首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new crystalline polymorph of Bombyx mori silk, which forms at the air–water interface, has been characterized. A previous study found this structure to be trigonal, and to be distinctly different than the two previously observed silk crystal structures, silk I and silk II. This new structure was named silk III. Identification of this new silk polymorph was based on evidence from transmission electron microscopy and electron diffraction, coupled with molecular modeling. In the current paper, additional data enables us to refine our model of the silk III structure. Some single crystal electron diffraction patterns indicate a deviation in symmetry away from a perfect trigonal unit cell to monoclinic unit cell. The detailed shape of the powder diffraction peaks also supports a monoclinic cell. The monoclinic crystal structure has an nonprimitive unit cell incorporating a slightly distorted hexagonal packing of silk molecular helices. The chains each assume a threefold helical conformation, resulting in a crystal structure similar to that observed for polyglycine II, but with some additional sheet-like packing features common to the threefold helical crystalline forms of many glycine-rich polypeptides. © 1997 John Wiley & Sons, Inc. Biopoly 42: 705–717, 1997  相似文献   

2.
Protein structural transitions and beta-sheet formation are a common problem both in vivo and in vitro and are of critical relevance in disparate areas such as protein processing and beta-amyloid and prion behavior. Silks provide a "databank" of well-characterized polymorphic sequences, acting as a window onto structural transitions. Peptides with conformationally polymorphic silk-like sequences, expected to exhibit an intractable beta-sheet form, were characterized using Fourier transform infrared spectroscopy, circular dichroism, and electron diffraction. Polymorphs resembling the silk I, silk II (beta-sheet), and silk III (threefold polyglycine II-like helix) crystal structures were identified for the peptide fibroin C (GAGAGS repetitive sequence). Two peptides based on silk amorphous sequences, fibroin A (GAGAGY) and fibroin V (GDVGGAGATGGS), crystallized as silk I under most conditions. Methanol treatment of fibroin A resulted in a gradual transition from silk I to silk II, with an intermediate state involving a high proportion of beta-turns. Attenuated total reflectance Fourier transform infrared spectroscopy has been used to observe conformational changes as the peptides adsorb from solution onto a hydrophobic surface. Fibroin C has a beta-strand structure in solution but adopts a silk I-like structure upon adsorption, which when dried on the ZnSe crystal contains silk III crystallites.  相似文献   

3.
A banded morphology has been observed for Bombyx mori silk fibroin films obtained from an aqueous hexane interface; the period of the banding is approximately 1 microm. Morphology and diffraction from different regions of the banded structure suggest that it is a free surface formed by a cholesteric liquid crystal. Truncated hexagonal lamellar crystallites of B. mori silk fibroin have been observed in films formed in the surface excess layer of fibroin at the interface between aqueous fibroin and hexane or chloroform. Based on initial crystallographic evidence, a three-fold helical conformation has been ascribed to the fibroin chains within the crystals. The chain conformation and crystalline habit appear to be similar to the silk III structure previously observed at the air-water interface (Valluzzi R, Gido SP. Biopolymers 1997;42:705-717; Valluzzi R, Gido S, Zhang W, Muller W, Kaplan D. Macromolecules 1996;29:8606-8614) but the crystalline packing is different. Diffraction data obtained for the crystallites are similar to diffraction behavior for a collagen-like model peptide. Diffraction patterns obtained from crystallized regions of the banded morphology can be indexed using the same unit cell as the hexagonal lamellar crystallites. Surfactancy of fibroin and subsequent aggregation and mesophase formation may help to explain the liquid crystallinity reported for silk, which is long suspected to play a role in the biological silk spinning process (Valluzzi R, Gido SP. Biopolymers 1997;42:705-717; Willcox, P. J.; Gido, SP, Muller W, Kaplan DL. Macromolecules 1996:29:5106-5110; Magoshi J, Magoshi Y, Nakamura S. In: Kaplan D, Adams W, Farmer B, Viney C, editors, Mechanism of Fiber Formation of Silkworm. Washington, DC: American Chemical Society 1994:292-310; Magoshi J, Magoshi Y, Nakamura S. J Appl Polym Sci Appl Polym Symp 1985;41:187-204; Magoshi J, Magoshi Y, Nakamura S. Polym Commun 1985;26:309.).  相似文献   

