首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Ty transposable elements of Saccharomyces cerevisiae form a heterogeneous family within which two broad structural classes (I and II) exist. The two classes differ by two large substitutions and many restriction sites. We show that, like class I elements a class II element, Tyl-17, also appears to contain at least two major protein coding regions, designated TYA and TYB, and the organisational relationship of these regions has been conserved. The TYA genes of both classes encode proteins, designated p1 proteins, with an approximate molecular weight of 50 Kd and, despite considerable variation between the TYA regions at the DNA level, the structures of these proteins are remarkably similar. These observations strongly suggest that the p1 proteins of Ty elements are functionally significant and that they have been subject to selection.  相似文献   

2.
Streptococcus uberis: an Approach to its Classification   总被引:3,自引:2,他引:1  
Thirty-one strains of streptococci, selected because they were considered to be or were similar to Streptococcus uberis , were examined by physiological tests and for properties of their lactate dehydrogenases (LDHs) and deoxyribonucleic acid (DNA). Twenty-nine of the 31 strains fell into two main genotypes as judged by DNA/DNA hybridization. One genotype (Group I) included the type strain of Strep. uberis and most other strains in this group were physiologically similar to it and had the same percent guanine + cytosine (%GC) in their DNA. The other genotype (Group II) contained strains which were more variable physiologically and had DNA of a lower % GC than the type strain. The European strains examined contained two distinct LDH types, one being associated with the Group I and the other with Group II strains. Three American strains examined however had LDH's which were unlike those of the European strains.  相似文献   

3.
A series of bisintercalating DNA binding bisanthrapyrazole compounds containing piperazine linkers were designed by molecular modeling and docking techniques. Because the anthrapyrazoles are not quinones they are unable to be reductively activated like doxorubicin and other anthracyclines and thus they should not be cardiotoxic. The concentration dependent increase in DNA melting temperature was used to determine the strength of DNA binding and the bisintercalation potential of the compounds. Compounds with more than a three-carbon linker that could span four DNA base pairs achieved bisintercalation. All of the bisanthrapyrazoles inhibited human erythroleukemic K562 cell growth in the low to submicromolar concentration range. They also strongly inhibited the decatenation activity of topoisomerase IIα and the relaxation activity of topoisomerase I. However, as measured by their ability to induce double strand breaks in plasmid DNA, the bisanthrapyrazole compounds did not act as topoisomerase IIα poisons. In conclusion, a novel group of bisanthrapyrazole compounds were designed, synthesized, and biologically evaluated as potential anticancer agents.  相似文献   

4.
Mobile elements are widely present in eukaryotic genomes. They are repeated DNA segments that are able to move from one locus to another within the genome. They are divided into two main categories, depending on their mechanism of transposition, involving RNA (class I) or DNA (class II) molecules. The mariner-like elements are class II transposons. They encode their own transposase, which is necessary and sufficient for transposition in the absence of host factors. They are flanked by a short inverted terminal repeat and a TA dinucleotide target site, which is duplicated upon insertion. The transposase consists of two domains, an N-terminal inverted terminal repeat binding domain and a C-terminal catalytic domain. We identified a transposable element with molecular characteristics of a mariner-like element in Atta sexdens rubropilosa genome. Identification started from a PCR with degenerate primers and queen genomic DNA templates, with which it was possible to amplify a fragment with mariner transposable-element homology. Phylogenetic analysis demonstrated that this element belongs to the mauritiana subfamily of mariner-like elements and it was named Asmar1. We found that Asmar1 is homologous to a transposon described from another ant, Messor bouvieri. The predicted transposase sequence demonstrated that Asmar1 has a truncated transposase ORF. This study is part of a molecular characterization of mobile elements in the Atta spp genome. Our finding of mariner-like elements in all castes of this ant could be useful to help understand the dynamics of mariner-like element distribution in the Hymenoptera.  相似文献   

