首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Turnover of individual classes of cholesteryl esters (classified on the basis of the degree of unsaturation of the fatty acid moiety) in rat plasma lipoproteins and liver was studied after the administration of mevalonic acid-5-(3)H and mevalonic acid-2-(14)C. The relative turnover rate was greatest in the d < 1.019 lipoproteins, with monoenes > saturated = dienes > tetraenes. In the d > 1.063 lipoproteins, all cholesteryl esters had slower turnover rates, but tetraenes = pentaenes > dienes > monoenes = saturated. Comparisons of specific activities of individual cholesteryl ester classes of liver subcellular fractions and lipoproteins suggest that the d < 1.019 lipoprotein cholesteryl esters are synthesized from newly synthesized cholesterol in the liver and are rapidly released into this lipoprotein. Tetraenoic cholesteryl esters, however, may originate from esterification of free cholesterol in plasma. Tetraenoic esters are formed from cholesterol in plasma during incubation or ultracentrifugation unless a thiol-reacting or alkylating agent is added. Failure to add such a reagent to plasma results in erroneous specific activities. In the adrenal, relative rates of synthesis of cholesteryl esters are monoenes = dienes > tetraenes > trienes = pentaenes > saturated. It is concluded that cholesteryl ester turnover in the rat, as opposed to man, is determined not only by the particular lipoprotein class but also by the fatty acid moiety of the ester.  相似文献   

2.
1. The appearance of exogenous cholesterol in free cholesterol and ester cholesterol of plasma chylomicra, very-low-density (VLD), low-density (LD) and high-density (HD) lipoproteins was studied in unanaesthetized rabbits after ingestion of a meal containing 5% fat and 0.08% [3H]cholesterol. 2. The specific radioactivity of ester cholesterol of VLD lipoproteins reached the highest value of any lipoprotein fraction and for each lipoprotein it increased at a faster rate and reached a higher maximum than that of free cholesterol; the maximum in VLD lipoproteins occurred later than in chylomicra. 3. The pattern of appearance of exogenous cholesterol in chylomicra and VLD lipoproteins of plasma was similar to the pattern previously observed in lymph. The specific radioactivity of ester cholesterol in plasma VLD lipoproteins was higher than that in chylomicra in spite of a larger pool size and dilution of cholesteryl esters from VLD lipoproteins produced by the liver. These results support the concept that during absorption the major portion of exogenous cholesterol is transported in VLD lipoproteins as ester cholesterol. 4. The specific radioactivity of ester cholesterol of chylomicra and VLD lipoproteins increased at a faster rate than that of LD and HD lipoproteins. However, the rate of increase and the absolute values of the specific radioactivity in LD and HD lipoproteins were identical. Since cholesteryl esters are thought not to exchange between lipoproteins, this observation supports the hypothesis that a result of VLD lipoprotein and chylomicron metabolism is the formation of LD and HD lipoproteins. 5. Results in vivo showed that the free cholesterol of individual plasma lipoproteins does not equilibrate within a period of 24h.  相似文献   

3.
The fate of cholesteryl esters of the serum lipoproteins was studied in intact rats and in isolated perfused rat livers. The lipoproteins of fasting rat serum were labeled in vitro with [3H]cholesteryl oleate. Following intravenous injection, it was found that the majority of the radioactive ester was rapidly taken up by the liver where hydrolysis of the ester bond occurred. At 5 min, 58% of the injected material was recovered in the liver, 85% of which was still in the ester form, while at 30 min only 22% of the liver radioactivity was in cholesteryl esters. There was very little difference in the rate at which radioactivity was taken up from the different lipoprotein classes. Similar phenomena were observed in the perfused liver, but it was found that although the radioactive esters were being taken up, there was no change in the concentrations of free or esterified cholesterol in the perfusing medium, indicating that the lipoprotein cholesteryl ester was gaining access to the liver through an exchange of molecules. After uptake, cell fractionation experiments showed that the plasma membranes had the greatest relative amounts of radioactivity, suggesting that this is the site of exchange. Small amounts of radioactivity were recovered in the bile, demonstrating that serum lipoproteins can serve as precursors of at least some of the bile steroids.  相似文献   