4.
Zhang C  Song D  Lu Q  Hu X  Kaplan DL  Zhu H 《Biomacromolecules》2012,13(7):2148-2153
Although natural silk fibers have excellent strength and flexibility, the regenerated silk materials generally become brittle in the dry state. How to reconstruct the flexibility for silk fibroin has bewildered scientists for many years. In the present study, the flexible regenerated silk fibroin films were achieved by simulating the natural forming and spinning process. Silk fibroin films composed of silk I structure were first prepared by slow drying process. Then, the silk fibroin films were stretched in the wet state, following the structural transition from silk I to silk II. The difference between the flexible film and different brittle regenerated films was investigated to reveal the critical factors in regulating the flexibility of regenerated silk materials. Compared with the methanol-treated silk films, although having similar silk II structure and water content, the flexible silk films contained more bound water rather than free water, implying the great influence of bound water on the flexibility. Then, further studies revealed that the distribution of bound water was also a critical factor in improving silk flexibility in the dry state, which could be regulated by the nanoassembly of silk fibroin. Importantly, the results further elucidate the relation between mechanical properties and silk fibroin structures, pointing to a new mode of generating new types of silk materials with enhanced mechanical properties in the dry state, which would facilitate the fabrication and application of regenerated silk fibroin materials in different fields.  相似文献   

5.
This paper describes the synthesis and characterization of new regenerated silk fibroin (SF)/nano-TiO(2) composite films. The preparation method, based on the sol-gel technique using butyl titanate as oxide precursor, could avoid reagglomeration of the prepared nanoparticles. Samples were characterized mainly by X-ray diffraction (XRD), ultra-violet (UV) spectroscopy, atomic force microscopy (AFM), Fourier transform infrared (FT-IR) spectroscopy, and thermogravimetric analysis (TGA). The UV and AFM results indicated that TiO(2) nanoparticles could be well dispersed inside the SF film, and the size of TiO(2) was about 80nm. The XRD and FT-IR analysis implied that the formation of nano-TiO(2) particles may induce the conformational transition of silk fibroin to a typical Silk II structure partly with the increasing of crystallinity in the composite films. Compared to the pure SF films, the mechanical and thermal properties of composite films were improved, and the solubility in water was decreased due to the conformational transition of silk fibroin to Silk II structure.  相似文献   

6.
Raman microspectroscopy has been used for the first time to determine quantitatively the orientation of the beta-sheets in silk monofilaments from Bombyx mori and Samia cynthia ricini silkworms, and from the spider Nephila edulis. It is shown that, for systems with uniaxial symmetry such as silk, it is possible to determine the order parameters P2 and P4 of the orientation distribution function from intensity ratios of polarized Raman spectra. The equations allowing the calculation of P2 and P4 using polarized Raman microspectroscopy for a vibration with a cylindrical Raman tensor were first derived and then applied to the amide I band that is mostly due to the C=O stretching vibration of the peptide groups. The shape of the Raman tensor for the amide I vibration of the beta-sheets was determined from an isotropic film of Bombyx mori silk treated with methanol. For both the Bombyx mori and Samia cynthia ricini fibroin fibers, the values of P2 and P4 obtained are equal to -0.36 +/- 0.03 and 0.19 +/- 0.02, respectively, even though the two types of silkworm fibroins strongly differ in their primary sequences. For the Nephila edulis dragline silk, values of P2 and P4 of -0.32 +/- 0.02 and 0.13 +/- 0.02 were obtained, respectively. These results clearly indicate that the carbonyl groups are highly oriented perpendicular to the fiber axis and that the beta-sheets are oriented parallel to the fiber axis, in agreement with previous X-ray and NMR results. The most probable distribution of orientation was also calculated from the values of P2 and P4 using the information entropy theory. For the three types of silk, the beta-sheets are highly oriented parallel to the fiber axis. The orientation distributions of the beta-sheets are nearly Gaussian functions with a width of 32 degrees and 40 degrees for the silkworm fibroins and the spider dragline silk, respectively. In addition to these results, the comparison of the Raman spectra recorded for the different silk samples and the polarization dependence of several bands has allowed to clarify some important band assignments.  相似文献   

