首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hereditary neuralgic amyotrophy (HNA) is a rare autosomal dominant disorder on chromosome 17q, associated with recurrent, episodic, painful brachial plexus neuropathy. Dysmorphic features, including hypotelorism, long nasal bridge and facial asymmetry, are frequently associated with HNA. To assess genetic homogeneity, determine the cytogenetic location, and identify flanking markers for the HNA locus, six pedigrees were studied with multiple DNA markers from distal chromosome 17q. The results in all pedigrees supported linkage of the HNA locus to chromosome 17. A maximum combined lod score (Ζ = 10.94, £ = 0.05) was obtained with marker D17S939 and the maximum multipoint lod score was 22.768 in the interval defined by D17S802– D17S939. An analysis of crossovers placed the HNA locus within an approximate 4.0-cM interval flanked by D17S1603 and D17S802. Analysis of DNA from a human/mouse somatic cell hybrid with linked markers suggests that band 17q25 harbors the HNA locus. These results support genetic homogeneity within HNA and define a specific interval and a precise cytogenetic location in chromosome 17q25 for this disorder. Received: 24 June 1997 / Accepted: 21 August 1997  相似文献   

2.
Thiamine-responsive megaloblastic anemia (TRMA) is an autosomal recessive syndrome characterized by early-onset anemia, diabetes, and hearing loss caused by mutations in the SLC19A2 gene. We studied the genetic cause and clinical features of this condition in patients from the Persian population. A clinical and molecular investigation was performed in four patients from three families and their healthy family members. All had the typical diagnostic criteria. The onset of hearing loss in three patients was at birth and one patient also had a stroke and seizure disorder. Thiamine treatment effectively corrected the anemia in all of our patients but did not prevent hearing loss. Diabetes was improved in one patient who presented at the age of 8 months with anemia and diabetes after 2 months of starting thiamine. The coding regions of SLC19A2 were sequenced in all patients. The identified mutation was tested in all members of the families. Molecular analyses identified a homozygous nonsense mutation c.697C > T (p.Gln233*) as the cause of the disease in all families. This mutation was previously reported in a Turkish patient with TRMA and is likely to be a founder mutation in the Persian population.  相似文献   

3.
4.
Genetic linkage studies were conducted in four multigenerational families with X-linked Charcot-Marie-Tooth disease (CMTX), using 12 highly polymorphic short-tandem-repeat markers for the pericentromeric region of the X chromosome. Pairwise linkage analysis with individual markers confirmed tight linkage of CMTX to the pericentromeric region in each family. Multipoint analyses strongly support the order DXS337-CMTX-DXS441-(DXS56,PGK1).  相似文献   

5.
Recently, the copper toxicosis (CT) locus in Bedlington terriers was assigned to canine chromosome region CFA10q26, which is homologous to human chromosome region HSA2p13-21. A comparative map between CFA10q21-26 and HSA2p13-21 was constructed by using genes already localized to HSA2p13-21. A high-resolution radiation map of CFA10q21-26 was constructed to facilitate positional cloning of the CT gene. For this map, seven Type I and eleven Type II markers were mapped. Using homozygosity mapping, the CT locus could be confined to a 42.3 cR3000 region, between the FH2523 and C10.602 markers. On the basis of a partial BAC contig, it was estimated that 1-cR3000 is equivalent to approximately 210 kb, implying that the CT candidate region is therefore estimated to be about 9 Mb. Received: 16 December 1999 / Accepted: 23 February 2000  相似文献   

6.
Summary Activity of the enzyme glutathione reductase (EC 1.6.4.2) in erythrocytes and fibroblasts of a patient with karyotype 46, XY, del(8) (pterp212:) was found to be in the normal range. With results from other laboratories, this allowed a more precise mapping of the gene for this enzyme in the region 8p2100–8p212.  相似文献   