5.
The Epstein-Barr virus (EBV) latent origin of DNA replication (oriP) is composed of two elements that contain binding sites for the sole viral gene product required for latent cycle replication, EBNA-1. One of these elements, region I, functions as an EBNA-1-dependent enhancer for RNA polymerase II-transcribed genes, may play a role in plasmid segregation, and is required for origin function in B cells latently infected with EBV. The second element, region II, contains or is very near the site of initiation of DNA replication. A genetic approach was taken to determine the contribution of the EBNA-1 binding sites in oriP to origin function. Although region I is required for the transient replication of plasmids bearing region II in EBV-infected B cells, a plasmid lacking region I but containing region II, was observed to replicate transiently in both D98/Raji and HeLa cells expressing EBNA-1. Thus, binding of EBNA-1 to region I is not absolutely required for the molecular events that lead to initiation of DNA replication at region II. Site-directed mutagenesis of the four EBNA-1-binding sites in region II, individually and in various combinations, demonstrated that only two EBNA-1-binding sites are required for region II function. The results obtained with these mutants, together with the analysis of the replicative ability of plasmids containing insertions between EBNA-1-binding sites, suggested that the spatial relationship of the two sites is critical. Mutants that contain only two EBNA-1-binding sites separated by 26 to 31 bp in region II were not maintained as plasmids over many cell generations and were greatly reduced in their ability to replicate transiently in D98/Raji cells. The EBNA-1-induced bending or untwisting of the DNA in EBNA-1-binding sites 1 and 4 in region II did not, however, demonstrate this spatial constraint. It may be concluded from these results that specific protein-protein interactions between EBNA-1 and/or between EBNA-1 and a cellular protein(s) are required for origin function.  相似文献   

6.
Three endonucleases from murine plasmacytoma cells that specifically nick DNA which was heavily irradiated with ultraviolet (UV) light were resolved by Sephacryl S-200 column chromatography. Two of these, UV endonucleases I and II, were purified extensively. UV endonuclease I appears to be a monomeric protein with a molecular mass of 43 kDa; UV endonuclease II has an S value of 2.9 S, with a corresponding molecular mass estimated at 28 kDa. Both enzymes act as a class I AP endonuclease, cleaving phosphodiester bonds via a beta-elimination mechanism, so as to form an unsaturated deoxyribose at the 3' terminus. Both have thymine glycol DNA glycosylase activity and their substrate specificities generally appear to be overlapping but not identical. UV endonuclease I acts on both supercoiled and relaxed DNAs, whereas II acts only on supercoiled DNA. Both enzymes are active in EDTA, but have different optima for salt, pH, and Triton X-100. Each enzyme is also present in cultured diploid human fibroblasts.  相似文献   

7.
Fournier E  Giraud T  Albertini C  Brygoo Y 《Mycologia》2005,97(6):1251-1267
In micro-organisms biodiversity is often underestimated because relevant criteria for recognition of distinct evolutionary units are lacking. Phylogenetic approaches have been proved the most useful in fungi to address this issue. Botrytis cinerea, a generalist fungus causing gray mold, illustrates this problem. It long has been thought to be a single variable species. Recent population genetics studies have shown that B. cinerea is a species complex. However conflicting partitions were proposed. To identify the most relevant partitions within the B. cinerea complex we used a multiple-gene genealogies approach. We sequenced portions of four nuclear genes, of which genealogies congruently clustered into two well supported groups corresponding to Groups I and II previously described, indicating that they represent phylogenetic species. Estimates of migration rates and genetic differentiation showed that these groups had been isolated for a long time, without detectable gene flow. This was confirmed by the high number of polymorphic sites fixed within each group. The genetic diversity was lower within Group I, as revealed by DNA polymorphism and vegetative incompatibility tests. Groups I and II exhibited phenotypic differences in their phenology, host range, size of asexual spores and vegetative compatibility. All these morphological and molecular aspects suggest that B. cinerea Groups I and II may be different cryptic species, isolated for a long time. Phylogenies and molecular analyzes of variance revealed no genetic structure according to the other suggested partitions for the B. cinerea complex (i.e., among host plants, between strains with and without transposable elements, nor between strains responsible for noble rot and gray mold. This suggests that recombination regularly occurs, or occurred until recently, within B. cinerea Group II. This also was supported by recombination rates at each locus. Multiple-gene genealogies showed their utility by providing a relevant partition criterion for the B. cinerea complex.  相似文献   

