首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Group B Streptococcus (GBS) is a frequent cause of bacterial sepsis and meningitis in neonates. During the course of infection, GBS colonizes and invades a number of host compartments, thereby interacting with different host proteins. In the present report, we describe the isolation of the fbsA gene, which encodes a fibrinogen receptor from GBS. The deduced FbsA protein is characterized by repetitive units, each 16 amino acids in length. Sequencing of the fbsA gene from five different GBS strains revealed significant variation in the number of repeat-encoding units. The deletion of the fbsA gene in the genome of GBS 6313 completely abolished fibrinogen binding, suggesting that FbsA is the major fibrinogen receptor in this strain. Growth of the fbsA deletion mutant in human blood was significantly impaired, indicating that FbsA protects GBS from opsonophagocytosis. In Western blot experiments with truncated FbsA -proteins, the repeat region of FbsA was identified as mediating fibrinogen binding. Using synthetic peptides, even a single repeat unit of FbsA was demonstrated to bind to fibrinogen. Spot membrane analysis and competitive binding experiments with peptides carrying single amino acid substitutions allowed the prediction of a fibrinogen-binding motif with the consensus sequence G-N/S/T-V-L-A/E/M/Q-R-R-X-K/R/W-A/D/E/N/Q-A/F/I/L/V/Y-X-X-K/R-X-X.  相似文献   

2.
Streptococcus agalactiae is an etiological agent of several infective diseases in humans. We previously demonstrated that FbsA, a fibrinogen-binding protein expressed by this bacterium, elicits a fibrinogen-dependent aggregation of platelets. In the present communication, we show that the binding of FbsA to fibrinogen is specific and saturable, and that the FbsA-binding site resides in the D region of fibrinogen. In accordance with the repetitive nature of the protein, we found that FbsA contains multiple binding sites for fibrinogen. By using several biophysical methods, we provide evidence that the addition of FbsA induces extensive fibrinogen aggregation and has noticeable effects on thrombin-catalyzed fibrin clot formation. Fibrinogen aggregation was also found to depend on FbsA concentration and on the number of FbsA repeat units. Scanning electron microscopy evidentiated that, while fibrin clot is made of a fine fibrillar network, FbsA-induced Fbg aggregates consist of thicker fibers organized in a cage-like structure. The structural difference of the two structures was further indicated by the diverse immunological reactivity and capability to bind tissue-type plasminogen activator or plasminogen. The mechanisms of FbsA-induced fibrinogen aggregation and fibrin polymerization followed distinct pathways since Fbg assembly was not inhibited by GPRP, a specific inhibitor of fibrin polymerization. This finding was supported by the different sensitivity of the aggregates to the disruptive effects of urea and guanidine hydrochloride. We suggest that FbsA and fibrinogen play complementary roles in contributing to thrombogenesis associated with S. agalactiae infection.  相似文献   

3.
The cell wall‐anchored protein‐encoding spj gene on staphylococcal cassette chromosome mec IVl (SCCmecIVl) was found to vary in size because of its 22‐ and 86‐aa repeat domains. The 22‐aa repeats are the more flexible of the two repeats, comprising three 11‐aa units, and were classified into three groups with eleven types. The 11/22‐aa repeats are longer in individuals with bullous impetigo, shorter in those with invasive disease and were absent in a fatal case, this last one having been rapidly diagnosed by PCR. IS431‐flanking pUB110 (bleO, aadD) is present on SCCmecIVl at 90%. The bacterial surface has the spj product and a unique surface layer.  相似文献   

4.
The mate recognition protein (MRP) gene is a member of a family of extracellular matrix protein genes, called MRP Motif Repeat (MMR) genes, with no known homologs. Two sets of MMR genes, designated MMR-A and MMR-B, were found in Brachionus manjavacas. MMR-B has previously been shown to encode the MRP in the Brachionus plicatilis species complex. MMR family genes share the same basic structure: a signal peptide sequence, followed by nearly identical 276 bp (MMR-A) or 261 bp (MMR-B) repeats, with a truncated final repeat. Each repeat of the predicted MMR-A and -B proteins is expected to have a secondary structure of 5 α-helices, ranging in length from 11 to 20 amino acids, separated by coils of 1–3 amino acids. Hydrophobic and hydrophilic amino acids are predicted to be partitioned to opposite sides of each α-helix, suggesting that MMR proteins are globular with a hydrophobic core. MMR-A and MMR-B proteins vary in their post-translational modifications, resulting in differences in size and charge, and likely causing differences in the physical properties of the proteins on the surface of the female, and their ability to be recognized by a receptor on a male rotifer. The identity of MMR gene repeats is theorized to be maintained by concerted evolution, through a process of unequal crossing over and/or gene conversion, with new mutations likely to be lost. Rarely, however, the same process of concerted evolution can rapidly spread a mutation across all of the repeats. When a mutation results in conformational changes in the protein detectable by males, it could lead to reproductive isolation and thereby to speciation. Thus, changes in MRP could be a driving force in the high degree of species diversity seen within the B. plicatilis cryptic species complex.  相似文献   

