首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The concentration of 3-phosphoglyceroyl phosphate in erythrocytes was increased by more than 100-fold when red cells were incubated with extracellular phosphoenolpyruvate at 37 degrees C. Since these elevated levels were maintained for 60 min, the metabolism of 3-phosphoglyceroyl phosphate and related compounds could be investigated in phosphoenolpyruvate-treated erythrocytes. 2,3-Bisphosphoglycerate synthesis was not affected by intracellular pH when the 3-phosphoglyceroyl phosphate level was constant but did vary with 3-phosphoglyceroyl phosphate concentration. On the other hand, the relationship between the rate of 2,3-bisphosphoglycerate synthesis and 3-phosphoglyceroyl phosphate concentration was not straightforward. At relatively low concentrations of 3-phosphoglyceroyl phosphate, the observed rate of 2,3-bisphosphoglycerate synthesis agreed with a rate calculated from a formula incorporating kinetic parameters of purified 2,3-bisphosphoglycerate synthase (Rose, Z.B. (1973) Arch. Biochem. Biophys. 158, 903-910). However, at high concentrations of 3-phosphoglyceroyl phosphate, the observed rate of 2,3-bisphosphoglycerate synthesis was lower than the calculated value. The concentration of glucose 1,6-bisphosphate did not increase even when 3-phosphoglyceroyl phosphate was elevated to 200 microM. Elevated levels of intracellular 2,3-bisphosphoglycerate did not inhibit glycolytic activity in these erythrocytes. These results suggest that incubation of erythrocytes with phosphoenolpyruvate is a useful technique to investigate the effect of metabolic perturbations at the intermediate stages of glycolysis.  相似文献   

2.
The binding of Mg2+ to intracellular 2,3-bisphosphoglycerate in the human red blood cell is significant to the function of the cell. We have studied interactions of Mg2+ and Mn2+ with 2,3-bisphosphoglycerate by magnetic resonance spectroscopy. The results of this study reveal the presence of two independent divalent metal cation binding sites of similar affinity (KD = 3.0 ± 0.5 mM) in the 2,3-bisphosphoglycerate molecule, one on each phosphoryl group, contrary to the assumption of one metal ion binding site made in the previous literature. Over the range of their intracellular concentrations, ATP and ADP, however, possess only one metal ion site in spite of the presence of multiple phosphoryl groups. These results are consistent with the chemistry of metal-chelation which requires the formation of 5- or 6-membered rings for the stability of chelate structures.  相似文献   

3.
2,3-Bisphosphoglycerate is a physiologically important regulator of red cell oxygen affinity during mammalian development. The rat has no fetal hemoglobin, but the newborn red cell has low 2,3-bisphosphoglycerate and high ATP concentrations, and high oxygen affinity. This report shows that red cell bisphosphoglyceromutase activity increases from near zero in the newborn rat to very high levels by four weeks of age. This increase roughly parallels the increase in red cell 2,3-bisphosphoglycerate concentration. Red cell pyruvate kinase activity declines ten-fold from birth to four weeks of age. This decrease is associated with a changeover in red cell populations from larger to smaller cells. The glycolytic rate is at least 50% higher in newborn than adult rat red cells. The data suggest that high pyruvate kinase activity and glycolytic rate contribute to the high ATP concentration in newborn rat red cells, but that their low 2,3-bisphosphoglycerate concentration is due primarily to low bisphosphoglyceromutase activity.  相似文献   

4.
A systematic study of the pH-dependent changes in the range 6.6--7.4 of 2,3-bisphosphoglycerate and the adenine nucleotides was performed in the presence and absence of glucose during transitional and steady states. 1. The results indicatethat 2,3-gisphosphoglycerate phosphatase breaks down 2,3-bisphosphoglycerate nearly independent of pH at a rate of 480 mumol 2,3-bisphosphoglycerate x1 cells-1xh-1.2,3-Bisphosphoglycerate mutase is practically completely inhibited below pH value increases in long-term experiments with lower 2,3-bisphosphoglycerate levels. The formation of pyruvate corresponds to the breakdown of 2,3-bisphosphoglycerate afterconsumption of an unknown reducing substance.  相似文献   

