首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The burbot, Lota lota, is the only freshwater species of the codfish family and has a Holarctic distribution. Pleistocene glaciations caused significant geographical differentiation in the past, but its life history characterized by winter spawning migrations over large distances is likely to homogenize populations by contemporary gene flow. We investigated the population genetic structure of 541 burbots from Lake Constance and adjacent Rhine and Danube tributaries in Europe using the entire mitochondrial DNA (mtDNA) control region and 11 microsatellites. Microsatellites revealed considerable population divergence (F(ST) = 0.26) and evidenced recent bottlenecks in two Central European rivers. In accordance to previous evidence two main phylogeographic lineages (Atlantic and Danubian) were found co-occurring at similar frequencies in Lake Constance, where they currently undergo random mating as indicated by microsatellites. The Danubian lineage contributed only a small proportion to the lake's mtDNA diversity, and probably expanded within the lake shortly after its formation approximately 10,000-15,000 BP. The larger Atlantic haplotype diversity suggested a population expansion older than the lake itself. Levels of admixture at microsatellite loci were less obvious due to their high variability, and coalescence methods were used to estimate past admixture proportions. Our results reinforce a model of a two-step colonization of Europe by burbot from an ancestral Danubian refuge, and confirm the persistence of a secondary Atlantic refuge, as proposed to exist for other freshwater fish. We conclude that the present-day burbot population in Lake Constance bears the genetic signature of both contemporary gene flow and historical separation events.  相似文献   

2.
Despite increasing information about postglacial recolonization of European freshwater systems, very little is known about pre-Pleistocene history. We used data on the recent distribution and phylogenetic relationships of stone loach mitochondrial lineages to reconstruct the initial colonization pattern of the Danube river system, one of the most important refuges for European freshwater ichthyofauna. Fine-scale phylogeography of the Danubian populations revealed five highly divergent lineages of pre-Pleistocene age and suggested the multiple origin of the Danubian stone loach. The mean sequence divergence among lineages extended from 7.0% to 13.4%, which is the highest intraspecific divergence observed so far within this river system. Based on the phylogeographical patterns, we propose the following hypothesis to relate the evolution and dispersal of the studied species with the evolution of the Danube river system and the Carpathian Mountains: (i) during the warmer period in the Miocene, the areas surrounding the uplifting Alps and Carpathians served as mountainous refuges for cold-water adapted fish and promoted the diversification of its populations, and (ii) from these refuges, colonization of the emerging Danube river system may have taken place following the retreat of the Central Paratethys. Co-existence of highly divergent mtDNA lineages in a single river system shows that range shifts in response to climatic changes during the Quaternary did not cause extensive genetic homogenization in the stone loach populations. However, the wide distribution of some mtDNA lineages indicates that the Pleistocene glaciations promoted the dispersal and mixing of populations through the lowlands.  相似文献   

3.
Life history divergence between populations inhabiting ecologically distinct habitats might be a potent source of reproductive isolation, but has received little attention in the context of speciation. We here test for life history divergence between threespine stickleback inhabiting Lake Constance (Central Europe) and multiple tributary streams. Otolith analysis shows that lake fish generally reproduce at two years of age, while their conspecifics in all streams have shifted to a primarily annual life cycle. This divergence is paralleled by a striking and consistent reduction in body size and fecundity in stream fish relative to lake fish. Stomach content analysis suggests that life history divergence might reflect a genetic or plastic response to pelagic versus benthic foraging modes in the lake and the streams. Microsatellite and mitochondrial markers further reveal that life history shifts in the different streams have occurred independently following the colonization by Lake Constance stickleback, and indicate the presence of strong barriers to gene flow across at least some of the lake-stream habitat transitions. Given that body size is known to strongly influence stickleback mating behavior, these barriers might well be related to life history divergence.  相似文献   

4.
In this study, we used 11 polymorphic microsatellite loci to show that oceanic distances as small as 2-5 km are sufficient to produce high levels of population genetic structure (multilocus F(ST) as high as 0.22) in the Banggai cardinalfish (Pterapogon kauderni), a heavily exploited reef fish lacking a pelagic larval dispersal phase. Global F(ST) among all populations, separated by a maximum distance of 203 km, was 0.18 (R(ST) = 0.35). Moreover, two lines of evidence suggest that estimates of F(ST) may actually underestimate the true level of genetic structure. First, within-locus F(ST) values were consistently close to the theoretical maximum set by the average within-population heterozygosity. Second, the allele size permutation test showed that R(ST) values were significantly larger than F(ST) values, indicating that populations have been isolated long enough for mutation to have played a role in generating allelic variation among populations. The high level of microspatial structure observed in this marine fish indicates that life history traits such as lack of pelagic larval phase and a good homing ability do indeed play a role in shaping population genetic structure in the marine realm.  相似文献   

