首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The modulatory activity of two xanthones (3,4-dihydroxyxanthone and 1-formyl-4-hydroxy-3-methoxyxanthone) on isoforms alpha, betaI, delta, eta and zeta of protein kinase C (PKC) was evaluated using an in vivo yeast phenotypic assay. Both xanthones caused an effect compatible with PKC inhibition, similar to that elicited by known PKC inhibitors (chelerythrine and NPC 15437). PKC inhibition caused by xanthones was confirmed using an in vitro kinase assay. The yeast phenotypic assay revealed that xanthones present differences on their potency towards the distinct PKC isoforms tested. It is concluded that 3,4-dihydroxyxanthone and 1-formyl-4-hydroxy-3-methoxyxanthone may become useful PKC inhibitors and xanthone derivatives can be explored to develop new isoform-selective PKC inhibitors.  相似文献   

2.
Human promyelocytic leukemia cells (HL-60) were treated with several differentiation inducers, then the changes in the activity of cytosolic protein kinase C (PKC) isoforms were examined by hydroxylapatite chromatography and the species of the isoforms were determined immunologically. In three undifferentiated HL-60 cell lines examined, PKC alpha and beta isoforms were present, but PKC gamma isoform was not detected. When the cells were induced by dimethylsulfoxide, dibutyryl cAMP, or nicotinamide to differentiate into granulocytes, these two PKC isoforms each increased to about 2- to 3-fold. When retinoic acid was used as the inducer, in addition to PKC alpha and beta, a third PKC isoform appeared. This isoform was clearly distinct from rat PKC alpha, beta, and gamma, immunologically. This isoform showed a distinctly lower Ca(2+)-requirement (3 microM) than that of PKC alpha or beta (100 microM) and was more dependent on cardiolipin and phosphatidylethanolamine, compared with PKC alpha, beta, and gamma. These results suggest that while the increases in the activities of PKC alpha and beta isoforms are common in the differentiation program initiated by several inducers, including retinoic acid, the emergence of an unclassified PKC isoform is a retinoic acid-specific process.  相似文献   

3.
蛋白激酶C亚型在HL—60细胞诱导分化中的变化   总被引:1,自引:0,他引:1  
用全反式维甲酸(ATRA)或佛波酯(PMA)处理人早幼粒白血病细胞(HL-60)3天,用形态学,NBT还原实验,特异性和非特异性酯酶测定,证明细胞分别向粒细胞或单核/巨噬细胞分化。通过免疫组化法观察了蛋白激酶C(PKC)α,βⅠ和βⅡ亚型在分化后的变化。结果显示,ATRA可引起HL-60细胞PKCα,βⅠ和βⅡ的含量升高,分别为对照的5.0,2.8和4.2倍,并存在从胞膜向胞质转位。PMA则使PC  相似文献   

4.
Accumulating evidence suggests that specific isoforms of PKC may function to promote apoptosis. We show here that activation of the conventional and novel isoforms of PKC with 12-O-tetradecanoyl phorbol-13- ester (TPA) induces apoptosis in salivary acinar cells as indicated by DNA fragmentation and activation of caspase-3. TPA-induced DNA fragmentation, caspase-3 activation, and morphologic indicators of apoptosis, can be enhanced by pretreatment of cells with the calpain inhibitor, calpeptin, prior to the addition of TPA. Analysis of PKC isoform expression by immunoblot shows that TPA-induced downregulation of PKC alpha and PKC delta is delayed in cells pre-treated with calpeptin, and that this correlates with an increase of these isoforms in the membrane fraction of cells. TPA-induced apoptosis is accompanied by biphasic activation of the c-jun-N-terminal kinase (JNK) pathway and inactivation of the extracellular regulated kinase (ERK) pathway. Expression of constitutively activated PKC alpha or PKC delta, but not kinase negative mutants of these isoforms, or constitutively activated PKC epsilon, induces apoptosis in salivary acinar cells, suggesting a role for these isoforms in TPA-induced apoptosis. These studies demonstrate that activation of PKC is sufficient for initiation of an apoptotic program in salivary acinar cells. Cell Death and Differentiation (2000) 7, 1200 - 1209.  相似文献   