5.
-l-Glutamylglutamate (LGG), an endogenous constituent of the brain, reduced the glutamateevoked increase in intracellular Ca2+ in cultured cerebellar granule cells. The extent and properties of this inhibition were different at different Mg2+ concentrations. The intracellular Ca2+ response to NMDA was slightly enhanced by 0.1 mM LGG in normal (1.3 mM) Mg2+ medium, but in Mg2+-free medium LGG was stimulatory at low (0.1–1 M) NMDA and inhibitory at high (0.1–1 mM) NMDA concentrations. In the absence of Mg2+, LGG alone increased cytosolic free Ca2+ and depolarized the cells. These effects were potentiated by glycine and blocked by extracellular Mg2+, 2-amino-5-phosphonopentanoate (APV), 7-chlorokynurenate, 3-amino-1-hydroxypyrrolidin-2-one (HA-966) and 5,7-dinitroquinoxaline-2,3-dione (MNQX). The results indicate that LGG is a partial NMDA agonist. On the other hand, the non-NMDA antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 6,7-dinitroquinoxaline-2,3-dione (DNQX) also inhibited the effects of LGG. This indicates an involvement of non-NMDA receptors in the actions of LGG. The consequent depolarization may also contribute to the activation of NMDA receptor-governed ionophores.  相似文献   

6.
Summary The effects of different concentrations of Mg2+, Ca2+, or Na+ on the morphology and growth of Methanosarcina thermophila TM-1 growing on acetate at concentrations comparable with those found in anaerobic digestors was studied. At 30 mm Mg2+ or less, M. thermophila grew as large aggregates that settled rapidly. At 100 mm Mg2+ or more, the bacteria grew as single cells or a mixture of single cells and small aggregates is suspended culture. Mg2+ was necessary for growth and could not be substituted by addition of either Ca2+ or Na+. The optimal Mg2+ concentration was 30 mm and no growth was observed at 400 mm Mg2+. Cultures could be adapted to 300 mm Mg2+ without a change in growth rate. Added Ca2+ was not required for growth and had no effect on cell morphology. Inhibition by Na+ was directly related to the Mg2+ concentration. When the Mg2+ was 0.05 mm or less, 0.35 m Na+ completely inhibited growth. However, more Na+ was required for inhibition at higher Mg2+ concentrations. The same inhibitory effect of Na+ was observed when the temperature was 52°C or 45°C. The potential for disaggregation of Methanosarcina aggregates in anaerobic digestor environments was discussed. Offprint requests to: B. K. Ahring  相似文献   

7.
Effects of Ca2+ and calmodulin on the adenylate cyclase activity of a prolactin and growth hormone-producing pituitary tumor cell strain (GH3) were examined. The adenylate cyclase activity of homogenates was stimulated approx. 60% by submicromolar free Ca2+ concentrations and inhibited by higher (μM range) concentrations of the cation. A 2–3-fold stimulation of the activity in response to Ca2+ was observed at physiologic concentrations of KCl, with both the stimulatory and inhibitory responses occurring at respectively higher free Ca2+ concentrations. Calmodulin in incubations at low KCl concentrations increased the enzyme activity at all Ca2+ concentrations tested. In incubations conducted at physiologic KCl concentrations, both the inhibitory and stimulatory responses to Ca2+ were shifted by calmodulin to lower respective concentrations of the cation, without significant change occurring in the maximal rate of enzymic activity at optimal free Ca2+. Mg2+ concentrations in the incubation also influenced the Ca2+ concentration dependence of adenylate cyclase; at high Mg2+ more Ca2+ was required to obtain maximal activity. Trifluoperazine inhibited adenylate cyclase of GH3 cells only in the presence of Ca2+; as Ca2+ concentrations in the assay were increased, higher drug concentrations were required to inhibit the enzyme. Ca2+ was also observed to reduce the extent of enzyme destabilization which occurred during pretreatments at warm temperatures. Vasoactive intestinal polypeptide and phorbol myristate acetate, which stimulate prolactin secretion in intact GH3 cells, enhanced enzyme activity 4- and 2.5-fold, respectively, without added Ca2+. Increasing free Ca2+ concentrations reduced the enhancement by VIP and eliminated the stimulation by PMA.  相似文献   

8.
2,3-Bisphosphoglycerate inhibited protein synthesis in reticulocyte lysates with 50% inhibition at 2 mM. Glycerate 2,3-P2 increased the Mg2+ optimum for protein synthesis by chelation of Mg2+, but Mg2+ addition did not completely reverse the inhibition, suggesting an additional site of action. eIF-2 has been used to examine the activity of casein kinase II in reticulocyte lysates in response to glycerate 2,3-P2. When glycerate 2,3-P2 was increased to 4mM, phosphorylation of eIF-2 beta was increasingly inhibited. Thus inhibition of phosphorylation of translational components by casein kinase II can be correlated with inhibition of globin synthesis at physiological concentrations of glycerate 2,3-P2.  相似文献   