4.
S G Price  C Cortese  N E Miller 《Life sciences》1985,36(23):2217-2222
Studies were carried out to determine whether or not plasma lipoprotein cholesteryl esters are available to the liver for biliary cholesterol and bile acid production in humans with intact biliary tracts. Six healthy males were given intravenous infusions of autologous high-density (d, 1.063-1.21; n = 2), low-density (d, 1.019-1.063; n = 2) or intermediate-density (d, 1.006-1.019; n = 2) lipoproteins that had been labelled in vitro with radioactive cholesteryl linoleate (n = 5) or cholesteryl oleate (n = 1). Duodenal contents were continuously aspirated via the intermediate and distal ports of a triple-lumen tube (mean recovery, 64 per cent), through the proximal port of which was infused an amino-acid solution. During 5-6 hours only moderate fluctuations were observed in bile acid and cholesterol secretion rates, implying the existence of near steady-state conditions. In all subjects radioactivity rapidly appeared in both biliary cholesterol and bile acids, and continued to be secreted for the duration of the experiment. The total radioactivity recovered from cholesterol averaged 0.27 per cent of the administered dose; the corresponding figure for bile acids was 11.2 per cent. These results indicate that lipoprotein cholesteryl esters are readily available for biliary lipid production in humans.  相似文献   

5.
A simple method has been developed for labelling human plasma lipoproteins to high specific radioactivity with radioactive cholesteryl esters in vitro. After isolation by preparative ultracentrifugation, the selected lipoprotein was incubated for 30 min at 4 degrees C in human serum (d greater than 1.215) that had been prelabelled with [4-14C]cholesteryl oleate or [1,2-3H]cholesteryl linoleate, and was then re-isolated by ultracentrifugation. All major lipoprotein classes were labelled by the procedure. Specific radioactivities of up to 18 d.p.m. . pmol-1 (46 d.p.m. . ng-1) were achieved. When radiolabelled high-density lipoprotein was infused intravenously, the radioactive cholesteryl ester behaved in vivo indistinguishably from endogenous cholesteryl esters produced by the lecithin (phosphatidylcholine): cholesterol acyltransferase reaction.  相似文献   

6.
The simultaneous exchange of (3h)tocopherol and (14C)cholesterol between rat plasma, rat plasma lipoproteins, and RBC was studied in vitro to compare quantitavely (a) the fractional exchange rates and (b) the half-times for isotope equilibration. In all incubations of RBC with plasma or with plasma lipoprotein fractions, (14C)cholesterol approached equilibrium more rapidly than (3H)tocopherol. When the RBC contained the initial radioactivity, the half-times for equilibration with plasma of cholesterol and of tocopherol were 1.0 and 2.2 hr, respectively. However, the fractional exchange rates (KRBC leads to plasma) were 0.097/hr for cholesterol and 0.188/hr for tocopherol, indicating that the RBC tocopherol pool is turning over almost twice as rapidly as the RBC cholesterol pool. The rat plasma lipoproteins were separated into five fractions by successive ultracentrifugation. Only two fractions, the high density lipoproteins (d 1.063-1.21) and the very low density lipoproteins (d is less than 1.006), participated to a significant extent in the exchange of either tocopherol or cholesterol with RBC. Cholesterol exchange between individual rat plasma lipoproteins and RBC had the same half-times for isotope equilibrium for the very low and high density lipoproteins, and the RBC fractional exchange rates were proportional to the amount of cholesterol in the lipoproteins. In tocopherol exchange between individual rat plasma lipoproteins and RBC, the very low density lipoprotein tocopherol did not equilibrate completely with the RBC. However, the initial rate of tocopherol exchange appeared to be the same for very low and high density lipoproteins. The very low density lipoproteins were disrupted by repeated freezing and thawing or by dehydrating and rehydrating, and analysis of the resulting lipoproteins indicated that free cholesterol was associated more closely than tocopherol with the phospholipid-protein portion of the molecule, which is thought to be on the surface. This difference in distribution of tocopherol and free cholesterol within very low density lipoproteins could account for their different rates of exchange and for the nonequilibrium of tocopherol between RBC and very low density lipoproteins.  相似文献   