5.
Streptococcus agalactiae (group B Streptococcus or GBS) is a common cause of invasive infections in newborn infants and adults. The ability of GBS to bind human fibrinogen is of crucial importance in promoting colonization and invasion of host barriers. We characterized here a novel fibrinogen-binding protein of GBS, designated FbsC (Gbs0791), which is encoded by the prototype GBS strain NEM316. FbsC, which bears two bacterial immunoglobulin-like tandem repeat domains and a C-terminal cell wall-anchoring motif (LPXTG), was found to be covalently linked to the cell wall by the housekeeping sortase A. Studies using recombinant FbsC indicated that it binds fibrinogen in a dose-dependent and saturable manner, and with moderate affinity. Expression of FbsC was detected in all clinical GBS isolates, except those belonging to the hypervirulent lineage ST17. Deletion of fbsC decreases NEM316 abilities to adhere to and invade human epithelial and endothelial cells, and to form biofilm in vitro. Notably, bacterial adhesion to fibrinogen and fibrinogen binding to bacterial cells were abolished following fbsC deletion in NEM316. Moreover, the virulence of the fbsC deletion mutant and its ability to colonize the brain were impaired in murine models of infection. Finally, immunization with recombinant FbsC significantly protected mice from lethal GBS challenge. In conclusion, FbsC is a novel fibrinogen-binding protein expressed by most GBS isolates that functions as a virulence factor by promoting invasion of epithelial and endothelial barriers. In addition, the protein has significant immunoprotective activity and may be a useful component of an anti-GBS vaccine.  相似文献   

6.
Summary Ribosomal DNA (rDNA) repeats of the plant-parasitic nematode Meloidogyne arenaria are heterogeneous in size and appear to contain 5S rRNA gene sequences. Moreover, in a recA + bacterial host, plasmid clones of a 9 kb rDNA repeat show deletion events within a 2 kb intergenic spacer (IGS), between 28S and 5S DNA sequences. These deletions appear to result from a reduction in the number of tandem 129 by repeats in the IGS. The loss of such repeats might explain how rDNA length heterogeneity, observed in the Meloidogyne genome, could have arisen. Each 129 by repeat also contains three copies of an 8 by subrepeat, which has sequence similarity to an element found in the IGS repeats of some plant rDNAs.  相似文献   

7.
Seven clones containing (CTG)n/(CAG)n repeats (n ≥ 4) were isolated by screening Lycopersicon esculentum genomic DNA. Four of the clones contained more than one simple sequence repeat (SSR). The SSRs were analyzed in several L. esculentum cultivars after polymerase chain reaction (PCR) amplification. No length variations were observed, suggesting considerable locus stability. Five clones are from transcribed regions, which might explain the lack of cultivar variations. However the conservation of CTG repeats was limited as differences in some transcribed loci were registered between L. pennellii and other Lycopersicon species. It is noted that in Lycopersicon trinucleotide repeat variation might be used for species identification.  相似文献   

8.
The origin and evolution of a 128-bp tandem repeat in the mtDNA control region of shrikes (Lanius: Aves) were investigated. The tandem repeat is present in only two species, L. excubitor and L. ludovicianus. In contrast to the variation in repeat number in L. ludovicianus, all individuals of three subspecies of L. excubitor had three repeats. Comparative analysis suggests that a short direct repeat, and a secondary structure including the tandem repeat and a downstream inverted repeat, may be important in the origin of the tandem repeat by slipped-strand mispairing and its subsequent turnover. Homogenization of repeat sequences is most simply explained by expansion and contraction of the repeat array. Surprisingly, mtDNA sequences from L. excubitor were found to be paraphyletic with respect to L. ludovicianus. These results show the utility of a comparative analysis for insights into the evolutionary dynamics of mtDNA tandem repeats.[Reviewing Editor: Martin Kreitman]  相似文献   