5.
Freshly enzymatically isolated pancreatic acini from lactating and weaning Wistar rats were used to investigate the role of protein kinase C (PKC) isoforms during these physiologically relevant pancreatic secretory and growth processes. The combination of immunoblot and immunohistochemical analysis shows that the PKC isoforms alpha, delta, and epsilon are present in pancreatic acini from control, lactating and weaning rats. A vesicular distribution of PKC-alpha, -delta, and -epsilon was detected by immunohistochemical analysis in the pancreatic acini from all the experimental groups. PKC-delta showed the strongest PKC immunoreactivity (PKC-IR). In this vesicular distribution, PKC-IR was located at the apical region of the acinar cells. No differences were observed between control, lactating and weaning rats. However, the immunoblot analysis of pancreatic PKC isoforms during lactation and weaning showed a significant translocation of PKC-delta from the cytosol to the membrane fraction when compared with control animals. Translocation of PKC isoforms (alpha, delta and epsilon) in response to 12-O-tetradecanoyl phorbol 13-acetate (TPA) 1 microM (15 min, 37 degrees C) was comparable in pancreatic acini from control, lactating and weaning rats. In the control group, a significant translocation of all the isoforms (alpha, delta and epsilon) from the cytosol to the membrane was observed. The PKC isoform most translocated by TPA was PKC-delta. In contrast, no statistically significant increase in PKC-delta translocation was detected in pancreatic acini isolated from lactating or weaning rats. These results suggest that the PKC isoforms are already translocated to the surface of the acinar cells from lactating or weaning rats. In addition, they suggest that isoform specific spatial PKC distribution and translocation occur in association with the growth response previously described in the rat exocrine pancreas during lactation and weaning.  相似文献   

6.
Protein kinase C (PKC) isoforms play distinct roles in cellular functions. We have previously shown that ionizing radiation activates PKC isoforms (alpha, delta, epsilon, and zeta), however, isoform-specific sensitivities to radiation and its exact mechanisms in radiation mediated signal transduction are not fully understood. In this study, we showed that overexpression of PKC isoforms (alpha, delta, epsilon, and zeta) increased radiation-induced cell death in NIH3T3 cells and PKC epsilon overexpression was predominantly responsible. In addition, PKC epsilon overexpression increased ERK1/2 activation without altering other MAP-kinases such as p38 MAPK or JNK. Co-transfection of dominant negative PKC epsilon (PKC epsilon -KR) blocked both PKC epsilon -mediated ERK1/2 activation and radiation-induced cell death, while catalytically active PKC epsilon construction augmented these phenomena. When the PKC epsilon overexpressed cells were pretreated with PD98059, MEK inhibitor, radiation-induced cell death was inhibited. Co-transfection of the cells with a mutant of ERK1 or -2 (ERK1-KR or ERK2-KR) also blocked these phenomena, and co-transfection with dominant negative Ras or Raf cDNA revealed that PKC epsilon -mediated ERK1/2 activation was Ras-Raf-dependent. In conclusion, PKC epsilon -mediated ERK1/2 activation was responsible for the radiation-induced cell death.  相似文献   

7.
To investigate the roles of protein kinase C (PKC) isoforms in Echinoderms, we cloned starfish cDNAs for novel, atypical, and conventional PKCs. They showed highest homology with PKCδ, ι, and α isoforms respectively. It was predicted from the whole genome sequence and by RT-PCR that sea urchin has only one isoform of each PKC subgroups. It is thus likely that these isoforms are the prototypes or ancestors of the PKC subgroups. The phylogenetic tree suggests that atypical PKC was first formed by evolution from the common prototype of AGC protein kinase family, and novel and conventional PKCs next. RT-PCR analysis indicated that novel and atypical PKC mRNAs are expressed ubiquitously in all tissues of adult starfish, whereas conventional PKC mRNA is expressed mainly in the ovary and oocytes, and only slightly in the tube foot and stomach. Upon heterologous expression, only atypical PKC was expressed in the functional form in insect cells.  相似文献   

8.
Individual protein kinase C (PKC) isoforms fulfill distinct roles in the regulation of the commitment to differentiation, cell cycle arrest, and apoptosis in both monocytes and T-cells. The human monocyte like cell line U937 and T-cells were exposed to microgravity, during spaceflight and the translocation (a critical step in PKC signaling) of individual isoforms to cell particulate fraction examined. PKC activating phorbol esters induced a rapid translocation of several PKC isoforms to the particulate fraction of U937 monocytes under terrestrial gravity (1 g) conditions in the laboratory. In microgravity, the translocation of PKC beta II, delta, and epsilon in response to phorbol esters was reduced in microgravity compared to 1 g, but was enhanced in weak hypergravity (1.4 g). All isoforms showed a net increase in particulate PKC following phorbol ester stimulation, except PKC delta which showed a net decrease in microgravity. In T-cells, phorbol ester induced translocation of PKC delta was reduced in microgravity, compared to 1 g, while PKC beta II translocation was not significantly different at the two g-levels. These data show that microgravity differentially alters the translocation of individual PKC isoforms in monocytes and T-cells, thus providing a partial explanation for the modifications previously observed in the activation of these cell types under microgravity.  相似文献   