7.
The fate of cholesteryl esters in high density lipoprotein (HDL) was studied to determine whether the transfer of esterified cholesterol from HDL to other plasma lipoproteins occurred to a significant extent in man. HDL cholesteryl ester, labelled in vitro with [3H] cholesterol, was injected into human subjects. Labelling of cholesteryl esters in very low density (VLDL) occurred rapidly and by 3 h, the esterified cholesterol in VLDL reached peak specific radioactivity. The removal rate of cholesteryl esters from HDL appeared to be exponential and of the order of 0.2/h; calculation of the apparent flux was about 150 mg/h which approximates reported values for total cholesterol esterification in human plasma in vivo. The rapid rate of labelling of VLDL from HDL suggests that the transfer of HDL cholesteryl esters to VLDL may represent a significant pathway for the disposal of HDL cholesterol.  相似文献   

8.
Three fractionation procedures (immunoaffinity chromatography, two-dimensional nondenaturing electrophoresis, and heparin-agarose affinity chromatography) have been compared in determining the kinetics of free and ester cholesterol transfer in normolipemic native plasma. Similar results were obtained in each case. Cell-derived free cholesterol is initially enriched in high density lipoproteins (HDL) (mainly HDL without apoE); at longer time periods (greater than 10 min) greater proportions are observed in very low density lipoproteins (VLDL) and low density lipoproteins (LDL). The major part of cholesteryl ester (about 90%) was retained in HDL, while VLDL and LDL, which contained about 75% of total cholesteryl ester mass, received only about 10% of cell-derived cholesteryl ester. Within HDL, almost all cholesteryl ester was in the apoE-free fraction. These data provide evidence that lipoprotein free and esterified cholesterol are not at chemical equilibrium in normal plasma, and that cell-derived cholesterol is preferentially directed to HDL. The techniques used had a comparable effectiveness for the rapid fractionation of labile lipoprotein lipid radioactivity.  相似文献   

9.
High density lipoproteins (HDL), doubly labeled with [3H]cholesteryl oleate and cholesteryl [14C]oleate, were reinjected to study HDL cholesteryl ester metabolism in African green monkeys. The transfer of labeled HDL cholesteryl ester to low density lipoprotein (LDL) was rapid and equilibration of the [3H]cholesteryl oleate and cholesteryl [14C]oleate specific activities in LDL and HDL occurred within 90 min after reinjection. The apparent rates of disappearance from the circulation of the two moieties of the cholesteryl ester were different. In the same four animals, the residence time for the turnover of plasma [3H]cholesterol averaged 6.1 days while the residence time for the removal of cholesteryl [14C]oleate from plasma was approximately 2.1 days. These results suggest that for some lipoprotein cholesteryl esters removed from plasma, the cholesterol moiety subsequently reappeared in plasma. The difference between the rate of decay of the 14C-labeled fatty acid moiety, which represents all of the cholesteryl ester removed from plasma (0.48 pools/day) and the decay of the 3H-labeled cholesterol moiety, which represents the sum of cholesteryl ester removal and cholesterol reappearance (0.16 pools/day), is the fraction of the cholesteryl ester pool recycled per day (0.32 pools/day or 22.5 mg/kg per day). In other words, approximately 68% of the cholesterol moiety that was removed from plasma as cholesteryl oleate reappeared in the plasma cholesterol pool. These studies support the concept that an efficient reutilization cycle for plasma cholesterol occurs, i.e., the cholesteryl ester molecule can exit and the cholesterol moiety can re-enter plasma without effective equilibration of the cholesterol moiety with extravascular cholesterol pools.  相似文献   