9.
Plant genomes encode a large number of proteins that potentially function as immune receptors in the defense against pathogen invasion. As a well‐characterized receptor kinase consisting of 23 tandem leucine‐rich repeats, a transmembrane domain and a serine/threonine kinase, the rice (Oryza sativa) protein XA21 confers resistance to a broad spectrum of Xanthomonas oryzae pv. oryzae (Xoo) races that cause bacterial blight disease. We report here that XA21 binding protein 25 (XB25) belongs to the plant‐specific ankyrin‐repeat (PANK) family. XB25 physically interacts, in vitro, with the transmembrane domain of XA21 through its N–terminal binding to transmembrane and positively charged domain (BTMP) repeats. In addition, XB25 associates with XA21 in planta. The downregulation of Xb25 results in reduced levels of XA21 and compromised XA21‐mediated disease resistance at the adult stage. Moreover, the accumulation of XB25 is induced by Xoo infection. Taken together, these results indicate that XB25 is required for maintaining XA21‐mediated disease resistance.  相似文献   

10.
Metal ion acquisition and homeostasis are essential for bacterial survival, growth and physiology. A family of metal ion, ABC-type import systems have been identified in Gram-positive bacteria, in which the solute-binding proteins are predicted to be membrane-anchored lipoproteins. The prediction that the MtsA protein of Streptococcus agalactiae A909 is a lipoprotein was confirmed. The expression of MtsA was co-ordinately regulated by the presence of both manganese and ferrous ions suggesting that MtsA may be involved in the uptake of both these ions. MtsA was shown to be expressed at levels of ferrous ions known to be present in amniotic fluid, a growth medium for S. agalactiae during neonatal infection.  相似文献   

11.
The surface-located fibrinogen-binding protein (clumping factor; ClfA) of Staphylococcus aureus has an unusual dipeptide repeat linking the ligand binding domain to the wall-anchored region. Southern blotting experiments revealed several other loci in the S. aureus Newman genome that hybridized to a probe comprising DNA encoding the dipeptide repeat. One of these loci is analysed here. It also encodes a fibrinogen-binding protein, which we have called ClfB. The overall organization of ClfB is very similar to that of ClfA, and the proteins have considerable sequence identity in the signal sequence and wall attachment domains. However, the A regions are only 26% identical. Recombinant biotinylated ClfB protein bound to fibrinogen in Western ligand blots. ClfB reacted with the α- and β-chains of fibrinogen in the ligand blots in contrast to ClfA, which binds exclusively to the γ-chain. Analysis of proteins released from the cell wall of S. aureus Newman by Western immunoblotting using antibody raised against the recombinant A region of ClfB identified a 124 kDa protein as the clfB gene product. This protein was detectable only on cells that were grown to the early exponential phase. It was absent from cells from late exponential phase or stationary phase cultures. Using a clfB mutant isolated by allelic replacement alone and in combination with a clfA mutation, the ClfB protein was shown to promote (i) clumping of exponential-phase cells in a solution of fibrinogen, (ii) adherence of exponential-phase bacteria to immobilized fibrinogen in vitro, and (iii) bacterial adherence to ex vivo human haemodialysis tubing, suggesting that it could contribute to the pathogenicity of biomaterial-related infections. However, in wild-type exponential-phase S. aureus Newman cultures, ClfB activity was masked by the ClfA protein, and it did not contribute at all to interactions of cells from stationary-phase cultures with fibrinogen. ClfB-dependent bacterial adherence to immobilized fibrinogen was inhibited by millimolar concentrations of Ca2+ and Mn2+, which indicates that, like ClfA, ligand binding by ClfB is regulated by a low-affinity inhibitory cation binding site.  相似文献   

12.
The synucleins     
  相似文献   

13.
The serine-rich repeat glycoproteins of Gram-positive bacteria comprise a large family of cell wall proteins. Streptococcus agalactiae (group B streptococcus, GBS) expresses either Srr1 or Srr2 on its surface, depending on the strain. Srr1 has recently been shown to bind fibrinogen, and this interaction contributes to the pathogenesis of GBS meningitis. Although strains expressing Srr2 appear to be hypervirulent, no ligand for this adhesin has been described. We now demonstrate that Srr2 also binds human fibrinogen and that this interaction promotes GBS attachment to endothelial cells. Recombinant Srr1 and Srr2 bound fibrinogen in vitro, with affinities of KD = 2.1 × 10−5 and 3.7 × 10−6 m, respectively, as measured by surface plasmon resonance spectroscopy. The binding site for Srr1 and Srr2 was localized to tandem repeats 6–8 of the fibrinogen Aα chain. The structures of both the Srr1 and Srr2 binding regions were determined and, in combination with mutagenesis studies, suggest that both Srr1 and Srr2 interact with a segment of these repeats via a “dock, lock, and latch” mechanism. Moreover, properties of the latch region may account for the increased affinity between Srr2 and fibrinogen. Together, these studies identify how greater affinity of Srr2 for fibrinogen may contribute to the increased virulence associated with Srr2-expressing strains.  相似文献   