9.
ATP and the divalent cations Mg2+ and Ca2+ regulated K+ stimulation of the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum vesicles. Millimolar concentrations of total ATP increased the K+-stimulated ATPase activity of the Ca2+ pump by two mechanisms. First, ATP chelated free Mg2+ and, at low ionized Mg2+ concentrations, K+ was shown to be a potent activator of ATP hydrolysis. In the absence of K+ ionized Mg2+ activated the enzyme half-maximally at approximately 1 mM, whereas in the presence of K+ the concentration of ionized Mg2+ required for half-maximal activation was reduced at least 20-fold. Second MgATP apparently interacted directly with the enzyme at a low affinity nucleotide site to facilitate K+-stimulation. With a saturating concentration of ionized Mg2+, stimulation by K+ was 2-fold, but only when the MgATP concentration was greater than 2 mM. Hill plots showed that K+ increased the concentration of MgATP required for half-maximal enzymic activation approx. 3-fold.Activation of K+-stimulated ATPase activity by Ca2+ was maximal at anionized Ca2+ concentration of approx. 1 μM. At very high concentrations of either Ca2+ or Mg2+, basal Ca2+-dependent ATPase activity persisted, but the enzymic response to K+ was completely inhibited. The results provide further evidence that the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum has distinct sites for monovalent cations, which in turn interact allosterically with other regulatory sites on the enzyme.  相似文献   

10.
A polyacrylamide gel separation method for creatine kinase (CPK) isoenzymes is described, and its use to determine muscle-specific CPK (M-CPK) levels in skeletal muscle cultures is illustrated. In cultures in which cell fusion has been prevented by very low Ca2+ concentrations, the increases in M-CPK after 96 hr are similar to those in control cultures. Slightly higher concentrations of Ca2+, however, inhibit both cell fusion and M-CPK accumulation. As the calcium concentration is gradually increased further, cell fusion is permitted, followed, at even higher Ca2+ levels, by M-CPK accumulation. These effects can be obtained both by adding EGTA to the culture medium and by using Ca2+-free culture medium and varying the Ca2+ concentration directly. The latter method has the advantage that deleterious effects of EGTA on cell attachment and cell numbers do not occur, even at the lowest Ca2+ concentrations. By revealing dramatic effects on CPK levels of small changes in external Ca2+ concentrations, these observations may resolve conflicting data in the literature on the question of whether cell fusion is a prerequisite for muscle-specific protein synthesis. Possible mechanisms for the two effects of Ca2+ on CPK specific activity (permissive at very low, but inhibitory at intermediate, concentrations) are considered, including membrane mediation, mediation by changes in ionized cytoplasmic Ca2+ levels, and possible involvement of cyclic nucleotides.  相似文献   

11.
A factorial experiment was designed to study the effects of Mg2+, K+, and Na+ on the growth and biochemistry of Chlorella sorokiniana. Raising Mg2+ or K+ concentration in the nutrient medium increased growth rates as well as total N levels and Mg2+ and K+ accumulation by the cells. The total N effect was Mg2+-dependent—if Mg2+ was below a certain level in the medium—increasing the K+ concentration did not raise the total N level of cells. Low nutrient levels of K+ decreased the levels of unsaturated fatty acids (especially 18:1 and 18:3), while increasing the levels of palmitic acid (16:0), total fatty acids, and total lipid. Increasing nutrient K+ concentrations were accompanied by increases in levels of some unsaturated fatty acids, with a concomitant reduction in 16:0, total fatty acids and total lipid. Low Mg2+ levels in the nutrient medium reduced the cellular levels of palmitic acid, total fatty acids, total lipid, and certain unsaturated fatty acids (though this last effect also depended on the nutrient level of K+). These relationships indicate that Mg2+ may be important in the initial steps of fatty acid synthesis, whereas K+ may be necessary for the formation of certain unsaturated fatty acids. Variations in Na+ concentration did not have any significant effect on the growth and biochemistry of C. sorokiniana.  相似文献   

