucose disaccharide, but not by other alpha-linked glucose disaccharides. These data indicate that this glucosidase is a specific alpha-1,2-glucosidase. The pH optimum for the glucosidase I was about 6.3 to 6.5, and no requirements for divalent cations were observed. The enzyme was inhibited strongly by the glucosidase processing inhibitors, castanospermine and deoxynojirimycin, and less strongly by the plant pyrrolidine alkaloid, 2,5-dihydroxymethyl-3,4-dihydroxypyrrolidine. However, the enzyme was not inhibited by the mannosidase processing inhibitors, swainsonine, deoxymannojirimycin or 1,4-dideoxy-1,4-imino-D-mannitol. The stability of the enzyme under various conditions and other properties of the enzyme were determined.  相似文献   

19.
We have shown previously that the processing of asparagine-linked oligosaccharides in baby hamster kidney (BHK) cells is blocked only partially by the glucosidase inhibitors, 1-deoxynojirimycin and N-methyl-1-deoxynojirimycin [Hughes, R. C., Foddy, L. & Bause, E. (1987) Biochem. J. 247, 537-544]. Similar results are now reported for castanospermine, another inhibitor of processing glucosidases, and a detailed study of oligosaccharide processing in the inhibited cells is reported. In steady-state conditions the major endo-H-released oligosaccharides contained glucose residues but non-glycosylated oligosaccharides, including Man9GlcNAc to Man5GlcNAc, were also present. To determine the processing sequences occurring in the presence of castanospermine, BHK cells were pulse-labelled for various times with [3H]mannose and the oligosaccharide intermediates, isolated by gel filtration and paper chromatography, characterized by acetolysis and sensitivity to jack bean alpha-mannosidase. The data show that Glc3Man9GlcNAc2 is transferred to protein and undergoes processing to produce Glc3Man8GlcNAc2 and Glc3Man7GlcNAc2 as major species as well as a smaller amount of Man9GlcNAc2. Glucosidase-processed intermediates, Glc1Man8GlcNAc2 and Glc1Man7GlcNAc2, were also obtained as well as a Man7GlcNAc2 species derived from Glc1Man7GlcNAc2 and different from the Man7GlcNAc2 isomer formed in the usual processing pathway. No evidence for the direct transfer of non-glucosylated oligosaccharides to proteins was obtained and we conclude that the continued assembly of complex-type glycans in castanospermine-inhibited BHK cells results from residual activity of processing glucosidases.  相似文献   

20.
Studies on N-linked oligosaccharide processing in the mouse lymphoma glucosidase II-deficient mutant cell line (PHAR2.7) as well as the parent BW5147 cells indicated that the former maintain their capacity to synthesize complex carbohydrate units through the use of the deglucosylation mechanism provided by endomannosidase. The in vivo activity of this enzyme was evident in the mutant cells from their production of substantial amounts of glucosylated mannose saccharides, predominantly Glc2Man; moreover, in the presence of 1-deoxymannojirimycin or kifunensine to prevent processing by mannosidase I, N-linked Man8GlcNAc2 was observed entirely in the form of the characteristic isomer in which the terminal mannose of the alpha 1,3-linked branch is missing (isomer A). In contrast, parent lymphoma cells, as well as HepG2 cells in the presence of 1-deoxymannojirimycin accumulated Man9GlcNAc2 as the primary deglucosylated N-linked oligosaccharide and contained only about 16% of their Man8GlcNAc2 as isomer A. In the presence of the glucosidase inhibitor castanospermine the mutant released Glc3Man instead of Glc2Man, and the parent cells converted their deglucosylation machinery to the endomannosidase route. Despite the mutant's capacity to accommodate a large traffic through this pathway no increase in the in vitro determined endomannosidase activity was evident. The exclusive utilization of endomannosidase by the mutant for the deglucosylation of its predominant N-linked Glc2Man9GlcNAc2 permitted an exploration of the in vivo site of this enzyme's action. Pulse-chase studies utilizing sucrose-D2O density gradient centrifugation indicated that the Glc2Man9GlcNAc2 to Man8GlcNAc2 conversion is a relatively late event that is temporally separated from the endoplasmic reticulum-situated processing of Glc3Man9GlcNAc2 to Glc2Man9GlcNAc2 and in contrast to the latter takes place in the Golgi compartment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号