7.
Recently, the EXTL1 gene, a member of the EXT tumor suppressor gene family, has been mapped to 1p36, a chromosome region which is frequently implicated in a wide variety of malignancies, including breast carcinoma, colorectal cancer and neuroblastoma. In this study, we show that the EXTL1 gene is located between the genetic markers D1S511 and D1S234 within 200 kb of the LAP18 gene on chromosome 1p36. 1, a region which has been proposed to harbor a tumor suppressor gene implicated in MYCN-amplified neuroblastomas. In addition, we determined the genomic structure of the EXTL1 gene, revealing that the EXTL1 coding sequence spans 11 exons within a 50-kb region.  相似文献   

8.
A total of 15 polymorphic markers were used to construct a genetic map that encompasses the NF1 locus on chromosome 17. The markers were a subset of a large collection of chromosome 17-specific probes and were selected for marker typing in NF1 families after physical localization to the pericentric region of the chromosome. Multilocus data for a total of 17 informative NF1 families and 39 other families were included in genetic analyses. No recombination was observed between NF1 and four markers, one or more of which was informative in 86% of parents. More-refined physical mapping studies demonstrated that all four of the markers are proximal to the chromosome 17 translocation breakpoints from two NF1 patients bearing balanced translocations. The region flanking the disease locus spans a distance of 1 centimorgan (cM) in males and 9 cM in females. Close flanking markers were informative in 76% of meioses. Sex differences in recombination rates in the pericentric region were highly significant statistically.  相似文献   

9.
10.
A. M. Shojania 《CMAJ》1980,122(9):999-1004
The diagnosis of megaloblastic anemia and the differentiation of folate and vitamin B12 deficiency require, in addition to careful attention to the history and physical findings, the use of laboratory tests. In this paper the commonly ordered tests for such a diagnosis are discussed, with emphasis on the conditions that may cause false-positive or false-negative results in the complete blood count, examination of a peripheral blood smear and a bone marrow specimen, serum and erythrocyte folate assays, serum vitamin B12 assays, tests of vitamin B12 absorption and gastric analysis.  相似文献   

11.
Marfan syndrome is a dominantly inherited connective tissue disorder with manifestations in the cardiovascular, ocular, and skeletal systems. The diagnosis is hampered by both high variability in the phenotypic expression and late manifestation of symptoms. The cause of Marfan syndrome remains unknown, but our group has recently reported the genetic linkage of Marfan syndrome to a polymorphic marker on chromosome 15. To analyze the possible heterogeneity behind Marfan syndrome, we have performed linkage analyses for four chromosome 15 markers in 17 families from five different populations: Scottish, English, Swiss, American, and Finnish. By combining the linkage data of all the studied families into a LINKMAP analysis we obtained a maximal LOD score of 11.2, which maps the Marfan syndrome locus between D15S25 and D15S45 on the long arm of chromosome 15. The data reveal no evidence for genetic heterogeneity behind Marfan syndrome and provide us with a more precise location of both the Marfan syndrome locus and flanking markers. This information will provide the basis for the DNA diagnostics of Marfan syndrome in the future.  相似文献   

12.
Best’s macular dystrophy, also known as vitelliform macular degeneration type 2 (VMD-2), is an autosomal dominant eye disorder that causes reduced visual acuity. It generally manifests itself in the teenage years. The gene mutated in VMD-2 patients may provide valuable insight into the biological mechanisms of the far more common disorder age-related macular degeneration. The VMD-2 gene has been localized to 11q13 between UGB and FcɛRI. In order to clone the gene positionally, a large Swedish VMD-2 family dating back to the 17th century was studied for recombinations. Since the last study, another 40 microsatellite markers have been analyzed in the family; the closest centromeric flanking marker, D11S4076, revealed two recombinations and the closest telomeric flanking marker, UGB, revealed one recombination. The recombinations have occurred in affected individuals, which eliminates the potential problem of reduced penetrance. The order and physical distance between 22 markers located at proximal 11q13 were analyzed on the G3 Stanford radiation-reduced cell hybrids. The data suggest that the VMD-2 region flanked by the microsatellite markers D11S4076 and UGB is approximately 980 kb. Received: 23 April 1997 / Accepted: 15 July 1997  相似文献   