5.
Freshwater fish are a group that is especially susceptible to biodiversity loss as they often exist naturally in small, fragmented populations that are vulnerable to habitat degradation, pollution and introduction of exotic species. Relatively little is known about spatial dynamics of unperturbed populations of small-bodied freshwater fish species. This study examined population genetic structure of the purple spotted gudgeon (Mogurnda adspersa, Eleotridae), a small-bodied freshwater fish that is widely distributed in eastern Australia. The species is threatened in parts of its range but is common in coastal streams of central Queensland where this study took place. Microsatellite (msat) and mitochondrial DNA (mtDNA) variation was assessed for nine sites from four stream sections in two drainage basins. Very high levels of among population structure were observed (msat F(ST) = 0.18; mtDNA Φ(ST) = 0.85) and evidence for contemporary migration among populations was rare and limited to sites within the same section of stream. Hierarchical structuring of variation was best explained by stream section rather than by drainage basin. Estimates of contemporary effective population size for each site was low (range 28 - 63, Sibship method), but compared favorably with similar estimates for other freshwater fish species, and there was no genetic evidence for inbreeding or recent population bottlenecks. In conclusion, within a stable part of its range, M adspersa exists as a series of small, demographically stable populations that are highly isolated from one another. Complimentary patterns in microsatellites and mtDNA indicate this structuring is the result of long-term processes that have developed over a remarkably small spatial scale. High population structure and limited dispersal mean that recolonisation of locally extinct populations is only likely to occur from closely situated populations within stream sections. Limited potential for recolonisation should be considered as an important factor in conservation and management of this species.  相似文献   

6.
J. R. Ovenden  RWG. White 《Genetics》1990,124(3):701-716
Galaxias truttaceus is found in coastal rivers and streams in south-eastern Australia. It spawns at the head of estuaries in autumn and the larvae spend 3 months of winter at sea before returning to fresh water. In Tasmania there are landlocked populations of G. truttaceus in a cluster of geologically young lakes on the recently glaciated Central Plateau. These populations have no marine larval stage and spawn in the lakes in spring. Speciation due to land locking is thought to be a frequent occurrence within Galaxias. To investigate the nature of the speciation event which may be occurring within lake populations of G. truttaceus we studied the mitochondrial DNA (mtDNA) and allozyme diversity of both lake and stream populations. Using the presence or absence of restriction sites recognized by 13 six-base restriction endonucleases, we found 58 mtDNA haplotypes among 150 fish collected from 13 Tasmanian and one south-east Australian mainland stream populations. The most parsimonious network relating the haplotypes by site loss or gain was starlike in shape. We argue that this arrangement is best explained by selection upon slightly beneficial mutations within the mitochondrial genome. Gene diversity analysis under Wright's island model showed that the populations in each drainage were not genetically subdivided. Only two of these stream haplotypes were found among the 66 fish analyzed from four lake populations. Despite the extreme lack of mtDNA diversity in lake populations, the observed nuclear DNA heterozygosity of 40 lake fish (0.10355) was only slightly less than that of 82 stream fish (0.11635). In the short time (3000-7000 years) that the lake fish have been landlocked, random genetic drift in a finite, stable-sized population was probably not responsible for the lack of mtDNA diversity in the lake populations. We infer the lake populations have probably experienced at least one, severe, but transitory bottleneck possibly induced by natural selection for life-history characters essential for survival in the lacustrine habitat. If speciation is occurring in the landlocked populations of G. truttaceus, then it may be driven by genetic transilience.  相似文献   