12.
The effect of archidonic, oleic and linoleic acid on calcium uptake and release by sarcoplasmic reticulum isolated from longissimus dorsi muscle was investigated using a Ca2+ electrode. All three long chain fatty acids stimulated the release of Ca2+ from sacroplasmic reticulum when added after exogenous Ca2+ was accumulated by the vesicles, and also inhibited Ca2+ uptake when added before Ca2+. This inhibitory effect on the calcium transport by arachidonic, oleic and linoleic acid was prevented by bovine serum albumin through its ability to bind with the fatty acid. The order of effectiveness of the fatty acids in inhibiting calcium transport by isolated sarcoplasmic reticulum was arachidonic acid> oleic acid > linoleic acid. Similar inhibition of calcium uptake and induction of calcium release by arachidonic acid was observed in muscle homogenate sarcoplasmic reticulum preparations. Both arachidonic and oleic acid stimulated the (Ca2+ + Mg2+)-ATPase activity of sarcoplasmic reticulum at low concentrations, but inhibited the (Ca2+ + Mg2+)-ATPase activity at high concentrations. The maximal (Ca2+ + Mg2+-ATPase activity observed with arachidonic acid was twice that obtained with oleic acid, but the concentration of arachidonic acid required was 3–4-times greater than that of oleic acid. The concentration of arachidonic acid required to give maximum stimulation of the (Ca2+ + Mg2+)-ATPase activity was 3.6-times greater than that needed for complete inhibition of calcium accumulation by the sacroplasmic reticulum. With oleic acid, however, the concentration required to give maximum stimulation of the (Ca2+ + Mg2+)-ATPase activity inhibited the sarcoplasmic reticulum Ca2+ accumulation by 72%. The present data support our hypothesis that, in porcine malignant hyperthermia, unsaturated fatty acids from mitochondrial membranes released by endogenous phospholipase A2 would induce the sarcoplasmic reticulum to release calcium (Cheah K.S. and Cheah, A.M. (1981) Biochim. Biophys. Acta 634, 70–84).  相似文献   

13.
Cytosolic ATP-phosphofructokinase (PFK) from spinach leaves (Spinacia oleracea L.) was inhibited by submillimolar concentrations of free Mg2+. The free Mg2+ concentration required for 50% inhibition of PFK activity was 0.22 millimolar. Inhibition by free Mg2+ was independent of the MgATP2− concentration. Inorganic phosphate (Pi) reduces the inhibition of PFK activity by Mg2+. Free ATP (ATP4−) also inhibits PFK activity. For free ATP the inhibition of PFK activity was dependent on the MgATP2− concentration. Fifty percent inhibition of PFK activity requires 1.2 and 3.7 millimolar free ATP at 0.1 and 0.5 millimolar MgATP2−, respectively. It was proposed that free ATP competes for the MgATP2− binding site, whereas free Mg2+ does not. Pi diminished the inhibitory effect of free ATP on PFK activity. Free ATP and Pi had substantial effects on the MgATP2− requirement of cytosolic PFK. For half-maximum saturation of PFK activity 3 and 76 micromolar MgATP2− was required at 0.007 and 0.8 millimolar free ATP in the absence of Pi. At 5 and 25 millimolar Pi, half-maximum saturation was achieved at 9 and 14 micromolar MgATP2−. PFK activity was inhibited by Ca2+. The inhibition by Ca2+ depends upon the total Mg2+ concentration. Fifty percent inhibition of PFK activity required 22 and 32 micromolar Ca2+ at 0.1 and 0.2 millimolar Mg2+, respectively. At physiological concentrations of about 0.5 millimolar free Mg2+, Ca2+ would have little effect on cytosolic PFK activity from spinach leaves. PFK is not absolutely specific for the nucleoside 5′-triphosphate substrate. Besides MgATP2−, MgUTP2−, MgCTP2−, and MgGTP2− could be used as a substrate. All four free nucleotides inhibit PFK activity. The physiological consequences of the regulatory properties of cytosolic PFK from spinach leaves will be discussed. A model will be introduced, in an attempt to describe the complex interaction of PFK with substrates and the effectors Mg2+ and Pi.  相似文献   