7.
The fine structure of silk fibroin   总被引:1,自引:1,他引:0       下载免费PDF全文
The fine structure of Bombyx mori silk fibroin was investigated by electron microscopy and X-ray diffraction techniques. Examination of silk fibers fragmented with ultrasonic radiation and negatively stained revealed the presence of ribbon-like filaments of well-defined lateral dimensions. Analysis of the breadths of the equatorial reflections in the X-ray diffraction pattern of fibroin yielded similar dimensions for the lateral extent of the crystallites. It is concluded that the crystalline material in B. mori silk fibroin is in the form of ribbon-like filaments of considerable length parallel to the fiber axis and of lateral dimensions approximately 20 x 60 A.  相似文献   

8.
Asakura T  Sugino R  Yao J  Takashima H  Kishore R 《Biochemistry》2002,41(13):4415-4424
The solid-state (13)C CP-MAS NMR spectra of biosynthetically labeled [(13)C(alpha)]Tyr, [(13)C(beta)]Tyr, and [(13)C(alpha)]Val silk fibroin samples of Bombyx mori, in silk I (the solid-state structure before spinning) and silk II (the solid-state structure after spinning) forms, have been examined to gain insight into the conformational preferences of the semicrystalline regions. To establish the relationship between the primary structure of B. mori silk fibroin and the "local" structure, the conformation-dependent (13)C chemical shift contour plots for Tyr C(alpha), Tyr C(beta), and Val C(alpha) carbons were generated from the atomic coordinates of high-resolution crystal structures of 40 proteins and their characteristic (13)C isotropic NMR chemical shifts. From comparison of the observed Tyr C(alpha) and Tyr C(beta) chemical shifts with those predicted by the contour plots, there is strong evidence in favor of an antiparallel beta-sheet structure of the Tyr residues in the silk fibroin fibers. On the other hand, Tyr residues take a random coil conformation in the fibroin film with a silk I form. The Val residues are likely to assume a structure similar to those of Tyr residues in silk fiber and film. Solid-state (2)H NMR measurements of [3,3-(2)H(2)]Tyr-labeled B. mori silk fibroin indicate that the local mobility of the backbone and the C(alpha)-C(beta) bond is essentially "static" in both silk I and silk II forms. The orientation-dependent (i.e., parallel and perpendicular to the magnetic field) solid-state (15)N NMR spectra of biosynthetically labeled [(15)N]Tyr and [(15)N]Val silk fibers reveal the presence of highly oriented semicrystalline regions.  相似文献   

9.
A compliant film was prepared by chemical crosslinking of fibroin from silk fiber of wild silkworm, Antheraea pernyi. The silk fiber was dissolved in concentrated aqueous lithium thiocyanate and desalinated by dialysis. The film was cast from the regenerated aqueous solution, and crosslinked by polyethylene glycol diglycidyl ether (PEG-DE). This film showed high water resistively while maintaining random coil and -helix structure, unlike films prepared by organic solvent treatment that causes β-sheet formation. The films containing about 20 wt.% crosslinker were remarkably compliant and tenacious. These features, combined with the living-cell affinity of the wild silkworm fibroin, are expected to be useful in biomedical applications.  相似文献   

10.
Aqueous mixtures of reaction centers of Rhodopseudomonas sphaeroides and gelatin were dried to form thin films. Following hydration, these films were stretched as much as two to three times their original length. Polarized absorption spectra showing linear dichroism were obtained for both unstretched and stretched films, with the planes and stretching axes of the films mounted in various geometries relative to the electric vector of the measuring beam. These data were analyzed in terms of the following model: Reaction centers possess an axis of symmetry that is fixed in relation to the reaction center structure. In unstretched films this axis is confined to the film plane and oriented at random within the plane. In stretched films the symmetry axis is aligned with the direction of stretching. In both preparations reaction centers are distributed randomly with respect to rotation about the axis of symmetry. The data are consistent with this model when the analysis acknowledges less than perfect orientation. For perfect orientation in a stretched film the model predicts uniaxial symmetry about the axis of stretching. The approach to this condition was examined with films stretched to different extents. Extrapolation yielded dichroic ratios for the ideal case of perfect orientation, and allowed calculation of the angles between the axis of symmetry and the various optical transition dipoles in the reaction center. This treatment included the two absorption bands of the bacteriochlorophyll 'special pair' (photochemical electron donor) in the Qx region, at 600 and 630 nm, which we were able to resolve in light minus dark difference spectra.  相似文献   