7.
Population genetic characteristics are shaped by the life-history traits of organisms and the geologic history of their habitat. This study provides a neutral framework for understanding the population dynamics and opportunities for selection in Semibalanus balanoides, a species that figures prominently in ecological and evolutionary studies in the Atlantic intertidal. We used mitochondrial DNA (mtDNA) control region (N = 131) and microsatellite markers (~40 individuals/site/locus) to survey populations of the broadly dispersing acorn barnacle from 8 sites spanning 800 km of North American coast and 1 site in Europe. Patterns of mtDNA sequence evolution were consistent with larger population sizes in Europe and population expansion at the conclusion of the last ice age, approximately 20?000 years ago, in North America. A significant portion of mitochondrial diversity was partitioned between the continents (?(ST) = 0.281), but there was only weak structure observed from mtDNA within North America. Microsatellites showed significant structuring between the continents (F(ST) = 0.021) as well as within North America (F(ST) = 0.013). Isolation by distance in North America was largely driven by a split between populations south of Cape Cod and all others (P < 10(-4)). The glacial events responsible for generating allelic diversity at mtDNA and microsatellites may also be responsible for generating selectable variation at metabolic enzymes in S. balanoides.  相似文献   

8.
Lake Tanganyika harbors the oldest and most diverse species flock of cichlid fish. Many species are subdivided into numerous genetically and phenotypically distinct populations. Their present distribution and genetic structure were shaped by a series of lake level fluctuations which caused cycles of isolation and admixis and promoted dispersal events. One of the best examples of this phenomenon is the genus Tropheus. We present a comprehensive mtDNA phylogeny based upon 365 individuals of 55 populations from all over Lake Tanganyika, which suggests an almost-contemporaneous origin of eight major mitochondrial lineages about 700 Ka ago. While the distribution of seven lineages is restricted to particular sections of the lake shore, one lineage was found to have a much more widespread distribution. This particular lineage is subdivided into four sublineages which seem to have originated from a single dispersal event about 400 Ka. By using a molecular clock estimate in combination with geological data we derived a hypothetical scenario for the colonization history of Tropheus. Thereby we show a high degree of concordance between major changes of the lake level in the recent history of Lake Tanganyika and three distinct diversification events in this genus.  相似文献   

9.
Abstract Lake Tanganyika harbors the oldest and most diverse species flock of cichlid fish. Many species are subdivided into numerous genetically and phenotypically distinct populations. Their present distribution and genetic structure were shaped by a series of lake level fluctuations which caused cycles of isolation and admixis and promoted dispersal events. One of the best examples of this phenomenon is the genus Tropheus. We present a comprehensive mtDNA phylogeny based upon 365 individuals of 55 populations from all over Lake Tanganyika, which suggests an almost-contemporaneous origin of eight major mitochondrial lineages about 700 Ka ago. While the distribution of seven lineages is restricted to particular sections of the lake shore, one lineage was found to have a much more widespread distribution. This particular lineage is subdivided into four sublineages which seem to have originated from a single dispersal event about 400 Ka. By using a molecular clock estimate in combination with geological data we derived a hypothetical scenario for the colonization history of Tropheus. Thereby we show a high degree of concordance between major changes of the lake level in the recent history of Lake Tanganyika and three distinct diversification events in this genus.  相似文献   

10.
线粒体控制区在鱼类种内遗传分化中的意义   总被引:14,自引:0,他引:14  
线粒体DNA(mtDNA)作为分子标记已被广泛应用于各物种系统发生的研究。mtDNA控制区序列(D-Loop)以其较高的突变积累对于研究物种种内的遗传分化具有重要价值。鱼类是脊椎动物中最原始但在种属数量上又最占优势的类群,其物种繁多,分布广泛,起源复杂,研究其系统发生历来是令人饶有兴趣的课题。D-Loop在研究鱼类种内遗传分化中具有多方面的重要意义。近年来,已有越来越多的研究工作将D-Loop作为分子标记来探讨各种鱼类的种内遗传分化,并且获得了许多有启发性的结果。青海湖是我国内陆最大的咸水湖,湖中主要鱼类为青海湖裸鲤(Gymnocypris przewalskii),D-Loop分析初步结果显示青海湖及其周围河流中的裸鲤似乎没有新的种内遗传分化现象。   相似文献   