10.
The mass efflux of free and esterified cholesterol was studied in skin fibroblasts loaded with cholesterol by incubation with low density lipoproteins (LDL) isolated from normal or hypercholesterolemic cynomolgus monkeys. Cells incubated with hypercholesterolemic LDL accumulated 2-3 times more cholesteryl ester than did cells incubated with the same amount of normal LDL. Cholesteryl oleate was the principal cholesteryl ester species to accumulate in cells incubated with both normal and hypercholesterolemic LDL. Efflux of this accumulated cholesterol was absolutely dependent on the presence of a cholesterol acceptor in the culture medium. Lipoprotein-deficient serum (LPDS) was the most potent promoter of cholesterol efflux tested, with maximum efflux occurring at LPDS concentrations greater than 1.5 mg protein/ml. Upon addition of efflux medium containing LPDS, there was a reduction in both the free and esterified cholesterol concentration of the cells. Greater than 90% of the cholesteryl esters that were lost from the cells appeared in the culture medium as free cholesterol, indicating that hydrolysis of cholesteryl esters preceded efflux. Efflux was not inhibited by chloroquine, however, suggesting a mechanism independent of lysosomes. Loss of cellular free cholesterol was maximum by 6 hr and changed very little thereafter up to 72 hr. Cholesteryl ester loss from cells decreased in a log linear fashion for efflux periods of 6-72 hr, with an average half-life for cholesteryl ester efflux of 30 hr, but with a range of 20-50 hr, depending upon the specific cell line. The rate of efflux of cellular cholesteryl esters was similar for cells loaded with normal or hypercholesterolemic LDL. In cells loaded with cholesteryl esters, cholesterol synthesis was suppressed and cholesterol esterification and fatty acid synthesis were enhanced. During efflux, cholesterol synthesis remained maximally suppressed while cholesterol esterification decreased for the first 24 hr of efflux, then plateaued at a level approximately 5-fold higher than control levels, while fatty acid synthesis was slightly stimulated. There was little difference in the rate of efflux of individual cholesteryl ester species. There was, however, the suggestion that reesterification of cholesterol principally to palmitic acid occurred during efflux. Since the rate of cellular cholesteryl ester efflux was similar regardless of whether the cells had been loaded with cholesterol by incubation with normal LDL or hypercholesterolemic LDL, the greater accumulation of cholesterol in cells incubated with hypercholesterolemic LDL cannot be explained by differences in rates of efflux.-St. Clair, R. W., and M. A. Leight. Cholesterol efflux from cells enriched with cholesteryl esters by incubation with hypercholesterolemic monkey low density lipoprotein.  相似文献   

11.
The cholesteryl ester content of plasma low density lipoproteins (LDL) in monkeys has previously been shown to be related to the rate of hepatic cholesterol secretion and cholesteryl ester content of newly secreted lipoproteins in the isolated perfused liver. In the present studies, African green monkeys were fed diets containing cholesterol and 40% of calories as either butter or safflower oil in order to determine the effects of saturated versus polyunsaturated dietary fat on hepatic lipoprotein secretion. The rate of cholesterol accumulation in liver perfusates was correlated with the size of the donor's plasma LDL, but for any rate, a smaller plasma LDL was found in donor animals of the safflower oil group than in those of the butter group. Hepatic very low density lipoproteins (VLDL) were smaller in the safflower oil group but contained more cholesteryl ester and fewer triglyceride molecules per particle than those from the butter group. Livers from the safflower oil group contained more cholesteryl ester and less triglyceride than those from the butter group. The cholesteryl ester percentage composition of hepatic VLDL resembled that of the liver in each group. The data show that dietary polyunsaturated fat decreased plasma LDL size even though it increased the cholesteryl ester content of lipoproteins secreted by the liver. Therefore, intravascular formation of plasma LDL from hepatic precursor lipoproteins appears to include the removal of relatively greater amounts of cholesteryl esters from the precursor lipoproteins in polyunsaturated fat-fed animals.  相似文献   