14.
The location of certain amino acid sequences like repeats along the polypeptide chain is very important in the context of forming the overall shape of the protein molecule which in fact determines its function. In gram‐positive bacteria, fibronectin‐binding protein (FnBP) is one such repeat containing protein, and it is a cell wall‐attached protein responsible for various acute infections in human. Several studies on sequence, structure, and function of fibronectin‐binding regions of FnBPs were reported; however, no detailed study was carried out on the full‐length protein sequence. In the present study, we have made a thorough sequence and structure analysis on FnBP_A of Staphylococcus aureus and explored the presence of dual ligand‐binding ability of fibrinogen (fg)‐binding region and its molecular recognition processes. Multiple sequence alignment and protein‐protein docking analysis reveal the regions which are likely involved in dual ligand binding. Further analysis of docking of FnBP_A fg‐binding region and fn N‐terminal modules suggests that if the latter binds to the fg‐binding region of FnBP_A, it would inhibit the subsequent binding of fg because of steric hindrance. The sequence analysis further suggests that the abundance of disorder promoting residue glutamic acid and dual personality (both order/disorder promoting) residue threonine in tandem repeats of FnBP_A and B proteins possibly would help the molecule to undergo a conformational change while binding with fn by β‐zipper mechanism. The segment‐based power spectral analysis was carried out which helps to understand the distribution of hydrophobic residues along the sequence particularly in intrinsic disordered tandem repeats. The results presented here will help to understand the role of internal repeats and intrinsic disorder in the molecular recognition process of a pathogenic cell surface protein.  相似文献   

15.
Clustered regularly interspaced short palindromic repeats (CRISPR) confer immunity against mobile genetic elements (MGEs) in prokaryotes. Streptococcus agalactiae, a leading cause of neonatal infections contains in its genome two CRISPR/Cas systems. We show that type 1‐C CRISPR2 is present in few strains but type 2‐A CRISPR1 is ubiquitous. Comparative sequence analysis of the CRISPR1 spacer content of 351 S. agalactiae strains revealed that it is extremely diverse due to the acquisition of new spacers, spacer duplications and spacer deletions that witness the dynamics of this system. The spacer content profile mirrors the S. agalactiae population structure. Transfer of a conjugative transposon targeted by CRISPR1 selected for spacer rearrangements, suggesting that deletions and duplications pre‐exist in the population. The comparison of protospacers located within MGE or the core genome and protospacer‐associated motif‐shuffling demonstrated that the GG motif is sufficient to discriminate self and non‐self and for spacer selection and integration. Strikingly more than 40% of the 949 different CRISPR1 spacers identified target MGEs found in S. agalactiae genomes. We thus propose that the S. agalactiae type II‐A CRISPR1/Cas system modulates the cohabitation of the species with its mobilome, as such contributing to the diversity of MGEs in the population.  相似文献   

16.
Summary The three-dimensional structures of bacterial high potential iron protein (HIPIP) and rubredoxin have been searched for repeats to test whether these molecules evolved by independent tandem gene duplications. HIPIP has no structural repeats in spite of the observed repeated pattern in the amino acid sequence fromRhodopseudomonas gelatinosa. Rubredoxin fromClostridium pasteurianum has repeated hairpin loops of ten alpha-carbon atoms on both sides of the active centre iron-sulphur complex, which can be superposed within a root mean square deviation of 0.84 Å by rotating about a local pseudo-dyad axis. The structural repeat matches a weak repeat in the amino acid sequence. It is concluded that the sequence repeats in HIPIP are probably a coincidence but that rubredoxin may have evolved by gene duplication from a dimer of two primitive hairpin loops.  相似文献   