11.
Forty-nine populations of brook charr (Salvelinus fontinalis) from Algonquin Park lakes and rivers were analysed for mitochondrial DNA variation. Haplotypic distributions of wild fish in the Algonquin Park region of Ontario, Canada, predominantly reflect postglacial dispersal patterns into the region in spite of substantial hatchery plantings. Two major refugial groupings colonized this region. Northern and eastern watersheds (Amable du Fond, Bonnechere, and northern Petawawa), were colonized primarily by haplotype 1 fish (B1 phylogenetic assemblage), while Oxtongue River, southern Petawawa, and York River populations were colonized predominately by fish from the B2 and A mtDNA phylogenetic assemblages. Fish with haplotypes in the A and B2 phylogenetic assemblages are common in the Lake Huron drainage. All watersheds in the Park drain into the Ottawa River, except the Oxtongue drainage (part of the Lake Huron watershed). This suggests that early glacial outflows south of the Algonquin Park region (Kirkfield-Trent) may have been colonized by fish that initially invaded ‘Ontario island’ (south-western Ontario), while fish which invaded northern Algonquin Park were derived from a different refugial grouping(s) which may have involved colonization both up the Ottawa River drainage, and/or from a more westerly (Mississippian) refugial grouping. A majority of the populations in Algonquin Park have been planted with hatchery reared brook charr since the 1940s. The Hills Lake or ‘Domestic’ strain was used almost exclusively for these plantings. Comparisons of mtDNA haplotypic distributions in hatchery and wild fish suggests that hatchery females had minimal spawning success and/or their progeny had poor survivorship in the wild.  相似文献   

12.
Previous microsatellite analysis showed that two subpopulations of perch (Perca fluviatilis L) exist in Lake Constance. This raises questions of whether (i). Lake Constance was colonized by two populations that diverged in allopatry, or (ii). the two subpopulations diverged in sympatry. Sequence analysis of a 365 bp mtDNA fragment (5'-end of the D-loop) of perch from Lake Constance and adjacent waters revealed 10 haplotypes. We suggest colonization via the Danube river, based on the frequency and dispersion of haplotypes, and knowledge of the lake's palaeohydrological development. Pairwise FST-values using mitochondrial DNA sequences showed no significant population subdivision. Our study provides strong evidence that subpopulations of perch in Lake Constance have diverged in sympatry.  相似文献   

13.
Examination of the genetic structure of the vairone Telestes souffia based on 10 nuclear markers (microsatellites) revealed little-to-moderate genetic differentiation between geographically adjacent populations in the eastern part of Lake Constance in central Europe. Results emphasize the critically endangered status of this freshwater fish in the upper Rhine River system.  相似文献   

14.
Genetic analysis of mitochondrial DNA sequence variation indicates that most of a sample of 396 lake sturgeon, Acipenser fulvescens, from the northern part of their range belonged to either one of two haplotypes. The vast majority of fish from the Great Lakes/St. Lawrence and Mississippi drainages were of a single haplotype while those from the Hudson/James Bay were composed of both haplotypes. This haplotypic distribution suggests that fish from one refugium (possibly Missourian) recolonized the Hudson-James Bay drainage while those from a second (possibly Mississippian) recolonized the Laurentian Great Lakes and St. Lawrence River. Lake sturgeon still inhabit much of their native postglacial distribution in Manitoba, Ontario and Quebec. However, the stresses of commercial overexploitation and habitat alteration, usually through hydroelectric dam construction and operation, have either singly or in tandem brought about the reduction, if not extirpation, of some populations within the range. The largest zone of extirpation and population reduction has occurred in the Lake Winnipeg drainage area, which covers more than one-third of Manitoba. Other areas where populations have been reduced to remnant levels, if not extirpated, include the lower Laurentian Great Lakes of Lake Ontario and Lake Erie. In northern Ontario, lake sturgeon populations whose riverine habitats have been fragmented by two or more dams are substantially reduced from their former levels. In Quebec, more attention has been paid to limiting the exploitive stresses on lake sturgeon populations. Combination of the genetic and status data suggests that both northern and southern populations of lake sturgeon (possibly from two glacial refugia) have been impacted severely from anthropogenic influences.  相似文献   

