首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
选择合适的诱导表达启动子是开展植物耐干旱和脱水等非生物逆境转基因研究的重要环节。我们通过几年的研究,已建立了一套以大麦幼苗完整活体和植物离体叶片为主要材料通过瞬间表达鉴定来快速检测干旱和脱水可诱导基因启动子表达特性的方法。来自大麦和水稻的启动子Dhn4s、Dhn8s、HVA1s、Rab16Bj、wsi18j在大麦、小麦、水稻、高粱和蕨类植物的离体叶片中经干燥诱导可以瞬间表达GFP,在绿豆、番茄叶片中不表达。鉴定了HVA1s和wsi18j在大麦不同器官或组织中启动子的定性表达情况。进一步建立了GFP荧光点/GUS染色点计数分析和GUS活性/XYN活性测定分析的启动子表达的定量分析方法,并讨论该方法在环境可诱导植物启动子功能分析中的应用价值和前景。  相似文献   

2.
Expression of the late embryogenesis abundant (LEA) gene is usually associated with plant response to dehydration. In this study, a drought-tolerant genotype was screened from 48 accessions of Tibetan hulless barley (Hordeum vulgare ssp. vulgare). By using virus-induced gene silencing, the influence of two LEA genes (HVA1 and Dhn6) on drought tolerance of Tibetan hulless barley was investigated. Results of quantitative real-time PCR indicated that the relative expression levels of HVA1 and Dhn6 in silenced plants were significantly reduced compared with control plants. Both HVA1-silenced and Dhn6-silenced plants showed a consequently lower survival rate than control plants under drought stress. However, only HVA1-silenced plants exhibited a significantly higher water loss rate (WLR). These results suggested that HVA1 and Dhn6 might participate in adaptive responses to water deficit in different ways. Vegetative growth of HVA1-silenced plants was significantly retarded even under optimal growth conditions, and their biomass accumulation was also much lower than that of the controls. These results indicate that HVA1 might play a role in vegetative growth of Tibetan hulless barley.  相似文献   

3.
4.
5.
6.
The barley genesHvLtp4.2 andHvLtp4.3 both encode the lipid transfer protein LTP4 and are less than 1 kb apart in tail-to-tail orientation. They differ in their non-coding regions from each other and from the gene corresponding to a previously reportedLtp4 cDNA (nowLtp4.1). Southern blot analysis indicated the existence of three or moreLtp4 genes per haploid genome and showed considerable polymorphism among barley cultivars. We have investigated the transient expression of genesHvLtp4.2 andHvLtp4.3 following transformation by particle bombardment, using promoter fusions to the-glucuronidase reporter sequence. In leaves, activities of the two promoters were of the same order as those of the sucrose synthase (Ss1) and cauliflower mosaic virus 35S promoters used as controls. Their expression patterns were similar, except thatLtp4.2 was more active thanLtp4.3 in endosperm, andLtp4.3 was active in roots, whileLtp4.2 was not. The promoters of both genes were induced by low temperature, both in winter and spring barley cultivars. Northern blot analysis, using theLtp4-specific probe, indicated thatXanthomonas campestris pv.translucens induced an increase over basal levels ofLtp4 mRNA, whilePseudomonas syringae pv.japonica caused a decrease. TheLtp4.3-Gus promoter fusion also responded in opposite ways to these two compatible bacterial pathogens, whereas theLtp4.2-Gus construction did not respond to infection.  相似文献   

7.
The identification of molecular markers and marker-aided selection are essential to the efficient breeding of drought-tolerant plants. However, because that characteristic is controlled by many quantitative trait loci, such markers that can screen and trace desirable barley genotypes in a segregating population or germplasm have not yet been determined. Relative water content has been used to estimate drought tolerance in plants because it is highly correlated with the drought index of yield. To develop reliable gene-specific markers for identifying tolerant versus susceptible genotypes, we performed suppression subtractive hybridization to identify candidate genes. We used two domestic barley cultivars, one having the highest RWC (drought-tolerant ‘Chalbori’) and the other having the lowest (drought-susceptible ‘Daebaekbori’). In response to dehydration at the early seedling stage, rapid upregulation ofDehydrin3 (Dhn3) andDhn4 occurred in the drought-tolerant genotypes, but not in the susceptible ones. Similar results were obtained with mature plants growing under frequent drought stress in the greenhouse. In addition,Dhn3 andDhn4 conferred higher drought tolerance when they were over-expressed in transgenicArabidopsis. Thus, in addition to using assessments of RWC, we propose thatDhn3 andDhn4 expressions can serve as drought-induced gene-specific markers to determine drought-tolerant barley genotypes at the seedling stage.  相似文献   