14.
Mg2+, Ca2+ and Mn2+ were found to act as activators of the ATP-dependent surface reaction, leading to head-to-head association in bull spermatozoa. Ca2+ was more efficient than Mg2+, while Zn2+, like Na+ + K+ in combination with Mg2+, seemed to have no such effect. High ionic strength induced head-to-head association, as did higher concentrations of Mg2+ and Ca2+ than those necessary for the activation of ATP, Ca2+ acting in a lower conc. than Mg2+. To this effect was added that of the ATP-dependent reaction when ATP was also present. As activators, Mg2+ and Ca2+ did not potentiate each other; their effects were cumulative when the ions acted together.When the ATP concentration within the range 1 × 10−5 to 8 × 10−5 M was increased stepwise in the presence of 2 × 10−5 M Mg2+ or Ca2+, the association resulting from each single concentration step progressively increased. At low cation concentrations, the increase was about the same for the two cations: at higher concentrations it was much steeper in the presence of Ca2+ than in that of Mg2+. In the latter case, it was not statistically significant above 4 × 10−5 M ATP.Increasing the cation concentration in the range 1 × 10−5 to 4 × 10−5 M in the presence of 2 × 10−5 M ATP produced an immediate high increase in association, which was followed by a lower increase. The optimum concentration ratio for Mg2+:ATP was at least 1:1 and for Ca2+: ATP at least 1.5:1.Oubain, containing enone structure, abolishes association.  相似文献   

15.
The activity of glutamine synthetase fromAspergillus niger was significantly lowered under conditions of citric acid fermentation. The intracellular pH of the organism as determined by bromophenol blue dye distribution and fluorescein diacetate uptake methods was relatively constant between 6·0–6·5, when the pH of the external medium was varied between 2·3–7·0.Aspergillus niger glutamine synthetase was rapidly inactivated under acidic pH conditions and Mn2+ ions partially protected the enzyme against this inactivation. Mn2+-dependent glutamine synthetase activity was higher at acidic pH (6·0) compared to Mg2+-supported activity. While the concentration of Mg2+ required to optimally activate glutamine synthetase at pH 6·0 was very high (≥ 50 mM), Mn2+ was effective at 4 mM. Higher concentrations of Mn2+ were inhibitory. The inhibition of both Mn2+ and Mg2+-dependent reactions by citrate, 2-oxoglutarate and ATP were probably due to their ability to chelate divalent ions rather than as regulatory molecules. This suggestion was supported by the observation that a metal ion chelator, EDTA also produced similar effects. Of the end-products of the pathway, only histidine, carbamyl phosphate, AMP and ADP inhibitedAspergillus niger glutamine synthetase. The inhibitions were more pronounced when Mn2+ was the metal ion activator and greater inhibition was observed at lower pH values. These results permit us to postulate that glutamine synthesis may be markedly inhibited when the fungus is grown under conditions suitable for citric acid production and this block may result in delinking carbon and nitrogen metabolism leading to acidogenesis  相似文献   

16.
2,3-Bisphosphoglycerate synthase-phosphatase and the hybrid phosphoglycerate mutase/2,3-bisphosphoglycerate synthase-phosphatase have been partially purified from pig brain. Their 2,3-bisphosphoglycerate synthase, 2,3-bisphosphoglycerate phosphatase and phosphoglycerate mutase activities are concurrently lost upon heating and treatment with reagents specific for histidyl, arginyl and lysyl residues. The two enzymes differ in their thermal stability and sensitivity to tetrathionate. Substrates and cofactors protect against inactivation, the protective effects varying with the modifying reagent. The synthase activity of both enzymes shows a nonhyperbolic pattern which fits to a second degree polynomial. The Km, Ki and optimum pH values are similar to those of the 2,3-bisphosphoglycerate synthase-phosphatase from erythrocytes and the hybrid enzyme from skeletal muscle. The synthase activity is inhibited by inorganic phosphate and it is stimulated by glycolyate 2-P.  相似文献   

17.
Zhu Y  Song XY  Zhao WH  Zhang YX 《The protein journal》2005,24(7-8):479-485
The effect of Mg2+ on the thermal inactivation and unfolding of calf intestinal alkaline phosphatase has been studied at different temperatures and Mg2+ concentrations. Increasing the Mg2+ concentration in the denatured system significantly enhanced the inactivation and unfolding of the enzyme during thermal inactivation. The analysis of the kinetic course of substrate reaction during thermal inactivation showed that at 47°C the increased free Mg2+ concentration caused the inactivation rate to increase. Increasing the temperature strengthened the effect of Mg2+ on the thermal inactivation. Control experiment showed that this is not due to salt effect. The time course of fluorescence emission spectra showed that the emission maximum for Mg2+-containing system was always higher than that of Mg2+-free system, and the higher temperature enhanced this difference. In addition, Mg2+also enhanced the unfolding rate of the enzyme at 47°C. The potential biological significance of these results are discussed.  相似文献   