8.
Mitochondrial proteins soluble in neutral chloroform-methanol (2:1) were separated from lipids by ether precipitation and resolved by Sephadex G-200 filtration in the presence of dodecylsulfate into two major fractions eluting in the excluded region (peak I) and in a region of an apparent molecular weight 8000 (peak II). Residual phospholipids are found only in peak II. Peak I consists of several aggregated small polypeptides of molecular weights around 8000, which can be disaggregated by mild oxidation with performic acid. Cycloheximide stimulates almost two-fold incorporation of radioactive phenylalanine into peak I proteins but inhibits labelling of peak II proteins by 95%. Chloramphenicol and ethidium bromide inhibit the synthesis of peak I proteins by 70% and 95% respectively, but do not affect labelling of peak II proteins. At least 30% of the translation products of mitochondrial DNA in vitro behave like peak I proteins: they are soluble in organic solvents, they aggregate in dodecylsulfate buffer after removal of phospholipids and they contain species of molecular weights around 8000 that disaggregate upon oxidation. The data strongly suggest that the proteins of peak I are encoded by mitochondrial genes and synthesized on mitochondrial ribosomes, whereas the proteins of peak II are encoded by nuclear genes and synthesized on cytoplasmic ribosomes. Both groups of lipophilic proteins are very similar in their molecular weights, but the mitochondrially coded peak I proteins have the unique property of forming large heat-stable aggregates in the presence of dodecylsulfate.  相似文献   

9.
McClendon AK  Dickey JS  Osheroff N 《Biochemistry》2006,45(38):11674-11680
Previous studies with human and bacterial topoisomerases suggest that the type II enzyme utilizes two distinct mechanisms to recognize the handedness of DNA supercoils. It has been proposed that the ability of some type II enzymes, such as human topoisomerase IIalpha and Escherichia coli topoisomerase IV, to distinguish supercoil geometry during DNA relaxation is mediated by elements in the variable C-terminal domain of the protein. In contrast, the ability of human topoisomerase IIalpha and topoisomerase IIbeta to discern the handedness of supercoils during DNA cleavage suggests that residues in the conserved N-terminal or central domain of the protein are involved in this process. To test this hypothesis, the ability of Paramecium bursaria chlorella virus-1 (PBCV-1) and chlorella virus Marburg-1 (CVM-1) topoisomerase II to relax and cleave negatively and positively supercoiled plasmids was assessed. These enzymes display a high degree of sequence identity with the N-terminal and central domains of eukaryotic topoisomerase II but naturally lack the C-terminal domain. While PBCV-1 and CVM-1 topoisomerase II relaxed under- and overwound substrates at similar rates, they were able to discern the handedness of supercoils during the cleavage reaction and preferentially cut negatively supercoiled DNA. Preferential cleavage was not due to a change in site specificity, DNA binding, or religation. These findings are consistent with a bimodal recognition of DNA geometry in which topoisomerase II uses elements in the C-terminal domain to sense the handedness of supercoils during DNA relaxation and elements in the conserved N-terminal or central domain during DNA cleavage.  相似文献   

10.
The previously described deoxyribonucleases from Brevibacterium ammoniagenes have been characterized. It was shown that they are endonucleases with molecular weights of 60 000 (I), 10 000 (II) and 20 000 (III). The rate of endonuclease I effect on native DNA exceeded that on the denatured DNA 2-fold. The mechanism of its action is of a single hit type. The enzyme hydrolyzes two chains of DNA simultaneously in two symmetrical sites and splits the bond 5'-P to form fragments with terminal 5'-OH and 3'-P. Endonuclease I was characterized as deoxyribonucleate-3'-oligonucleotide hydrolase (EC 3.1.4.6).  相似文献   