8.
9.
To identify minimal effective promoters for driving abiotic stress-inducible transgene expression in rice, we selected promoter elements of three stress-responsive genes, viz. rab16A coding for dehydrin, OsABA2 coding for zeaxanthin epoxidase, and a gene coding for a hypothetical protein (HP1) based on the presence of ABA-, salt- and drought-responsive cis-acting elements. These were translationally fused to the gusA reporter gene and introduced into rice to study their effect on heterologous gene expression. The OsABA2 promoter was found to be the most effective and desirable promoter among the three in terms of driving a low constitutive transgene expression under normal conditions and high induction in response to ABA, salt and drought stress, the highest being a 12-fold induction in response to ABA. The rab16A and HP1 promoters resulted in high levels of constitutive expression. While induction of GUS activity was generally two- to threefold for all the treatments in roots for both the promoters, induction in leaves was generally insignificant, the exceptions being rab16A in response to continuous salt stress and HP1 in response to water deficit. It was also observed that the three promoters, in general, resulted in lower constitutive expression, but higher induction in roots as compared to leaves. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. R. Wu: Deceased. This paper is humbly dedicated to the memory of Professor Ray Wu.  相似文献   

10.
11.
12.
A putative promoter fragment of a Pinus radiata gene encoding a multi-functional O-methyltransferase (AEOMT) was isolated from genomic DNA. Sequence analysis revealed a number of putative cis elements, including AC-rich motifs common in promoters of genes related to the phenylpropanoid pathway. The isolated promoter was fused to the GUS reporter gene and its expression profile analyzed in transgenic tobacco and in transient transformation experiments with P. radiata embryogenic and xylogenic tissue. The promoter conferred weak expression in embryogenic tissue but caused strong GUS activity in both ray parenchyma cells and developing tracheary elements of xylem strips. Histochemical analysis in transgenic tobacco plants revealed that the AEOMT promoter induced GUS expression in cell types associated with lignification, such as developing vessels, phloem and wood fibers and xylem parenchyma as well as in non-lignifying phloem parenchyma. The isolated promoter was activated by challenge of the tissue with a fungal pathogen. Our results also indicate that the control of lignin-related gene expression is conserved and can be compared in evolutionarily distant species such as tobacco and pine.  相似文献   

13.
Potential promoter regions of the Banana bunchy top virus (BBTV)-associated DNA components S1 and S2 were fused to the #-glucuronidase reporter gene and assessed for activity in both tobacco (Nicotiana tabacum cv. Xanthi) and banana (Musa spp. cv. Bluggoe). Transient assays indicated that all the S1- and S2-derived promoters were active and had greater expression in tobacco than banana. In stably transformed tobacco and banana, the S1- and S2-derived promoters directed expression in root meristems and trichomes. The S1 promoter was also expressed in the vascular tissue of leaves and roots, while both the S1 and S2 promoters were active in tobacco leaf trichomes and pollen. In banana, expression was significantly enhanced by the inclusion of the maize polyubiquitin intron 3' to the promoter. Interestingly, there was some evidence to indicate that S1 promoter fragments containing part of the open reading frame at the 5' end of the promoter had enhanced activity, suggesting that promoter elements may not be confined to the non-coding region.  相似文献   

14.
Dehydrin gene (Dhn) expression is associated with plant response to dehydration. The aim of the present study was to investigate the association of differential expression of Dhn genes (Dhn 1, 3, 5, 6, and 9) with drought tolerance found in wild barley (Hordeum spontaneum). Tolerant and sensitive genotypes were identified from Israeli (Tabigha microsite) and Jordanian (Jarash and Waddi Hassa) populations (based on scoring of water loss rate of 390 genotypes). The five Dhn genes were up‐regulated by dehydration in resistant and sensitive wild barley genotypes. Notably, differences between resistant and sensitive genotypes were detected, mainly in the expression of Dhn1 and Dhn6 genes, depending on the duration of dehydration stress. Dhn1 tended to react earlier (after 3 h) and higher (12 h and 24 h) in resistant compared to sensitive genotypes. The level of expression of Dhn6 was significantly higher in the resistant genotypes at the earlier stages after stress. However, after 12 and 24 h Dhn6 expression was relatively higher in sensitive genotypes. The present results may indicate that these genes have some functional role in the dehydration tolerance in wild barley. The authors suggest that the observed differences of Dhn expression in wild barley, originating from different micro‐ and macro ecogeographic locations, may be the result of adaptive edaphic and climatic selective pressures.  相似文献   