9.
Mangostin, Garcinia mangostana L. is used as a traditional medicine in southeast Asia for inflammatory and septic ailments. Hitherto we indicated the anticancer activity induced by xanthones such as alpha-, beta-, and gamma-mangostin which were major constituents of the pericarp of mangosteen fruits. In this study, we examined the effect of xanthones on cell degranulation in rat basophilic leukemia RBL-2H3 cells. Antigen (Ag)-mediated stimulation of high affinity IgE receptor (FcepsilonRI) activates intracellular signal transductions resulting in the release of biologically active mediators such as histamine. The release of histamine and other inflammatory mediators from mast cell or basophils is the primary event in several allergic responses. These xanthones suppressed the release of histamine from IgE-sensitized RBL-2H3 cells. In order to reveal the inhibitory mechanism of degranulation by xanthones, we examined the activation of intracellular signaling molecules such as Lyn, Syk, and PLCgammas. All the xanthones tested significantly suppressed the signaling involving Syk and PLCgammas. In Ag-mediated activation of FcepsilonRI on mast cells, three major subfamilies of mitogen-activated protein kinases were activated. The xanthones decreased the level of phospho-ERKs. Furthermore, the levels of phospho-ERKs were observed to be regulated by Syk/LAT/Ras/ERK pathway rather than PKC/Raf/ERK pathway, suggesting that the inhibitory mechanism of xanthones was mainly due to suppression of the Syk/PLCgammas/PKC pathway. Although intracellular free Ca(2+) concentration ([Ca(2+)](i)) was elevated by FcepsilonRI activation, it was found that alpha- or gamma-mangostin treatment was reduced the [Ca(2+)](i) elevation by suppressed Ca(2+) influx.  相似文献   

10.
11.
Immunological homeostasis is often maintained by counteractive functions of two different cell types or two different receptors signaling through different intermediates in the same cell. One of these signaling intermediates is protein kinase C (PKC). Ten differentially regulated PKC isoforms are integral to receptor-triggered responses in different cells. So far, eight PKC isoforms are reported to be expressed in macrophages. Whether a single receptor differentially uses PKC isoforms to regulate counteractive effector functions has never been addressed. As CD40 is the only receptor characterized to trigger counteractive functions, we examined the relative role of PKC isoforms in the CD40-induced macrophage functions. We report that in BALB/c mouse macrophages, higher doses of CD40 stimulation induce optimum phosphorylation and translocation of PKCα, βI, βII, and ε whereas lower doses of CD40 stimulation activates PKCδ, ζ, and λ. Infection of macrophages with the protozoan parasite Leishmania major impairs PKCα, βI, βII, and ε isoforms but enhances PKCδ, ζ, and λ isoforms, suggesting a reciprocity among these PKC isoforms. Indeed, PKCα, βI, βII, and ε isoforms mediate CD40-induced p38MAPK phosphorylation, IL-12 expression, and Leishmania killing; PKCδ and ζ/λ mediate ERK1/2 phosphorylation, IL-10 production, and parasite growth. Treatment of the susceptible BALB/c mice with the lentivirally expressed PKCδ- or ζ-specific short hairpin RNA significantly reduces the infection and reinstates host-protective IFN-γ-dominated T cell response, defining the differential roles for PKC isoforms in immune homeostasis and novel PKC-targeted immunotherapeutic and parasite-derived immune evasion strategies.  相似文献   