11.
Selectivity and polarity of adenovirus type 5 DNA packaging are believed to be directed by an interaction of putative packaging factors with the cis-acting adenovirus packaging domain located within the genomic left end (nucleotides 194 to 380). In previous studies, this packaging domain was mutationally dissected into at least seven functional elements called A repeats. These elements, albeit redundant in function, exhibit differences in the ability to support viral packaging, with elements I, II, V, and VI as the most critical repeats. Viral packaging was shown to be sensitive to spatial changes between individual A repeats. To study the importance of spatial constraints in more detail, we performed site-directed mutagenesis of the 21-bp linker regions separating A repeats I and II, as well as A repeats V and VI. The results of our mutational analysis reveal previously unrecognized sequences that are critical for DNA encapsidation in vivo. On the basis of these results, we present a more complex consensus motif for the adenovirus packaging elements which is bipartite in structure. DNA encapsidation is compromised by changes in spacing between the two conserved parts of the consensus motif, rather than between different A repeats. Genetic evidence implicating packaging elements as independent units in viral DNA packaging is derived from the selection of revertants from a packaging-deficient adenovirus: multimerization of packaging repeats is sufficient for the evolution of packaging-competent viruses. Finally, we identify minimally sized segments of the adenovirus packaging domain that can confer viability and packaging activity to viruses carrying gross truncations within their left-end sequences. Coinfection experiments using the revertant as well as the minimal-packaging-domain mutant viruses strengthen existing arguments for the involvement of limiting, trans-acting components in viral DNA packaging.  相似文献   

12.
DNA ligase II has been purified about 4,000-fold to apparent homogeneity from a calf thymus extract. The ligase consists of a single polypeptide with a molecular weight of 68,000 as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. On fluorography after electrophoresis, a DNA ligase-[3H]AMP complex gave a single band corresponding to a molecular weight of 68,000. The Km values of the ligase for ATP and nicked DNA (5'-phosphoryl ends) were obtained to be 40 and 0.04 microM, respectively. Antibody against calf thymus DNA ligase II was prepared by injecting the purified enzyme into a rabbit. The antibody cross-reacted with DNA ligase II but not with calf thymus DNA ligase I. DNA ligase II was not affected by antibody against calf thymus DNA ligase I with a molecular weight of 130,000 (Teraoka, H. and Tsukada, K. (1982) J. Biol. Chem. 257, 4758-4763). These results indicate that DNA ligase II (Mr = 68,000) is immunologically distinct from DNA ligase I (Mr = 130,000).  相似文献   

13.
马敏  唐敏  洪葵 《微生物学通报》2013,40(7):1231-1240
[目的]探究红树林土壤中聚酮合酶(Polyketide synthase,PKS)基因的多样性和新颖性.[方法]用Ⅰ型和Ⅱ型PKS基因酮基合成酶(Ketosynthase,KS)域的简并引物对海南清澜港红树林海莲、黄槿、银叶、老鼠簕4种红树根际土壤样品中DNA进行PCR扩增,之后利用PCR-限制性酶切片段多样性(PCR-RFLP)和测序分析法对Ⅰ型和Ⅱ型PKS基因的多样性进行探讨.[结果]对得到的72条Ⅰ型PKS基因的酮基合成酶(Ketosynthase,KS)域DNA序列进行PCR-RFLP分析,共得到51个可操作分类单元(Operational taxonomic unit,OTUs),其中37个OTUs为单克隆产生,没有明显的优势OTU.选取了26个代表不同OTU的克隆进行测序分析,这些序列与GenBank中已知序列的最大相似率均未超过85%. KS域氨基酸序列的系统发育分析显示,所得KS域来源广泛,包括蓝细菌门(Cyanobacteria)、变形杆菌门(Proteobacteria)、厚壁菌门(Firmicutes)、放线菌门(Actinobacteria)和一些未可培养细菌;对55条PKSⅡ基因KS域DNA序列的PCR-RFLP分析后共得到25个OTUs,有两个明显的优势OTUs,代表的克隆子数所占比例超过10%.[结论]PCR-RFLP分析表明红树林根际土壤中存在着丰富多样的Ⅰ型和Ⅱ型PKS基因,且前者多样性更高;低的序列相似度表明所获得的PKSⅠ基因KS域序列独特;系统发育分析表明得到的PKSⅠ基因来源广泛.  相似文献   