17.
Knowledge about the composition and structure of centromeres is critical for understanding how centromeres perform their functional roles. Here, we report the sequences of one centromere-associated bacterial artificial chromosome clone from a Coix lacryma-jobi library. Two Ty3/gypsy-class retrotransposons, centromeric retrotransposon of C. lacryma-jobi (CRC) and peri-centromeric retrotransposon of C. lacryma-jobi, and a (peri)centromere-specific tandem repeat with a unit length of 153 bp were identified. The CRC is highly homologous to centromere-specific retrotransposons reported in grass species. An 80-bp DNA region in the 153-bp satellite repeat was found to be conserved to centromeric satellite repeats from maize, rice, and pearl millet. Fluorescence in situ hybridization showed that the three repetitive sequences were located in (peri-)centromeric regions of both C. lacryma-jobi and Coix aquatica. However, the 153-bp satellite repeat was only detected on 20 out of the 30 chromosomes in C. aquatica. Immunostaining with an antibody against rice CENH3 indicates that the 153-bp satellite repeat and CRC might be both the major components for functional centromeres, but not all the 153-bp satellite repeats or CRC sequences are associated with CENH3. The evolution of centromeric repeats of C. lacryma-jobi during the polyploidization was discussed.  相似文献   

18.
Centromeric repetitive sequences were isolated from Arabidopsis halleri ssp. gemmifera and A. lyrata ssp. kawasakiana. Two novel repeat families isolated from A. gemmifera were designated pAge1 and pAge2. These repeats are 180 bp in length and are organized in a head-to-tail manner. They are similar to the pAL1 repeats of A. thaliana and the pAa units of A. arenosa. Both A. gemmifera and A. kawasakiana possess the pAa, pAge1 and pAge2 repeat families. Sequence comparisons of different centromeric repeats revealed that these families share a highly conserved region of approximately 50 bp. Within each of the four repeat families, two or three regions showed low levels of sequence variation. The average difference in nucleotide sequence was approximately 10% within families and 30% between families, which resulted in clear distinctions between families upon phylogenetic analysis. FISH analysis revealed that the localization patterns for the pAa, pAge1 and pAge2 families were chromosome specific in A. gemmifera and A. kawasakiana. In one pair of chromosomes in A. gemmifera, and three pairs of chromosomes in A. kawasakiana, two repeat families were present. The presence of three families of centromeric repeats in A. gemmifera and A. kawasakiana indicates that the first step toward homogenization of centromeric repeats occurred at the chromosome level.Communicated by W. R. McCombie  相似文献   

19.
The complete nucleotide sequence of the archaeal conjugative plasmid, pNOB8, from the Sulfolobus isolate NOB8-H2, was determined. The plasmid is 41 229 bp in size and contains about 50 ORFs. Several direct sequence repeats are present, the largest of which is a perfect 85-bp repeat and a site of intraplasmid recombination in foreign Sulfolobus hosts. This recombination event produces a major deletion variant, pNOB8-33, which is not stably maintained. Less than 20% of the ORFs could be assigned putative functions after extensive database searches. Tandem ORFs 315 and 470, within the deleted 8-kb region, show significant sequence similarity to the protein superfamilies of ParA (whole protein) and ParB (N-terminal half), respectively, that are important for plasmid and chromosome partitioning in bacteria. A putative cis-acting element is also present that exhibits six 24-mer repeats containing palindromic sequences which are separated by 39 or 42 bp. By analogy with bacterial systems, this element may confer plasmid incompatibility and define a group of incompatible plasmids in Archaea. Although several ORFs can form putative trans-membrane or membrane-binding segments, only two ORFs show significant sequence similarity to bacterial conjugative proteins. ORF630b aligns with the TrbE protein superfamily, which contributes to mating pair formation in Bacteria, while ORF1025 aligns with the TraG protein superfamily. We infer that the conjugative mechanism for Sulfolobus differs considerably from known bacterial mechanisms. Finally, two transposases were detected; ORF413 is flanked by an imperfect 32-bp inverted repeat with a 5-bp direct repeat at the ends, and ORF406 is very similar in sequence to an insertion element identified in the Sulfolobus solfataricus P2 genome. Received: March 10, 1998 / Accepted: May 2, 1998  相似文献   

20.

Background  

FliH is a protein involved in the export of components of the bacterial flagellum and we herein describe the presence of glycine-rich repeats in FliH of the form AxxxG(xxxG) m xxxA, where the value of m varies considerably in FliH proteins from different bacteria. While GxxxG and AxxxA patterns have previously been described, the long glycine repeat segments in FliH proteins have yet to be characterized. The Type III secretion system homologue to FliH (YscL, AscL, PscL, etc.) also contains a similar GxxxG repeat, and hence the presence of the repeat is evolutionarily conserved in these proteins, suggesting an important structural role or biological function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号