18.
The purified PMCA supplemented with phosphatidylcholine was able to hydrolyze pNPP in a reaction media containing only Mg2+ and K+. Micromolar concentrations of Ca2+ inhibited about 75% of the pNPPase activity while the inhibition of the remainder 25% required higher Ca2+ concentrations. Acidic lipids increased 5-10 fold the pNPPase activity either in the presence or in the absence of Ca2+. The activation by acidic lipids took place without a significant change in the apparent affinities for pNPP or K+ but the apparent affinity of the enzyme for Mg2+ increased about 10 fold. Thus, the stimulation of the pNPPase activity of the PMCA by acidic lipids was maximal at low concentrations of Mg2+. Although with differing apparent affinities vanadate, phosphate, ATP and ADP were all inhibitors of the pNPPase activity and their effects were not significantly affected by acidic lipids. These results indicate that (a) the phosphatase function of the PMCA is optimal when the enzyme is in its activated Ca2+ free conformation (E2) and (b) the PMCA can be activated by acidic lipids in the absence of Ca2+ and the activation improves the interaction of the enzyme with Mg2+.  相似文献   

19.
Phosphorylation of deoxyguanosine in intact and fractured mitochondria   总被引:1,自引:0,他引:1  
The phosphorylation of deoxyguanosine was measured in fractured and intact mitochondria and an apparent Km of 16 M for deoxyguanosine was calculated using fractured mitochondria. The effects of various deoxynucleotides on the phosphorylating activity in fractured organelles was tested at both a high and low ratio of NXP/ATP and at two pH values, 7.0 and 5.5. Exogenous dGTP, dGDP or dITP were inhibitory under all conditions tested. With a NXP/ATP ratio of 0.08 at pH 7.0, TTP, TDP, dADP, ADP, UTP and UDP were stimulatory, but at pH 5.5 only TTP elicited that response. When the NXP/ATP ratio was 10 at pH 5.5, TTP and UTP increased the activity more than 10-fold, whereas, at pH 7.0 TTP, TDP, dADP, ADP, UTP, UDP caused stimulation, but to a much lesser extent. When exogenous Mg2+, Mn2+ or Ca2+ were added to intact mitochondria, the rates of phosphorylation were lowered. In fractured mitochondria in the absence of exogenous ATP, little phosphorylation occurs, hence these metal ions caused little change. ATP-Mg, ATP-Mn and ATP-Ca, each at 0.05 mM caused a small inhibition with intact mitochondria, whereas, these compounds supported phosphorylation with fractured organelles. ATP-Mn (10 mM) or ATP-Ca (10 mM) stimulated phosphorylation in both intact and fractured mitochondria. Intact mitochondria synthesized dGMP, dGDP and dGTP when metal ion or ATP-Me concentrations were low (0.05 mM) or when Mg2+ concentration was high (10 mM). Additions of ATP-Ca, ATP-Mn, ATP-Mg, Mn2+ or Ca2+ at 10 mM cause the loss of dGDP and dGTP formation and, in most cases, an increase in the synthesis of dGMP. Fractured mitochondria make only dGMP and the levels of its synthesis are greater than that observed for intact mitochondria. These data suggest that intact mitochondria are required for the synthesis of dGTP and that its synthesis is regulated by mitochondria nucleotides.  相似文献   

20.
The phosphorylation of phosvitin in vitro by a cyclic nucleotide-independent protein kinase (phosvitin kinase) derived from rooster liver is markedly stimulated by the divalent cation, Mg2+. In addition, the activity is further stimulated by low concentrations of the polyamines putrescine, spermidine and spermine leading to higher rates of phosphate incorporation than could be obtained at any concentration of Mg2+. Spermine is inhibitory at higher concentrations. The polyamines shift the Mg2+ requirement for maximal activity to lower concentrations. The activity of a cyclic AMP-dependent histone kinase from beef heart is not altered by the presence of polyamines. Heparin is a potent inhibitor of phosvitin kinase but has no effect on histone kinase. Polyribonucleotides (polyadenylic acid and transfer RNA) inhibit both types of kinases, but the degree of inhibition of phosvitin kinase is variable and depends upon the type of the polyanion present. Spermidine and spermine, but not Mg2+, efficiently counteract the inhibitory action of heparin and tRNA. The results suggest that, also in vivo, naturally occurring polyamines and polyanions such ass tRNA may have a regulatory function on protein kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号