14.
Two high molecular weight DNA polymerases, which we have designated delta I and delta II, have been purified from calf thymus tissue. Using Bio Rex-70, DEAE-Sephadex A-25, and DNA affinity resin chromatography followed by sucrose gradient sedimentation, we purified DNA polymerase delta I 1400-fold to a specific activity of 10 000 nmol of nucleotide incorporated h-1 mg-1, and DNA polymerase delta II was purified 4100-fold to a final specific activity of 30 000 nmol of nucleotide incorporated h-1 mg-1. The native molecular weights of DNA polymerase delta I and DNA polymerase delta II are 240 000 and 290 000, respectively. Both enzymes have similarities to other purified delta-polymerases previously reported in their ability to degrade single-stranded DNA in a 3' to 5' direction, affinity for an AMP-hexane-agarose matrix, high activity on poly(dA) X oligo(dT) template, and relative resistance to the polymerase alpha inhibitors N2-(p-n-butylphenyl)dATP and N2-(p-n-butylphenyl)dGTP. These two forms of DNA polymerase delta also share several common features with alpha-type DNA polymerases. Both calf DNA polymerase delta I and DNA polymerase delta II are similar to calf DNA polymerase alpha in molecular weight, are inhibited by the alpha-polymerase inhibitors N-ethylmaleimide and aphidicolin, contain an active DNA-dependent RNA polymerase or primase activity, display a similar extent of processive DNA synthesis, and are stimulated by millimolar concentrations of ATP. We propose that calf DNA polymerase delta I, which also has a template specificity essentially identical with that of calf DNA polymerase alpha, could be an exonuclease-containing form of a DNA replicative enzyme.  相似文献   

15.
DNA polymerase [EC 2.7.7.7] activities present in hypotonic extract from rat ascites hepatoma AH130 cells were eluted in three separable peaks on DEAE-cellulose column chromatography. Peak I activity had an alkaline pH optimum, and was relatively resistant to SH-blocking reagents and salt concentration. These properties of DEAE peak I are typical of low molecular weight DNA polymerase. DEAE peak II and peak III activities possessed properties corresponding to high molecular weight (6-8 S) polymerase; they showed maximal activity at neutral pH, and were sensitive to SH-blocking reagents and salt. No low molecular weight polymerase activity was released from DEAE peak II or peak III by salt treatment, though partial conversion from DEAE peak II to peak III was observed on the same treatment.  相似文献   

16.
Different substrate specificities of the two DNA ligases of mammalian cells   总被引:12,自引:0,他引:12  
Mammalian cells contain the DNA ligases I and II. These enzymes show different molecular weights and heat labilities, and antibodies against ligase I do not inhibit ligase II. Here, the nonidentical substrate specificities of the enzymes are described. Under standard reaction conditions DNA ligase I, but not ligase II, catalyzes blunt-end joining of DNA, while ligase II is the only activity that joins oligo(dT) molecules hydrogen-bonded to poly(rA). These differences facilitate the distinction between the two enzymes and should permit further analysis of their functions.  相似文献   

17.
Most restriction endonucleases bridge two target sites before cleaving DNA: examples include all of the translocating Type I and Type III systems, and many Type II nucleases acting at their sites. A subset of Type II enzymes, the IIB systems, recognise bipartite sequences, like Type I sites, but cut specified phosphodiester bonds near their sites, like Type IIS enzymes. However, they make two double-strand breaks, one either side of the site, to release the recognition sequence on a short DNA fragment; 34 bp long in the case of the archetype, BcgI. It has been suggested that BcgI needs to interact with two recognition sites to cleave DNA but whether this is a general requirement for Type IIB enzymes had yet to be established. Ten Type IIB nucleases were tested against DNA substrates with one or two copies of the requisite sequences. With one exception, they all bridged two sites before cutting the DNA, usually in concerted reactions at both sites. The sites were ideally positioned in cis rather than in trans and were bridged through 3-D space, like Type II enzymes, rather than along the 1-D contour of the DNA, as seen with Type I enzymes. The standard mode of action for the restriction enzymes that excise their recognition sites from DNA thus involves concurrent action at two DNA sites.  相似文献   