13.
14.
Further evidence for genetic heterogeneity in the fragile X syndrome   总被引:7,自引:1,他引:7  
Summary The X-linked fragile X[fra(X)] syndrome, associated with a fragile site at Xq27.3, is the most common Mendeban inherited form of mental deficiency. Approximately 1 in 1060 males and 1 in 677 females carry the fra (X) chromosome. However, diagnosis of carrier status can be difficult since about 20% of males and 44% of females are nonpenetrant for mental impairment and/or expression of fra (X). We analyzed DNA from 327 individuals in 23 families segregating fra (X) for linkage to three flanking polymorphic probes: 52A, F9, and ST14. This allowed probable nonpenetrant, transmitting males and carrier females to be identified. A combined linkage analysis was conducted using these families and published probe information on F9 in 27 other families, 52A in six families, and ST14 in five families. The two-point recombination fraction for 52A-F9 was 0.13 (90% confidence interval, 0.10–0.16), for F9-fra(X) was 0.21 (0.17–0.24), and for fra(X)-ST14 was 0.12 (0.07–0.17). Tight linkage between F9 and fra(X) was observed in some families; in others loose linkage was seen suggesting genetic linkage heterogeneity. Risk analysis of carrier status using flanking DNA probes showed that probable nonpenetrant transmitting males were included in families showing both tight and loose linkage. Thus, in contrast to our previous conclusions, it appears that the presence or absence of nonpenetrant, transmitting males in a family is not an indicator of heterogeneity. To determine if heterogeneity was present, we employed the admixture test. Evidence for linkage heterogeneity between F9 and fra(X) was found, significant at P<0.0005. Nonsignificant heterogeneity was seen for 52A-F9 linkage. No heterogeneity was found for fra(X)-ST14. The frequency of fra(X) expression was significantly lower in families with tight F9-fra(X) linkage than in families with loose linkage. Cognition appeared to relate to linkage type: affected males in tight linkage families had higher IQs than those in loose linkage families. These findings of genetic heterogeneity can account in part for the high prevalence and apparent high new mutation rate of fra(X). They will affect genetic counseling using RFLPs. An understanding of the basis for genetic heterogeneity in fra(X) will help to clarify the nature of the unusual pattern of inheritance seen in this syndrome.  相似文献   

15.
Familial Mediterranean fever (FMF) is an autosomal recessive disease characterized by attacks of fever and serosal inflammation; the biochemical basis is unknown. We recently reported linkage of the gene causing FMF (designated “MEF”) to two markers on chromosome 16p. To map MEF more precisely, we have now tested nine 16p markers. Two-point and multipoint linkage analysis, as well as a study of recombinant haplotypes, placed MEF between D16S94 and D16S80, a genetic interval of about 9 cM. We also examined rates of homozygosity for markers in this region, among offspring of consanguineous marriages. For eight of nine markers, the rate of homozygosity among 26 affected inbred individuals was higher than that among their 20 unaffected sibs. Localizing MEF more precisely on the basis of homozygosity rates alone would be difficult, for two reasons: First, the high FMF carrier frequency increases the chance that inbred offspring could have the disease without being homozygous by descent at MEF. Second, several of the markers in this region are relatively nonpolymorphic, with a high rate of homozygosity, regardless of their chromosomal location.  相似文献   

