首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.

Background  

Two thaumatin-like proteins (TLPs) were previously identified in phloem exudate of hybrid poplar (Populus trichocarpa × P. deltoides) using proteomics methods, and their sieve element localization confirmed by immunofluorescence. In the current study, we analyzed different tissues to further understand TLP expression and localization in poplar, and used immunogold labelling to determine intracellular localization.  相似文献   

3.
In this study, we characterized a novel soybean gene encoding a neutral PR-5 protein and compared it to two acidic isoforms of soybean PR-5 protein. This gene, designated as Glycine max osmotin-like protein, b isoform (GmOLPb, accession no. AB370233), encoded a putative protein having the greatest similarity to chickpea PR-5b (89% identity). Unlike the two acidic PR-5, GmOLPa and P21, the protein had a C-terminal elongation responsible for possible vacuolar targeting and after maturation showed a calculated molecular mass of 21.9 kDa with pI 6.0. The 3D models, predicted by the homology modeling, contained four α-helixes and 16 β-strands and formed three characteristic domains. The two acidic PR-5 proteins also showed a 3D structure very similar to GmOLPb, although the electrostatic potential on molecular surface of each PR-5 was significantly different. In the study of the gene expression under conditions of high-salt stress, GmOLPb was highly induced in the leaves of the soybean, particularly in the lower part of a leaf. The expression started at 2 h after initiation of the stress and was highly induced between 18–72 h. Gene expression of P21e (protein homologous to P21) was transiently induced by high-salt stress, but took place earlier than the gene expressions of GmOLPa and GmOLPb. Such differential expression was observed also under investigation with methyl jasmonate and salicylic acid. These results suggested that each soybean PR-5 might play a distinctive role in the defensive system protecting the soybean plant against high-salt stress, particularly in the leaves of the soybean.  相似文献   

4.
5.

Background  

Heat shock proteins (HSP) are induced during cellular stress. Their role is to chaperone cellular proteins giving protection from denaturation and ultimately preventing cell death. Monocytes are key cells involved in atherosclerosis and are highly responsive to HSP induction. Therefore, we wished to examine monocyte Hsp70 expression and induction in patients with peripheral arterial disease (PAD) and in healthy controls.  相似文献   

6.

Background  

Dehydrins represent hydrophilic proteins acting mainly during cell dehydration and stress response. Dehydrins are generally thermostable; however, the so-called dehydrin-like (dehydrin-related) proteins show variable thermolability. Both groups immunoreact with antibodies directed against the K-segment of dehydrins. Plant mitochondrial dehydrin-like proteins are poorly characterized. The purpose of this study was to extend previous reports on plant dehydrins by comparing the level of immunoprecipitated dehydrin-like proteins in cauliflower (Brassica oleracea var. botrytis), Arabidopsis thaliana and yellow lupin (Lupinus luteus) mitochondria under cold and heat stress.  相似文献   

7.

Background  

Bet v 1 is an important cause of hay fever in northern Europe. Bet v 1 isoforms from the European white birch (Betula pendula) have been investigated extensively, but the allergenic potency of other birch species is unknown. The presence of Bet v 1 and closely related PR-10 genes in the genome was established by amplification and sequencing of alleles from eight birch species that represent the four subgenera within the genus Betula. Q-TOF LC-MSE was applied to identify which PR-10/Bet v 1 genes are actually expressed in pollen and to determine the relative abundances of individual isoforms in the pollen proteome.  相似文献   

8.

Background  

Molecular chaperones help to restore the native states of proteins after their destabilization by external stress. It has been proposed that another function of chaperones is to maintain the activity of proteins destabilized by mutation, weakening the selection against suboptimal protein variants. This would allow for the accumulation of genetic variation which could then be exposed during environmental perturbation and facilitate rapid adaptation.  相似文献   

9.
 The pulp of ripe bananas (Musa acuminata) contains an abundant thaumatin-like protein (TLP). Characterization of the protein and molecular cloning of the corresponding gene from banana demonstrated that the native protein consists of a single polypeptide chain of 200 amino acid residues. Molecular modelling further revealed that the banana thaumatin-like protein (Ban-TLP) adopts an overall fold similar to that of thaumatin and thaumatin-like PR-5 proteins. Although the banana protein exhibits an electrostatically polarized surface, which is believed to be essential for the antifungal properties of TLPs, it is apparently devoid of antifungal activity towards pathogenic fungi. It exhibits a low but detectable in vitro endo-β-1,3-glucanase (EC 3.2.1.x) activity. As well as being present in fruits, Ban-TLP also occurs in root tips where its accumulation is enhanced by methyl jasmonate treatment of plants. Pulp of plantains (Musa acuminata) also contains a very similar TLP, which is even more abundant than its banana homologue. Our results demonstrate for the first time that fruit-specific (abundant) TLPs are not confined to dicots but occur also in fruits of monocot species. The possible role of the apparent widespread accumulation of fruit-specific TLPs is discussed. Received: 7 January 2000 / Accepted: 26 April 2000  相似文献   

10.