12.
X Y Shi  S Azhar  E Reaven 《Biochemistry》1992,31(12):3230-3236
Steroidogenic cells are able to utilize lipoprotein-derived cholesteryl esters for steroidogenesis without internalizing intact lipoproteins. In the current report, we provide evidence that an early step in this process may be the selective extraction of cholesteryl esters at the cell (plasma membrane) surface. We have used a highly purified plasma membrane preparation from rat luteinized ovaries for incubation with rat- and human-derived high density (HDL) and low density (LDL) lipoproteins. The lipoproteins were modified with residualizing [125I]apoprotein or [3H]cholesteryl ester markers. Following trypsin treatment to remove intact surface-bound apoprotein particles, the membranes were analyzed for transferred radioactive labels. The results show that all the lipoproteins tested could serve as cholesteryl ester donors. Although far more [3H]cholesteryl ester than [125I]apoprotein radioactivity was transferred to plasma membranes in each case, and varied with the ligand used, the total (net) mass of cholesteryl ester transferred was comparable with the different lipoproteins. These data were confirmed using direct chemical methodology. Transfer was found to be specific for cholesteryl esters or ethers and did not involve other lipoprotein core lipids tested. Endomembranes from the same tissue could not substitute for plasma membranes as the primary cholesteryl ester acceptor. These results provide evidence that a reconstituted lipoprotein-plasma membrane system can simulate the cholesteryl ester extraction process described in situ and suggest uses for this methodology in future experiments designed to understand the transfer process.  相似文献   

13.
Emulsions with lipid compositions similar to the triacylglycerol-rich lipoproteins were metabolized similarly to natural chylomicrons or very-low-density lipoproteins when injected intravenously in rats. Radioactive labels tracing the emulsion triacylglycerols and cholesteryl esters were both removed rapidly from the blood stream, but the removal rate of triacylglycerols was faster than that of cholesteryl ester. Most of the removed cholesteryl ester label was found in the liver, but only a small fraction of the triacylglycerol label was found in this organ, consistent with hepatic uptake of the remnants of the injected emulsion. Emulsions otherwise identical but excluding unesterified cholesterol were metabolized differently. The plasma removal of triacylglycerols remained fast, but the cholesteryl esters were removed very slowly. Heparin stimulated lipolysis, but failed to increase the rate of removal of cholesteryl esters from emulsions lacking cholesterol. Evidently, emulsions lacking cholesterol were acted on by the enzyme lipoprotein lipase, but the resultant triacylglycerol-depleted remnant particle remained in the plasma instead of being rapidly taken up by the liver. Therefore, the presence of emulsion cholesterol is a critical determinant of early metabolic events, and the findings point to a similar role for cholesterol in the natural triacylglycerol-rich lipoproteins.  相似文献   

14.
The effect on the plasma cholesterol esters of diets rich in either carbohydrate, chocolate, or safflower oil was studied sequentially in two men. The changes in the cholesterol esters of the major plasma lipoproteins were studied by measuring (a) the distribution of fatty acids in the esters and (b) the distribution of radioactivity among the esters after the administration of cholesterol-4-(14)C labeled lipoproteins. Similar changes were found in the cholesterol esters of the two major lipoproteins; these changes became apparent within 24 hr after changing diets. Monounsaturated esters predominated with carbohydrate-rich diets. When the chocolate-rich diet was substituted, the proportion of saturated and monounsaturated esters fell and that of cholesteryl linoleate rose. This indicated the utilization of preexisting linoleate in preference to the more saturated fatty acids which abounded in the diet. The substitution of safflower oil led to further increments of cholesteryl linoleate. The possible reasons underlying the preferential incorporation of cholesteryl linoleate in man are discussed.  相似文献   

15.
The distribution of apolipoprotein A-I, apolipoprotein D, lecithin:cholesterol acyltransferase, and cholesteryl ester transfer protein in fasting normal human plasma was determined by two-dimensional electrophoresis followed by immunoblotting. The synthesis and transfer of labeled cholesteryl esters generated in plasma briefly incubated with [3H]cholesterol-labeled fibroblasts was followed in terms of the lipoprotein species containing these antigens. Following the early appearance of labeled free cholesterol in two pre beta-migrating apolipoprotein A-I species (Castro, G. R., and Fielding, C. J. (1988) Biochemistry 27, 25-29), labeled esters were first detected, after a 2-min delay, in a third pre beta-migrating species which also contained apolipoprotein D, lecithin:cholesterol acyltransferase, and cholesteryl ester transfer protein. Pulse-chase experiments determined that label generated in this fraction was the precursor of at least a major part of labeled cholesteryl esters in the bulk of alpha-migrating high density lipoprotein. Over the maximum time course of these experiments (15 min, 37 degrees C), less than 10% of labeled cholesteryl esters were recovered in low or very low density lipoproteins separated by electrophoresis, immunoaffinity, or heparin-agarose chromatography. These data suggest channeling of cell-derived cholesterol and cholesteryl esters derived from it through a preferred pathway involving several minor pre beta-migrating lipoproteins to alpha-migrating high density lipoprotein.  相似文献   