15.
  • Genetic differences among freshwater fish populations are dependent on life‐history characteristics of the species, including the range of adult dispersal and the extent of homing to natal breeding grounds. However, the effects of variation in such characteristics on population genetic connectivity are rarely studied comparatively among closely related species.
  • We studied population genetic structure within three congeneric cyprinid species from the Lake Malawi catchment that differ substantially in life‐history traits and conservation status, using a combination of microsatellite and mitochondrial DNA markers. Mpasa (Opsaridium microlepis) is a large (70 cm total length) migratory species that spawns in rivers, but as an adult is exclusively known from the main lake body. Sanjika (Opsaridium microcephalum), is a medium size (30 cm total length) species that exists in lake breeding, river‐lake migratory and apparently landlocked populations. Dwarf sanjika (Opsaridium tweddleorum) is a small non‐migratory species (15 cm total length) that persists in small tributaries surrounding the main lake and adjoining rivers.
  • The results revealed striking differences among the three species in spatial genetic structuring. The river‐lake migratory mpasa showed only weak yet significant population genetic structure within the main Lake Malawi catchment, suggesting that there is no strong natal homing. The habitat‐generalist sanjika showed only weak spatial genetic differentiation at microsatellite loci within the Lake Malawi catchment, but moderate structure in mitochondrial DNA, potentially reflecting male‐biased dispersal. The river‐restricted dwarf sanjika showed strong genetic structure in both microsatellite and mitochondrial DNA, suggesting strictly limited dispersal at both adult and juvenile stages.
  • We conclude that contrasting migration life histories have resulted in dramatically different patterns of population genetic structure among these congeneric species. The observed patterns demonstrate how divergent life‐history evolution may strongly influence broader patterns of population genetic connectivity in freshwater fish, with consequences for management and conservation. Specifically the results suggesting gene flow among Lake Malawi populations of mpasa, an IUCN red‐listed ‘Endangered’ species endemic to the lake catchment, imply that conservation initiatives operating at both local and catchment scales are needed to reverse local population decline.
  相似文献   

16.
Mitochondrial DNA (mtDNA) control-region sequences and microsatellite loci length polymorphisms were used to estimate phylogeographical patterns (historical patterns underlying contemporary distribution), intraspecific population structure and gender-biased dispersal of Phocoenoides dalli dalli across its entire range. One-hundred and thirteen animals from several geographical strata were sequenced over 379 bp of mtDNA, resulting in 58 mtDNA haplotypes. Analysis using F(ST) values (based on haplotype frequencies) and phi(ST) values (based on frequencies and genetic distances between haplotypes) yielded statistically significant separation (bootstrap values P < 0.05) among most of the stocks currently used for management purposes. A minimum spanning network of haplotypes showed two very distinctive clusters, differentially occupied by western and eastern populations, with some common widespread haplotypes. This suggests some degree of phyletic radiation from west to east, superimposed on gene flow. Highly male-biased migration was detected for several population comparisons. Nuclear microsatellite DNA markers (119 individuals and six loci) provided additional support for population subdivision and gender-biased dispersal detected in the mtDNA sequences. Analysis using F(ST) values (based on allelic frequencies) yielded statistically significant separation between some, but not all, populations distinguished by mtDNA analysis. R(ST) values (based on frequencies of and genetic distance between alleles) showed no statistically significant subdivision. Again, highly male-biased dispersal was detected for all population comparisons, suggesting, together with morphological and reproductive data, the existence of sexual selection. Our molecular results argue for nine distinct dalli-type populations that should be treated as separate units for management purposes.  相似文献   

17.
Direct estimation of dispersal rates at large geographic scales can be technically and logistically challenging, especially in small animals of low vagility like amphibians. The use of molecular markers to reveal patterns of genetic structure provides an indirect way to infer dispersal rates and patterns of recent and historical gene flow among populations. Here, we use mitochondrial DNA (mtDNA) sequence data and genome-wide amplified fragment length polymorphism markers to examine population structure in the Pyrenean brook newt ( Calotriton asper ) across four main drainages in the French Pyrenees. mtDNA sequence data (2040 bp) revealed three phylogroups shallowly differentiated and with low genetic diversity. In sharp contrast, variation in 382 amplified fragment length polymorphism loci was high and revealed a clear pattern of isolation by distance consistent with long-term restriction of gene flow at three spatial scales: (i) among all four main drainages, (ii) between sites within drainages, and (iii) even between adjacent populations separated by less than 4 km. The high pairwise F ST values between localities across numerous loci, together with the high frequency of fixed alleles in several populations, suggests a combination of marked geographic isolation, small population sizes and very limited dispersal in C. asper . The contrasting lack of variation detected in mtDNA sequence data is intriguing and underscores the importance of multilocus approaches to detect true patterns of gene flow in natural populations of amphibians.  相似文献   