Background

Verticillium longisporum is one of the most important pathogens of Brassicaceae that remains strictly in the xylem during most stages of its development. It has been suggested that disease symptoms are associated with clogging of xylem vessels. The aim of our study was to investigate extracellular defence reactions induced by V. longisporum in the xylem sap and leaf apoplast of Brassica napus var. napus in relation to the development of disease symptoms, photosynthesis and nutrient status.

Results

V. longisporum (strain VL43) did not overcome the hypocotyl barrier until 3 weeks after infection although the plants showed massive stunting of the stem and mild leaf chlorosis. During this initial infection phase photosynthetic carbon assimilation, transpiration rate and nutrient elements in leaves were not affected in VL43-infected compared to non-infected plants. Proteome analysis of the leaf apoplast revealed 170 spots after 2-D-protein separation, of which 12 were significantly enhanced in response to VL43-infection. LS-MS/MS analysis and data base searches revealed matches of VL43-responsive proteins to an endochitinase, a peroxidase, a PR-4 protein and a β-1,3-glucanase. In xylem sap three up-regulated proteins were found of which two were identified as PR-4 and β-1,3-glucanase. Xylem sap of infected plants inhibited the growth of V. longisporum.

Conclusion

V. longisporum infection did not result in drought stress or nutrient limitations. Stunting and mild chlorosis were, therefore, not consequences of insufficient water and nutrient supply due to VL43-caused xylem obstruction. A distinct array of extracellular PR-proteins was activated that might have limited Verticillium spreading above the hypocotyl. In silico analysis suggested that ethylene was involved in up-regulating VL43-responsive proteins.
  相似文献   

11.

Background  

Bcl-2 homology domain (BH) 3-only proteins are pro-apoptotic proteins of the Bcl-2 family that couple stress signals to the mitochondrial cell death pathways. The BH3-only protein Bid can be activated in response to death receptor activation via caspase 8-mediated cleavage into a truncated protein (tBid), which subsequently translocates to mitochondria and induces the release of cytochrome-C. Using a single-cell imaging approach of Bid cleavage and translocation during apoptosis, we have recently demonstrated that, in contrast to death receptor-induced apoptosis, caspase-independent excitotoxic apoptosis involves a translocation of full length Bid (FL-Bid) from the cytosol to mitochondria. We induced a delayed excitotoxic cell death in cultured rat hippocampal neurons by a 5-min exposure to the glutamate receptor agonist N-methyl-D-aspartate (NMDA; 300 μM).  相似文献   

12.
13.

Aim

In this study, the effects of the addition of salt to treatment with acids (one of several organic acids and salt in various solutions including rich or minimal broth, buffer, or distilled water) on the reduction of Escherichia coli O157:H7 were investigated. The protein expression profiles corresponding to acid stress (acetic acid) with or without salt addition were studied using a comparative proteomic analysis of E. coli O157:H7.

Methods and Results

When acetic, lactic, or propionic acid was combined with 3% NaCl, mutually antagonistic effects of acid and salt on viability of E. coli O157:H7 were observed only in tryptone and yeast extract broth. After exposure to acetic acid alone or in combination with salt, approximately 851 and 916 protein spots were detected, respectively. Analysis of 10 statistically significant differentially expressed proteins revealed that these proteins are mainly related to energy metabolism.

Conclusions

When we compared protein expression of E. coli O157:H7 treated with acetic acid and the combination of the acid and salt, the differentially expressed proteins were not related to acid stress‐ and salt stress‐inducible proteins such as stress shock proteins.

Significance and Impact of the Study

According to these results, the increased resistance of E. coli O157:H7 to acetic acid after the addition of salt may not be the result of synthesis of proteins related to these phenomena; therefore, further research needs to be conducted to identify the mechanism of the mutually antagonistic effect of some organic acids and salt.  相似文献   

14.