16.
The effect of two different levels of dietary cholesterol (0.16 mg/Kcal and 0.79 mg/cal) on the composition of thoracic lymph duct lipoproteins was studied in two species of nonhuman primates, Ceropithecus aethiops (African green monkey) and Macaca fascicularis (cynomolgus monkey). Diet was infused intraduodenally at a constant rate to facilitate comparisons among animals. The higher level of dietary cholesterol resulted in an increase in the amount of cholesteryl ester in lymph chylomicrons and VLDL. Cholesteryl oleate was the predominant cholesteryl ester present in lymph d less than 1.006 g/ml lipoproteins and it was the predominant cholesteryl ester formed from exogenous radiolabeled cholesterol. The percentage of saturated and monounsaturated cholesteryl esters in lymph chylomicrons and VLDL significantly increased with the higher dietary cholesterol level. The apoprotein distribution of chylomicrons and VLDL was qualitatively similar during infusions of both diets. The apoprotein B of intestinal chylomicrons and VLDL, termed apoprotein B2, was qualitatively similar during low and high cholesterol diet infusion and was significantly smaller than that of plasma LDL apoB, termed apoprotein B1, as indicated by its electrophoretic mobility in SDS-polyacrylamide gels. The major phospholipid present in lymph chylomicrons and VLDL was phosphatidylcholine and the phospholipid composition of the particles was not affected by diet. Lymph d greater than 1.006 g/ml lipoproteins were separated and the cholesterol mass distribution among lipoprotein fractions was found to be similar during both diet infusions. With an increase in the level of dietary cholesterol, the percentage esterification of cholesterol mass and of exogenous cholesterol radioactivity increased in LDL and HDL from lymph. Lymph LDL and HDL contained less free and esterified cholesterol when their composition was compared to that for these lipoproteins in plasma. We conclude that the primary effect of increased dietary cholesterol level was to increase the cholesteryl ester content of all lymph lipoproteins; cholesterol distribution among lymph lipoproteins was unaffected.  相似文献   

17.
[24,25-3H]Cholesteryl ester-labeled rat high-density and low-density lipoproteins were administered to recipient rats. Following death of the rats, a major portion of the radioactivity in administered [3H]cholesteryl ester-high-density lipoprotein rapidly appeared in less dense [3H]cholesteryl ester-lipoproteins and was isolated with the low-density lipoprotein fraction. The specific activity of the esterified cholesterol in the product lipoproteins found with the low-density lipoproteins exceeded that of the precursor high-density lipoproteins. In vitro, the addition of [3H]cholesteryl ester-high-density lipoprotein to plasma resulted in a five- to six-fold increase in radioactivity recovered in the low-density lipoprotein. These results demonstrate that, under a variety of experimental conditions, isolated high-density lipoprotein particles (both in vitro and in vivo) tend to become larger and less dense. Rapid changes in the density of lipoproteins labeled with [3H]cholesteryl ester must be considered when interpreting physiologic studies using this label.  相似文献   