12.
Rapid signal transduction pathways play a prominent role in mediating neuroprotective actions of estrogen in the CNS. We have previously shown that estrogen-induced neuroprotection of primary cerebrocortical neurons from beta-amyloid peptide (Abeta) toxicity depends on activation of protein kinase C (PKC). PKC activation with phorbol-12-myristate-13-acetate (PMA) also provides neuroprotection in this paradigm. Because the PKC family includes several isoforms that have opposing roles in regulating cell survival, we sought to identify which PKC isoforms contribute to neuroprotection induced by PMA and estrogen. We detected protein expression of multiple PKC isoforms in primary neuron cultures, including conventional (alpha, betaI, betaII), novel (delta, epsilon, theta) and atypical (zeta, iota/lambda) PKC. Using a panel of isoform-specific peptide inhibitors and activators, we find that novel and atypical PKC isoforms do not participate in the mechanism of either PMA or estrogen neuroprotection. In contrast, a selective peptide activator of conventional PKC isoforms provides dose-dependent neuroprotection against Abeta toxicity. In addition, peptide inhibitors of conventional, betaI, or betaII PKC isoforms significantly reduce protection afforded by PMA or 17beta-estradiol. Taken together, these data provide evidence that conventional PKC isoforms mediate phorbol ester and estrogen neuroprotection of cultured neurons challenged by Abeta toxicity.  相似文献   

13.
The action of platelet activating factor (PAF) on subcellular distribution and activity of protein kinase C (PKC) isoforms in rabbit platelets was analyzed. The results showed an increase of PKC alpha in membrane fraction, concomitantly with a decrease in cytosolic fraction after 5 min PAF treatment, indicating that a translocation of PKC alpha occurred. In addition, PKC zeta was redistributed in a "reverse" form, from the membrane to cytosolic fraction after PAF treatment. PAF induced an increase of PKC alpha activity, whereas a decrease rather than increase in PKC zeta was observed by using immunoprecipitation assays. In addition, some results indicated that PI3 kinase activation was not involved in PAF-induced PKC zeta translocation as occur in several cells and with other agonists. These actions were time- and concentration-dependent, and were inhibited by the treatment with a PAF antagonist. No translocation was observed when the platelets were incubated with lysoPAF, a PAF related compound.The redistribution of PKC isoforms take place through the activation of high specificity PAF binding sites. The pretreatment of the rabbit platelets with staurosporine, a putative inhibitor of PKC, completely blocked the PAF-evoked aggregation without affecting to PAF-evoked shape change and serotonin release. All together, these data could suggest that the specific translocation of PKC isoforms play an important role in the activation of rabbit platelets.  相似文献   

14.
There is evidence involving protein kinase C (PKC) in the signal transduction pathways that regulate the differentiation of myoblasts into mature multinucleated muscle cells (myotubes). In order to obtain information on the possible role of individual PKC isozymes in myogenesis, in the present work we investigated the differential expression of PKC isoforms alpha, beta, delta, epsilon, and zeta during muscle cell development in vitro. Chick embryo myoblasts cultured from 1 to 6 days were used as experimental model. Morphological characterization and measurement of specific biochemical parameters in cultures, e.g., DNA synthesis, creatine kinase activity, and myosin levels, revealed a typical muscle cell developmental pattern consisting of an initial proliferation of myoblasts followed by their differentiation into myotubes. PKC activity was high at the proliferation stage, decreased as myoblasts elongated and fused, and increased again in differentiated myotubes. In proliferating myoblasts, the PKC inhibitors calphostin C and bisindolylmaleimide I decreased DNA synthesis whereas in myoblasts undergoing differentiation they exerted the opposite effect, suggesting that PKC plays a role at both stages of myogenesis. Western blot analysis of changes in the expression of PKC isoforms during muscle cell development showed high levels of PKC alpha in the proliferating phase which markedly decreased as myoblasts differentiated. Treatment with TPA of proliferative myoblasts inhibited DNA synthesis and selectively down-regulated PKC alpha, suggesting that this isozyme may have an important role in maintaining myoblast proliferation. On the other hand, an increase in the expression of PKC beta, delta, and epsilon was detected during myogenesis, suggesting that one or more of these isoforms may participate in the differentiation process of myoblasts.  相似文献   