18.
The objective of this study was to examine the spatial genetic relationships of the Lake Qinghai scaleless carp Gymnocypris przewalskii within the Lake Qinghai system, determining whether genetic evidence supports the current taxonomy of Gymnocypris przewalskii przewalskii and Gymnocypris przewalskii ganzihonensis and whether Gymnocypris przewalskii przewalskii are returning to their natal rivers to spawn. Comparison of mitochondrial (control region) variation (42 haplotypes in 203 fish) of G. przewalskii with the postulated ancestral species found in the Yellow River, Gymnocypris eckloni (10 haplotypes in 23 fish), indicated no haplotype sharing, but incomplete lineage sorting. Consistent with the sub-species status, an AMOVA indicated that the Ganzi River population was significantly different from all other river populations (F(ST) = 0·1671, P < 0·001). No genetic structure was found among the other rivers in the Lake Qinghai catchment. An AMOVA of amplified fragment length polymorphism (AFLP) loci, however, revealed significant genetic differences between most spawning populations (F(ST) = 0·0721, P < 0·001). Both mitochondrial and AFLP data found significant differences among G. p. przewalskii, G. p. ganzihonensis and G. eckloni (F(ST) values of 0·1959 and 0·1431, respectively, P < 0·001). Consistent with the incomplete lineage sorting, Structure analysis of AFLP loci showed evidence of five clusters. One cluster is shared among all sample locations, one is unique to G. p. ganzihonensis and G. eckloni, and the others are mostly found in G. p. przewalskii. Genetic evidence therefore supports the current taxonomy, including the sub-species status of G. p. ganzihonensis, and is consistent with natal homing of most Lake Qinghai populations. These findings have significant implications for the conservation and management of this unique and threatened species. The evidence suggests that G. p. przewalskii should be treated as a single population for conservation purposes. Exchangeability of the populations, however, should not be used to promote homogenization of fish spawning in the different rivers. As some degree of genetic divergence was detected in this study, it is recommended that the spawning groups be treated as separate management units.  相似文献   

19.
Genetic variation in many invasive species shows little or no signs of a founder event, suggesting that high genetic diversity may facilitate establishment success. The rocky‐shore, plankton‐feeding cichlid fish Cynotilapia afra is endemic to Lake Malawi, but naturally absent from many suitable sites. In the 1960s, this species was introduced to the southern areas of the lake, presumably as a result of the aquarium fish trade. It has now become established on a number of rocky areas within the Lake Malawi National Park. Here, we analysed DNA sequence variation in the mitochondrial control region of six native and four introduced populations of C. afra, and three populations of the closely‐related and hybridizing Pseudotropheus zebra. In contrast to previous studies of Lake Malawi rock dwelling cichlids, network analyses suggested that native populations of C. afra showed high levels of lineage sorting in mtDNA. Introduced populations showed higher sequence and haplotype diversity than their native counterparts. Our analyses suggested that the elevated gene diversity was largely attributed to the fact that the introduced C. afra populations were derived from several genetically distinct and geographically separate populations, and to a lesser extent because of introgressive hybridization with native P. zebra. The establishment and spread of C. afra may be partly because of its ability to occupy a vacant ecological niche, but it may also have been facilitated by its enhanced genetic diversity.  相似文献   

20.
Okanagan Lake, south-central interior of BC, contains two reproductive ecotypes of kokanee Oncorhynchus nerka ; individuals spawn in tributary streams ('stream-spawners') as well as on shoreline gravel areas ('beach-spawners'). We tested the hypothesis that these sympatric ecotypes comprise a single panmictic population by assaying variation in morphological traits and at allozyme, mitochondrial and minisatellite DNA loci in fish collected from three stream-spawning and two beach-spawning sites. No morphological traits consistently distinguished the reproductive ecotypes with the exception of the number of anal fin rays which was greater in stream-spawning kokanee. Four of 18 allozyme loci screened were polymorphic, but no significant allele frequency differences were detected among populations within ecotypes or between ecotypes. Similarly, allele frequencies at two minisatellite DNA loci were not significantly different among populations or between ecotypes. By contrast, significant differences in the frequencies of mitochondrial DNA restriction fragment length polymorphism (mtDNA RFLP) haplotypes were detected between stream- and beach-spawners, but not among populations within ecotypes. Further, two RFLPs that distinguished stream- and beach-spawning adults were found in juvenile kokanee sampled from the limnetic zone of Okanagan Lake. The two mtDNA RFLPs and a d-loop sequence variant appear to be unique to Okanagan Lake kokanee because we did not observe these haplotypes in sockeye salmon and kokanee sampled outside of Okanagan Lake. Our data suggest that: (i) there is restricted female-mediated gene flow between stream- and beach-spawning kokanee in Okanagan Lake, (ii) the forms have diverged within the lake basin since the retreat of the Wisconsinian glaciers (< ≊ 11 000 years ago), and (iii) distinct reproductive niches may promote divergence in north temperate freshwater fish faunas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号