Background  

The development of chilling and freezing injury symptoms in plants is known to frequently coincide with peroxidation of free fatty acids. Mitochondria are one of the major sources of reactive oxygen species during cold stress. Recently it has been suggested that uncoupling of oxidation and phosphorylation in mitochondria during oxidative stress can decrease ROS formation by mitochondrial respiratory chain generation. At the same time, it is known that plant uncoupling mitochondrial protein (PUMP) and other UCP-like proteins are not the only uncoupling system in plant mitochondria. All plants have cyanide-resistant oxidase (AOX) whose activation causes an uncoupling of respiration and oxidative phosphorylation. Recently it has been found that in cereals, cold stress protein CSP 310 exists, and that this causes uncoupling of oxidation and phosphorylation in mitochondria.  相似文献   

15.

Introduction

This study examined potential biomarkers for the diagnosis and early detection of chronic allograft rejection after lung transplantation.

Methods

Protein ratios in pooled samples of bronchoalveolar lavage fluid (BALF) from lung transplant recipients at different stages of pre- and postchronic rejection were determined by iTRAQ labeling and mass spectrometry. The potential biomarkers were validated using enzyme-linked immunosorbent assay (ELISA) assay.

Results

Two hundred sixty-five proteins were identified, about two thirds of which showed more than a twofold difference between a pooled control sample (individuals who did not develop chronic rejection in 100 months) and a pooled sample from those with chronic rejection. Proteinase 3 (PR-3) and matrix metalloproteinase 9 (MMP-9) were validated by ELISA assay of 124 individual samples. PR-3 and the latent form of MMP-9 (proMMP9) both demonstrated a specificity of 92% with sensitivities of 76% and 82%, respectively, for disease diagnosis; both were also predictors of developing chronic rejection up to 15 months before diagnosis. While immunoglobulin M (IgM) was upregulated in the pooled samples, individual sample analysis revealed that this arose from outlier values.

Conclusions

iTRAQ can be used to detect a large number of proteins in pooled samples for the discovery of potential biomarkers, but the findings must be validated with technology capable of distinguishing broadly based changes from outcomes as a result of a few extreme cases. The proteins identified in this study expanded the panel of potential biomarkers for the diagnosis and prediction of chronic rejection and provided additional insight into the mechanism of the disease.  相似文献   

16.
Genes for acidic, extracellular and basic, intracellular pathogenesis-related (PR) proteins of tobacco were studied for their response to tobacco mosaic virus (TMV) infection, ethephon treatment, wounding and UV light. The genes encoding the acidic PR proteins (PR-1, PR-2, PR-3, PR-4 and PR-5) responded similarly to the different forms of stress. They appeared to be highly inducible by TMV, moderately inducible by ethephon treatment and UV light and not inducible by wounding. The genes for the basic counterparts of PR-1, PR-2, PR-3 and PR-5 also displayed a common stress response. However, this response was different from that of the acidic PR proteins. Here, the highest induction was obtained upon ethephon treatment, while the other stress conditions resulted in somewhat lower levels of expression. Most genes for acidic PR proteins are systemically induced in the uninfected upper leaves of TMV-infected plants, whereas the genes encoding the basic PR proteins are not. Increased levels of resistance to TMV, comparable to resistance obtained by pre-infection with the virus, were found in UV-irradiated leaves but not in wounded or ethephon-treated leaves. This indicates that the basic PR proteins are not involved in resistance to TMV infection. Tobacco phenylalanine ammonia-lyase genes were not inducible by the various stress conditions. The implications of these findings in relation to the phenomenon of acquired resistance are discussed.  相似文献   

17.
18.

Background  

Small heat shock proteins (sHSPs) are products of heat shock response and of other stress responses, and ubiquitous in all three domains of life, archaea, bacteria, and eukarya. They mainly function as molecular chaperones to protect proteins from being denatured in extreme conditions. Study on insect sHSPs could provide some insights into evolution of insects that have adapted to diverse niches in the world.  相似文献   

19.

Background  

FK506 binding proteins (FKBPs) and cyclophilins (CYPs) are abundant and ubiquitous proteins belonging to the peptidyl-prolyl cis/trans isomerase (PPIase) superfamily, which regulate much of metabolism through a chaperone or an isomerization of proline residues during protein folding. They are collectively referred to as immunophilin (IMM), being present in almost all cellular organs. In particular, a number of IMMs relate to environmental stresses.  相似文献   

20.

Background  

Obg is a highly conserved GTP-binding protein that has homologues in bacteria, archaea and eukaryotes. In bacteria, Obg proteins are essential for growth, and they participate in spore formation, stress adaptation, ribosome assembly and chromosomal partitioning. This study was undertaken to investigate the biochemical and physiological characteristics of Obg in Mycobacterium tuberculosis, which causes tuberculosis in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号