18.
We have isolated from Bacillus subtilis three deoxyribonucleic acid (DNA)-dependent adenosine triphosphatases (ATPases) (gamma-phosphohydrolases). The enzymes were extensively purified, and their physicochemical and functional properties were determined. The three enzymes (ATPases I, II, and III) were shown to be different by several criteria. ATPases II and III showed an absolute requirement for single-stranded DNA as a cofactor, whereas ATPase I had some residual activity also with double-stranded DNA. They required Mg2+ and had a pH optimum of 6.5 to 7. Only adenosine 5'-triphosphate and deoxyadenosine 5'-triphosphate were hydrolyzed. The molecular weights of ATPases I, II, and III were 108,000, 115,000, and 148,000, respectively. Km values for adenosine 5'-triphosphate and DNA were also evaluated and shown to be different for each enzyme. All three enzymes formed physical complexes with single-stranded DNA. We present evidence that ATPases I and II might migrate along DNA during adenosine 5'-triphosphate hydrolysis. On the other hand, this effect was not observed with ATPase III, which exhibited the highest affinity for single-stranded DNA.  相似文献   

19.
《Biophysical journal》2022,121(24):4849-4859
Biomolecular nanomechanical devices are of great interest as tools for the processing and manipulation of molecules, thereby mimicking the function of nature’s enzymes. DNA nanotechnology provides the capability to build molecular analogs of mechanical machine elements such as joints and hinges via sequence-programmable self-assembly, which are otherwise known from traditional mechanical engineering. Relative to their size, these molecular machine elements typically do not reach the same relative precision and reproducibility that we know from their macroscopic counterparts; however, as they are scaled down to molecular sizes, physical effects typically not considered by mechanical engineers such as Brownian motion, intramolecular forces, and the molecular roughness of the devices begin to dominate their behavior. In order to investigate the effect of different design choices on the roughness of the mechanical energy landscapes of DNA nanodevices in greater detail, we here study an exemplary DNA origami-based structure, a modularly designed rotor-stator arrangement, which resembles a rotatable nanorobotic arm. Using fluorescence tracking microscopy, we follow the motion of individual rotors and record their corresponding energy landscapes. We then utilize the modular construction of the device to exchange its constituent parts individually and systematically test the effect of different design variants on the movement patterns. This allows us to identify the design parameters that most strongly affect the shape of the energy landscapes of the systems. Taking into account these insights, we are able to create devices with significantly flatter energy landscapes, which translates to mechanical nanodevices with improved performance and behaviors more closely resembling those of their macroscopic counterparts.  相似文献   

20.
Centromere DNA from 11 of the 16 chromosomes of the yeast Saccharomyces cerevisiae have been analyzed and reveal three sequence elements common to each centromere, referred to as conserved centromere DNA elements (CDE). The adenine-plus-thymine (A + T)-rich central core element, CDE II, is flanked by two short conserved sequences, CDE I (8 base pairs [bp]) and CDE III (25 bp). Although no consensus sequence exists among the different CDE II regions, they do have three common features of sequence organization. First, the CDE II regions are similar in length, ranging from 78 to 86 bp measured from CDE I to the left boundary of CDE III. Second, the base composition is always greater than 90% A + T. Finally, the A and T residues in these segments are often arranged in runs of A and runs of T residues, sometimes with six or seven bases in a stretch. We constructed insertion, deletion, and replacement mutations in the CDE II region of the centromere from chromosome III, CEN3, designed to investigate the length and sequence requirements for function of the CDE II region of the centromere. We analyzed the effect of these altered centromeres on plasmid and chromosome segregation in S. cerevisiae. Our results show that increasing the length of CDE II from 84 to 154 bp causes a 100-fold increase in chromosome nondisjunction. Deletion mutations removing segments of the A + T-rich CDE II DNA also cause aberrant segregation. In some cases partial function could be restored by replacing the deleted DNA with fragments whose primary sequence or base composition is very different from that of the wild-type CDE II DNA. In addition, we found that identical mutations introduced into different positions in CDE II have very similar effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号