16.
Joubert syndrome is a rare developmental defect of the cerebellar vermis, with autosomal recessive inheritance. The phenotype is highly variable and may include episodic hyperpnea, abnormal eye movements, hypotonia, ataxia, developmental delay, and mental retardation. Even within sibships the phenotype may vary, making it difficult to establish the exact clinical diagnostic boundaries of Joubert syndrome. To genetically localize the gene region, we have performed a whole-genome scan in two consanguineous families of Arabian/Iranian origins, with multiple affected probands. In one family, we detected linkage to the telomeric region of chromosome 9q, close to the marker D9S158, with a multipoint LOD score of Z=+3.7. The second family did not show linkage to this region, giving a first indication of genetic heterogeneity underlying Joubert syndrome. These findings were supported by subsequent analysis of two smaller families-one compatible with linkage to 9q; the other, unlinked. We conclude that Joubert syndrome is clinically and genetically heterogeneous and that one locus maps to chromosome 9q.  相似文献   

17.
Autosomal, dominantly inherited, non-chromaffin paragangliomas are tumors of the head and neck region occurring with a frequency of 130 000. Genomic imprinting probably influences the expression of the disorder, because tumor development is limited to individuals who have inherited the trait from their father. By linkage analysis and haplotyping of a single large family in which the pattern of inheritance is consistent with genomic imprinting, we have mapped the gene to a 5 cM region of chromosome 11q13.1 between D11S956 and PYGM. A maximum lod score of 7.62 at = 0.0 was obtained for D11S480. This interval does not overlap with a recently assigned locus for glomus tumors in other families: 11q22.3-q23.3. Furthermore, analysis of a second family showing the imprinting phenomenon resulted in the exclusion of the 5 cM area as the location of the disease gene, whereas an indication for linkage was obtained (Z = +2.65) with markers from the distal locus. These observations argue for the presence of two distinct imprinted genes for glomus tumors on 11q. A model for tumor initiation and progression is presented based on all available information.  相似文献   

18.
Psoriasin is a low molecular weight protein of the S100 family, which is highly upregulated in psoriatic epidermis, and whose function is related to skin inflammatory responses. We have applied a cDNA probe from the corresponding psoriasin gene S100A7 in a refined localisation analysis. S100A7 was mapped physically by human/rodent somatic cell hybrid analysis, and more precisely genetically by multilocus linkage analysis of 40 CEPH (Centre d'Etude du Polymorphisme Humain) families. The resulting 12-point linkage map was supported by odds of at least 1000:1, where S100A7 could be placed with a multipoint lodscore of 27.4 in an approximately 7cM interval. The order of the 12 loci was as follows (with the best estimates of recombination frequencies given in between): AMY2B-0.091-D1S730.039-D1S11-0.053-D 1 S189 -0.017-D1S252-0.017-D1S13-0.078-DIZ5-0.051-S100A7-0.022- MUC1-0.026-SPTA1-0.066-ATP1A2-0.014-APOA2. Furthermore, from this map S100A7 could be assigned to the regional position of chromosome 1cen-q21. The linkage information presented should be of great value in association and linkage studies of diseases where psoriasin, or some of the several other very closely linked and functionally related genes, are seen as candidate genes, e.g. in psoriasis.  相似文献   

19.
To determine whether weed populations growing in neighbouring fields were genetically isolated, we investigated the genetic contamination of Alopecurus myosuroides populations in organic fields by populations in conventional fields. Herbicide resistance was used as a marker for gene flow to organic populations, which are not under herbicide selective pressure. Organic fields contained on average 74.5% herbicide-resistant plants (80.1% in conventional fields). Identical resistance alleles were found in neighbouring organic and conventional fields. AFLP analysis revealed that populations from organic and conventional fields had similar neutral genetic diversity. Massive pollen flow from conventional fields is likely chiefly responsible for the genetic makeup of A. myosuroides populations from organic fields. Using a demo-genetic model, we propose that demographic collapses of populations due to effective weed control enhance gene flow towards these populations. Fields with a low weed density could act as ‘genetic sinks’ that would facilitate the diffusion of genes from neighbouring, dense weed populations. Populations of allogamous wind-pollinated weed species like A. myosuroides occurring in neighbouring fields are therefore clearly not independent units. Adaptive evolution and management of such weeds should thus be considered on a scale broader than the field.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号