11.
Aqueous mixtures of reaction centers of Rhodopseudomonas sphaeroides and gelatin were dried to form thin films. Following hydration, these films were stretched as much as two to three times their original length. Polarized absorption spectra showing linear dichroism were obtained for both unstretched and stretched films, with the planes and stretching axes of the films mounted in various geometries relative to the electric vector of the measuring beam. These data were analyzed in terms of the following model: Reaction centers possess an axis of symmetry that is fixed in relation to the reaction center structure. In unstretched films this axis is confined to the film plane and oriented at random within the plane. In stretched films the symmetry axis is aligned with the direction of stretching. In both preparations reaction centers are distributed randomly with respect to rotation about the axis of symmetry. The data are consistent with this model when the analysis acknowledges less than perfect orientation. For perfect orientation in a stretched film the model predicts uniaxial symmetry about the axis of stretching. The approach to this condition was examined with films stretched to different extents. Extrapolation yielded dichroic ratios for the ideal case of perfect orientation, and allowed calculation of the angles between the axis of symmetry and the various optical transition dipoles in the reaction center. This treatment included the two absorption bands of the bacteriochlorophyll ‘special pair’ (photochemical electron donor) in the Qx region, at 600 and 630 nm, which we were able to resolve in light minus dark difference spectra.  相似文献   

12.
Silk fibroin demonstrates great biocompatibility and is suitable for many biomedical applications, including tissue engineering and regenerative medicine. Current research focuses on manipulating the physico‐chemical properties of fibroin, and examining the effect of this manipulation on firobin's biocompatibility. Regenerated silk fibroin was modified by in vitro enzymatic phosphorylation and cast into films. Films were produced by blending, at several ratios, the phosphorylated and un‐phosphorylated fibroin solutions. Fourier transform infra‐red spectroscopy was used to determine the specific P–OH vibration peak, confirming the phosphorylation of the regenerated silk fibroin solution. Differential scanning calorimetry showed that phosphorylation altered the intra‐ and inter‐molecular interactions. Further experiments demonstrated that phosphorylation can be used to tailor the hydrophylicity/hydrophobicity ratio as well as the crystalinity of silk fibroin films. Release profiling of a model drug was highly dependent on silk modification level. Cytotoxicity assays showed that exposure to lixiviates of phosphorylated films only slightly affected cellular metabolism and proliferation, although direct contact resulted in a strong direct correlation between phosphorylation level and cell proliferation. This new method for tuning silk biomaterials to obtain specific structural and biochemical features can be adapted for a wide range of applications. Phosphorylation of silk fibroins may be applied to improve the cytocompatibility of any silk‐based device that is considered to be in contact with live animals or human tissues.  相似文献   

13.
The hydrolytic degradation of biaxially oriented and de-oriented (melt-crystallized) poly(l-lactic acid) (PLLA) films was investigated in Tris-HCl-buffered solution (pH 8.6) with proteinase K, alkaline solution, and phosphate-buffered solution (pH 7.4) by the use of gravimetry, gel permeation chromatography, differential scanning calorimetry, and scanning electron microscopy. Biaxial orientation disturbed the proteinase K-catalyzed enzymatic degradation of PLLA films and the effects of biaxial orientation overcame those of crystallinity. The former may be due to the fact the enzyme cannot attach to the extended (strained) chains in the amorphous regions of the biaxially oriented PLLA film or cannot catalyze the cleavage of the strained chains. Another probable cause is that the enzyme can act only at the film surface of the biaxially oriented PLLA film, in marked contrast with the case of the de-oriented PLLA films where enzymatic degradation can proceed beneath the spherulitic crystalline residues. The effects of biaxial orientation on the alkaline and autocatalytic degradation of the PLLA films were insignificant for the periods studied here. The crystallinity rather than the biaxial orientation seems to determine the alkaline and autocatalytic degradation rates of the PLLA films. The accumulation of crystalline residues formed as a result of selective cleavage and removal of the amorphous chains was observed for the de-oriented PLLA films, but not for the biaxially oriented PLLA film, when degraded in the presence of proteinase K. This means the facile release of formed crystalline residues from the surface of the biaxially oriented PLLA film during enzymatic degradation, due to the fact that the crystalline regions of the biaxially oriented PLLA film were oriented with their c axis parallel to the film surface.  相似文献   