18.
The action of lecithin-cholesterol acyltransferase (LCAT, EC 2.3.1.43) on the different pig lipoprotein classes was investigated with emphasis on low-density lipoproteins (LDL). It was demonstrated previously that LDL can serve as substrate for LCAT, probably because they contain sufficient amounts of apoA-I and other non-apoB proteins, known as LCAT activators. Upon a 24-h incubation of pig plasma in vitro in the presence of active LCAT, both pig LDL subclasses, LDL-1 and LDL-2, fused together, forming one fraction, as revealed by analytical ultracentrifugation. This fusion was time dependent, becoming visible after 3 h and complete after 18 h of incubation. Concomitantly, free cholesterol and phospholipids decreased and cholesteryl esters increased. When isolated LDL-1 and LDL-2 were incubated with purified pig LCAT for 24 h, LDL-1 floated toward higher densities and LDL-2 toward lower densities, although this effect was not as pronounced as in incubations of whole serum. In further experiments, pig serum was incubated for various periods of time in the presence and absence of the LCAT inhibitor sodium iodoacetate. The individual lipoproteins then were separated by density gradient ultracentrifugation or by specific immunoprecipitation and chemically analyzed. Both methods revealed that in the absence of active LCAT there was a transfer of free cholesterol from LDL to high-density lipoproteins (HDL) and a small transfer of cholesteryl esters in the opposite direction. In the presence of LCAT the loss of free cholesterol started immediately in all three lipoprotein classes, was most prominent in LDL, and was proportional to the newly synthesized cholesteryl esters incorporated in each fraction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Swine plasma low density lipoprotein (LDL) isolated ultracentrifugally (d 1.019-1.063) was labeled with 125-I, dialyzed, and reisolated by centrifugation at d 1.063. Over 96% of the radioactivity was shown to be associated with the apoprotein. After reinjection into the donor animal, disapperance of 125-I was followed for up to 122 hr. At all time intervals examined, over 95% of the total plasma 125-I was recovered in LDL (D 1.006-1.063), i.e., there was apparently no transfer of radioactivity to high density or very low density lipoproteins. The disappearance curve was biexponential, with half-lives of 0.83 plus or minus 0.06 and 22.5 plus or minus 1.7 hr for the first and second phases, respectively (13 studies). The mean calculated fractional catabolic rate was 0.041 plus or minus 0.003 hr-minus 1. Similar results were obtained in three dogs using autologous LDL of density 1.020-1.050; fractional catabolic rates were 0.031, 0.031, and 0.029 hr-minus 1. Tissue distribution of 125-I was determined in swine killed at various time intervals after [125-I]LDL injection with corrections for radioactivity in trapped plasma. Of the tissues examined, the liver showed by far the highest concentration. Total hepatic radioactivity, expressed as a percentage of total plasma radioactivity, was rather constant and independent of the time of killing from 3 to 122 hr (15.8 plus or minus 1.9%). The total extravascular LDL pool calculated from analysis of the plasma disappearance curves was about 20-30% of the size of the plasma LDL pool. These data are consistent with the conclusion that the liver accounts for a very large fraction of the total extravascular LDL pool. These data are consistent with the conclusion that the liver accounts for a very large fraction of the total extravascular LDL pool and that it is infairly rapid equilibrium with the plasma pool. To what extent the liver is involved in irreversible degradation cannot be inferred from these findings.  相似文献   

20.
The action of a bacterial acyltransferase similar in overall reaction mechanism to the plasma enzyme lecithin:cholesterol acyltransferase (LCAT) has been studied using normal plasma and lipoproteins and plasma from LCAT-deficient patients. The microbial enzyme (GCAT) catalyzed acyl transfer using phosphatidylcholine and cholesterol in all of the lipoprotein fractions, presumably because it has no apolipoprotein cofactor. In addition, the enzyme was capable of hydrolyzing cholesteryl ester in lipoproteins but not in small unilamellar vesicles nor in micellar dispersions containing low amounts of Triton X-100. This suggests that cholesteryl ester is exposed on the surface of lipoprotein particles or that it may be transferred there quickly from the interior. Although considerable interconversion of radiolabeled cholesterol and cholesteryl ester could be demonstrated upon treatment of normal plasma or lipoproteins with the enzyme, there was little change in the actual amount of either steroid. This indicates that the rate of cholesteryl ester formation is very similar to the rate of hydrolysis. The relative proportions of cholesterol and cholesteryl ester in normal plasma are therefore near the equilibrium ratio for the reaction carried out by GCAT, or the ratio is controlled by the properties of the lipoproteins themselves. During reaction with the microbial acyltransferase, the ratio of cholesterol to cholesteryl ester in plasma from LCAT-deficient patients was reduced substantially, suggesting that the enzyme may have some practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号