15.
Salmonella typhimurium elicits an intense proinflammatory response characterized by movement of polymorphonuclear neutrophils (PMN) across the epithelial barrier to the intestinal lumen. We previously showed that S. typhimurium, via the type III secretion system effector protein SipA, initiates an ADP-ribosylation factor-6- and phospholipase D-dependent lipid-signaling cascade that directs activation of protein kinase C (PKC) and subsequent transepithelial movement of PMN. Here we sought to determine the specific PKC isoforms that are induced by the S. typhimurium effector SipA in model intestinal epithelia and to link the functional consequences of these isoforms in the promotion of PMN transepithelial migration. In vitro kinase PKC activation assays performed on polarized monolayers of T84 cells revealed that S. typhimurium and recombinant SipA induced activation of PKC-alpha, -delta, and -epsilon. To elucidate which of these isoforms play a key role in mediating epithelial cell responses that lead to the observed PMN transepithelial migration, we used a variety of PKC inhibitors with different isoform selectivity profiles. Inhibitors selective for PKC-alpha (G?-6976 and 2,2',3,3',4,4'-hexahydroxyl-1,1'-biphenyl-6,6'-dimethanoldimethyl ether) markedly reduced S. typhimurium- and recombinant SipA-induced PMN transepithelial migration, whereas inhibitors to PKC-delta (rottlerin) or PKC-epsilon (V1-2) failed to exhibit a significant decrease in transepithelial movement of PMN. These results were confirmed biochemically and by immunofluorescence coupled to confocal microscopy. Our results are the first to show that the S. typhimurium effector protein SipA can activate multiple PKC isoforms, but only PKC-alpha is involved in the signal transduction cascade leading to PMN transepithelial migration.  相似文献   

16.
The roles of protein kinase C (PKC) isoforms in cholinergic potentiation of glucose-induced insulin secretion were investigated in rat pancreatic islets. Western-blot analysis showed the presence of PKC-alpha, betaII, delta, epsilon, eta, and zeta, but not PKC-betaI, gamma, or iota, in the islets. Carbachol (CCh) caused translocations of PKC-alpha, betaII, delta, and epsilon from the cytosol to the plasma membrane. CCh facilitated 7-mM glucose-induced insulin secretion from isolated rat islets. The CCh-stimulated insulin secretion was significantly suppressed by the generic PKC inhibitor chelerythrine. In contrast, Go 6976, an inhibitor of conventional PKC isoforms, had no effect on the insulin secretion stimulated by CCh, although it significantly inhibited that induced by phorbol 12-myristate 13-acetate. These results suggest that the novel PKC isoforms activated by CCh, i.e., PKC-delta and/or epsilon, participate in the stimulatory effect of CCh on insulin secretion.  相似文献   

17.
18.
Excessive activation of N-methyl-D-aspartate (NMDA) receptors leads to cell death in human embryonic kidney-293 (HEK) cells which have been transfected with recombinant NMDA receptors. To evaluate the role of protein kinase C (PKC) activation in NMDA-mediated toxicity, we have analyzed the survival of transfected HEK cells using trypan blue exclusion. We found that NMDA-mediated death of HEK cells transfected with NR1/NR2A subunits was increased by exposure to phorbol esters and reduced by inhibitors of PKC activation, or PKC down-regulation. The region of NR2A that provides the PKC-induced enhancement of cell death was localized to a discrete segment of the C-terminus. Use of isoform-specific PKC inhibitors showed that Ca(2+)- and lipid-dependent PKC isoforms (cPKCs), specifically PKCbeta1, was responsible for the increase in cell death when phorbol esters were applied prior to NMDA in these cells. PKC activity measured by an in vitro kinase assay was also increased in NR1A/NR2A-transfected HEK cells following NMDA stimulation. These results suggest that PKC acts on the C-terminus of NR2A to accentuate cell death in NR1/NR2A-transfected cells and demonstrate that this effect is mediated by cPKC isoforms. These data indicate that elevation of cellular PKC activity can increase neurotoxicity mediated by NMDA receptor activation.  相似文献   

19.
Protein kinase C beta (PKC beta): normal functions and diseases   总被引:2,自引:0,他引:2  
PKC beta I and PKC beta II are DAG- and Ca(2+)-dependent conventional or classical isoforms of protein kinase C. Generated by alternative splicing from a single gene, they differ at their C-terminal 50 (beta I) or 52 (beta II) residues. They are expressed as major PKC isoforms in a variety of tissues, and thus the functions ascribed to "PKC" based on early studies using phorbol esters and PKC inhibitors could be attributed to them. As tools to probe into isoform-specific functions have recently become available, our understanding of the normal functions of these isoforms has dramatically increased. This minireview will focus mainly on two areas of signal transduction where the roles of PKC beta I and PKC beta II are relatively well-characterized: immunoreceptor and insulin receptor systems. Their involvement in disorders due to pertubations in these signaling systems, i.e., immunodeficiencies and diabetes, is also reviewed. Finally, patterns of PKC action in these and other biologic systems are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号