14.
The Langmuir-Blodgett (LB) film technique has been successfully applied to the construction of stable and photo-active films of chromatophore membranes and isolated reaction centers from two species of photosynthetic bacteria, Rhodobacter sphaeroides and Rhodopseudomonas viridis. LB films of these preparations were characterized at the air/water interface through compression isotherms and film stabilities. Films deposited on glass slides were analyzed by spectrophotometric and redox potentiometric techniques. The results obtained indicate that the in vivo properties of the photosynthetic apparatus in the deposited films are essentially unchanged. Furthermore, the pigments and redox cofactors in the films are highly oriented and offer a unique opportunity for structural and functional studies of the kind described in the accompanying paper (Biochim. Biophys. Acta 1057 (1991) 258-272).  相似文献   

15.
The possibility of using wild non-mulberry silk protein as a biopolymer remains unexplored compared to domesticated mulberry silk protein. One of the main reasons for this was for not having any suitable method of extraction of silk protein fibroin from cocoons and silk glands. In this study non-bioengineered non-mulberry silk gland fibroin protein from tropical tasar silkworm Antheraea mylitta, is regenerated and characterized using 1% (w/v) sodium dodecyl sulfate (SDS). The new technique is important and unique because it uses a mild surfactant for fibroin dissolution and is advantageous over other previous reported techniques using chaotropic salts. Fabricated fibroin films are smooth as confirmed by atomic force microscopy. Circular dichroism spectrometry along with Fourier transformed infrared spectroscopy and X-ray diffraction reveal random coil/alpha-helix conformations in regenerated fibroin which transform to beta-sheets, resulting in crystalline structure and protein insolubility through ethanol treatment. Differential scanning calorimetry shows an increase in glass transition (Tg) temperature and enhanced degradation temperature on alcohol treatment. Enhanced cell attachment and viability of AH927 feline fibroblasts were observed on fibroin matrices. Higher mechanical strength along with controllable water stability of regenerated gland fibroin films make non-mulberry Indian tropical tasar silk gland fibroin protein a promising biomaterial for tissue engineering applications.  相似文献   

16.
Degradation mechanism and control of silk fibroin   总被引:1,自引:0,他引:1  
Lu Q  Zhang B  Li M  Zuo B  Kaplan DL  Huang Y  Zhu H 《Biomacromolecules》2011,12(4):1080-1086
Controlling the degradation process of silk is an important and interesting subject in the field of biomaterials. In the present study, silk fibroin films with different secondary conformations and nanostructures were used to study degradation behavior in buffered protease XIV solution. Different from previous studies, silk fibroin films with highest β-sheet content achieved the highest degradation rate in our research. A new degradation mechanism revealed that degradation behavior of silk fibroin was related to not only crystal content but also hydrophilic interaction and then crystal-noncrystal alternate nanostructures. First, hydrophilic blocks of silk fibroin were degraded. Then, hydrophobic crystal blocks that were formerly surrounded and immobilized by hydrophilic blocks became free particles and moved into solution. Therefore, on the basis of the mechanism, which enables the process to be more controllable and flexible, controlling the degradation behavior of silk fibroin without affecting other performances such as its mechanical or hydrophilic properties becomes feasible, and this would greatly expand the applications of silk as a biomedical material.  相似文献   