15.
16.
We previously identified 11 unique barley Dhn genes and found, using wheat-barley addition lines, that these genes are dispersed on four chromosomes 3H, 4H, 5H, 6H. In the present work, more precise positions of barley Dhn genes were determined using gene-specific PCR and 100 doubled haploid lines developed from a cross of Dicktoo and Morex barley. Dhn10 is located on 3H between saflp106 and ABG4. Dhn6 is at the previously determined position on 4H between SOLPRO and BCD265a. Dhn1 and Dhn2 are at the previously determined position on 5H between mR and saflp172. The Dhn locus previously called Dhn4a on barley 5H or Dhn2.2 on T. monococcum 5A is in fact Dhn9 and maps to a revised position between BCD265b and saflp218. Dhn3, Dhn4, Dhn7 and Dhn5 each map to the same position on chromosome 6H, suggesting that the previously reported separation of Dhn3, Dhn4 and Dhn5 may reflect limitations in the accuracy of Southern blot data. In addition to clarifying the map positions of these important stress-related genes, these results illustrate the advantage of gene-specific probes for the mapping of individual genes in a multi-gene family. Received: 11 August 1999 / Accepted: 16 December 1999  相似文献   

17.
18.
The green-fluorescent protein (GFP) gene from the Pacific Northwest jellyfish, Aequorea victoria, was used as a screenable marker in the production of transgenic barley plants. Isolated barley microspore culture was biolistically transformed with two synthetic forms of GFP, sgfp and pgfp. Thirty-seven fluorescing multicellular structures were isolated using epifluorescent microscopy. Sixteen structures developed shoots, but only five regenerated into green plants. Three events had been co-bombarded with #-glucuronidase (gus) and assayed positive for gus expression in the leaves, and all five events were positive for gfp expression. The expected transgene band size was PCR-amplified from all five plants, and Southern blots performed on three plants revealed unique patterns of gfp transgene integration. Fluorescent in situ hybridization also revealed the transgenic status and hemizygous nature of all the events. GFP-based visual screening provides a viable alternative method to chemical selection of transgenic plants from barley microspore culture.  相似文献   

19.
The objectives of this study were to test the feasibility of introducing barley hva1 gene, a LEA3 member, into perennial grass species using the Agrobacterium-mediated transformation technique and to determine whether heterologous expression of hva1 would alleviate water-deficit injury in grass species. Creeping bentgrass (Agrostis stolonifera var. palustris), a drought-intolerant grass species, was transformed transiently or stably using three different promoters in conjunction with the downstream report/target genes. Two abscisic acid (ABA)-inducible promoters, ABA1 and ABA2 derived from ABA-response complex (ABRC3) were used to examine stress-responsive expression of the green fluorescent protein (GFP). Transient expression of GFP demonstrated the inducibility of ABA1 and ABA2 promoters in response to exogenous ABA application. The ABA2 promoter was further studied for stress-responsive expression of hva1 and a maize Ubi-1 promoter was tested for constitutive expression of the gene. In the T0 generation, the Ubi-1::hva1 transformants displayed variable expression levels of HVA1 protein under normal growth conditions. The hva1 gene in the ABA2::hva1 transformants maintained low expression under well-watered conditions, but was upregulated under water-deficit conditions. The tolerance to water deficit of T0 transgenic lines was assessed by measuring leaf relative water content and visually rating the severity of leaf wilting during to water stress. Under water-stressed conditions, some transgenic lines maintained high water content in leaves and showed significantly less extent of leaf wilting compared with non-transgenic control plants. These results indicated that the introduction of barley hva1 gene using constitutive or stress-inducible promoters lessened water-deficit injury in creeping bentgrass, suggesting that heterologous expression of LEA3 protein genes may enhance the survival ability of creeping bentgrass in water limiting environments.  相似文献   

20.
Electrical discharge particle acceleration was used to test the transient expression of numerous inducible angiosperm promoters in a gymnospermPicea glauca (white spruce). Promoter expression was assayed in three different tissues capable ofin vitro regeneration, zygotic embryos, seedlings and embryogenic callus. The promoters tested include the light-inducibleArabidopsis and soybean ribulose-1,5-bisphosphate small subunit promoters and a maize phosphoenolpyruvate carboxylase promoter; a soybean heat-shock-inducible promoter, a soybean auxin inducible promoter and a maize alcohol dehydrogenase promoter. Promoters were cloned into a promoter-less expression vector to form a promoter--glucuronidase-nopaline synthase 3 fusion. A similar construct was made using the cauliflower mosaic virus 35S (CaMV 35S) promoter as a control. All promoters were expressed in white spruce embryos, yet at levels lower than CaMV 35S. In addition, in the embryos the heat-shock and the alcohol dehydrogenase promoters showed inducible expression when given the proper induction stimulus. In seedlings, expression of all promoters was lower than in the embryos and expression was only inducible with the heat-shock promoter in the cotyledons. Of the tissues tested, the expression level of all promoters was lowest in embryogenic callus. Interestingly, the expression of the -glucuronidase gene in embryogenic callus was restricted to the proembryonal head cells regardless of the promoter used. These results clearly demonstrate the use of particle bombardment to test the transient expression of heterologous promoters in organized tissue and the expression of angiosperm promoters in a gymnosperm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号