17.
The morphology and primary crystal structure of SLPF, a protein polymer produced by genetically engineered Escherichia coli bacteria, were characterized. SLPF is a segmented copolymer consisting of amino acid sequence blocks modeled on the crystalline segments of silk fibroin and the cell attachment domain of human fibronectin. Wide angle x-ray scattering (WAXS), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and molecular simulations were used to analyze the primary crystal structure of SLPF. TEM experiments conducted on SLPF droplets cast from formic acid on amorphous carbon film demonstrated that these protein films have a microstructure formed of woven sheaves. The sheaves are composed of well-defined whisker crystallites. The width of the whiskers, 11.8 ± 2.2 nm, may be correlated to the length of the silk-like segment in SLPF as predicted by molecular simulations. WAXS data, TEM images, SAED, patterns, molecular simulations, and theoretical diffraction patterns all were consistent with the crankshaft model proposed for Silk I by Lotz and Keith. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
Single crystals of Bombyx mori silk fibroin in the metastable silk I polymorph have been produced using a new foaming technique. Foams of silk protein are generated by bubbling pure nitrogen gas through an aqueous solution of regenerated silk fibroin. The foamed material is collected, dried, and then sonicated to yield individual crystals which were examined using transmission electron microscopy and electron diffraction. It is found that slightly acidic conditions in the solution from which the foam was generated favor the formation of silk II while neutral to slightly basic solutions favor silk I formation. More dilute solutions favor the formation of silk II while more concentrated solutions (about 7 wt.% or greater) favor the formation of silk I. X-ray powder diffraction patterns from the dried silk I foams displayed features highly indicative of silk I. We also report the first single crystal electron diffraction patterns of silk I. These patterns indicate a large unit cell, possibly 22.66 x 5.70 x 20.82 A. with six chains of six residues, Gly-Ala-Gly-Ala-Gly-Ser. Although we have not fully characterized this complex structure it appears that the chain is nearly fully extended and thus our data is consistent with models possessing general features similar to those proposed by Fossey SA, Nemethy G, Gibson KD, Scheraga HA. (Biopolymers 1991;31:1529-1541).  相似文献   

19.
This study discusses the possibilities of liquid silk (Silk gland silk) of Muga and Eri silk, the indigenous non mulberry silkworms of North Eastern region of India, as potential biomaterials. Silk protein fibroin of Bombyx mori, commonly known as mulberry silkworm, has been extensively studied as a versatile biomaterial. As properties of different silk‐based biomaterials vary significantly, it is important to characterize the non mulberry silkworms also in this aspect. Fibroin was extracted from the posterior silk gland of full grown fifth instars larvae, and 2D film was fabricated using standard methods. The films were characterized using SEM, Dynamic contact angle test, FTIR, XRD, DSC, and TGA and compared with respective silk fibers. SEM images of films reveal presence of some globules and filamentous structure. Films of both the silkworms were found to be amorphous with random coil conformation, hydrophobic in nature, and resistant to organic solvents. Non mulberry silk films had higher thermal resistance than mulberry silk. Fibers were thermally more stable than the films. This study provides insight into the new arena of research in application of liquid silk of non mulberry silkworms as biomaterials. © 2012 Wiley Periodicals, Inc. Biopolymers 99: 292–333, 2013.  相似文献   

20.
Regenerated silk fibroin materials show properties dependent on the methods used to process them. The molecular structures of B. mori silk fibroin both in solution and in solid states were studied and compared using X-ray diffraction, FTIR, and (13)C NMR spectroscopy. Some portion of fibroin protein molecules dissolved in formic acid already have a beta-sheet structure, whereas those dissolved in TFA have some helical conformation. Moreover, fibroin molecules were spontaneously assembled into an ordered structure as the acidic solvents were removed from the fibroin-acidic solvent systems. This may be responsible for the improved physical properties of regenerated fibroin materials from acidic solvents. Regenerated fibroin materials have shown poor mechanical properties and brittleness compared to their original form. These problems were technically solved by improving the fiber forming process according to a method reported here. The regenerated fibroin fibers showed much better mechanical properties compared to the native silk fiber and their physical and chemical properties were characterized by X-ray diffraction, solid state (13)C NMR spectroscopy, SinTech tensile testing, and SEM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号