首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibitory effects of ribose-modified GDP and GTP analogs on tubulin polymerization were examined to explore nucleotide structural requirements at the exchangeable GTP binding site. With microtubule-associated proteins and Mg2+, GTP-supported polymerization was only modestly inhibited by GDP, and still weaker inhibitory activity was found with two analogs, dGDP and 9-β-D-arabinofuranosylguanine-5′-diphosphate (araGDP). Omission of Mg2+ significantly enhanced the inhibitory effects of GDP, dGDP and araGDP and resulted in weak inhibition of the reaction by several other GDP analogs. The relative inhibitory activity of the GDP analogs had no discernable relationship to the relative activity of cognate GTP analogs in supporting microtubule-associated protein-dependent polymerization. One GTP analog, 2′,3′-dideoxyguanosine 5′-triphosphate (ddGTP), supports polymerization both with and without microtubule-associated proteins. The inhibitory activity of GDP and GDP analogs in ddGTP-supported polymerization was much greater in the absence of microtubule-associated proteins than in their presence; and both reactions were more readily inhibited than was microtubule-associated protein-dependent, GTP-supported polymerization. Microtubule-associated protein-independent, ddGTP-supported polymerization was also potently inhibited by GTP and a number of GTP analogs. GTP was in fact twice as inhibitory as GDP. The relative inhibitory activity of the GTP analogs was comparable to the relative inhibitory activity of the cognate GDP analogs and very different from their relative activity in supporting polymerization.  相似文献   

2.
Guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) and the two diastereoisomers of guanosine 5'-O-(2-thiotriphosphate) (GTP beta S) were prepared enzymatically, and their interactions with tubulin and microtubule-associated proteins (MAPs) in 0.1 M 2-(N-morpholino)ethanesulfonate, 0.5 mM MgCl2 were examined. GTP gamma S did not support microtubule assembly but instead inhibited the reaction. This analog was 1.5-2 times more potent than GDP in inhibiting both tubulin polymerization and GTP hydrolysis under conditions in which these reactions were dependent on MAPs. In contrast to the analog's inhibitory effects on polymerization and hydrolysis, however, radiolabeled GTP gamma S was only feebly bound by purified tubulin at 0 degrees C relative to the binding of GDP and GTP. There was a marked increase in the amount of GTP gamma S bound when the reaction temperature was raised to 37 degrees C or when MAPs were included in the reaction mixture. Only when both MAPs were present and the higher reaction temperature was used did the binding of GTP gamma S exceed that of GDP. Since substitution of sulfur for oxygen in a molecule should decrease its hydrophilic properties, these findings suggest that the exchangeable nucleotide binding site of tubulin becomes more hydrophobic at higher temperatures and in the presence of MAPs. The two isomers of GTP beta S were able to support MAP-dependent polymerization, although a 50-100-fold higher concentration of the analogs as compared to GTP was required. Neither isomer of GTP beta S had a significant inhibitory effect on GTP hydrolysis dependent on tubulin + MAPs.  相似文献   

3.
We have examined the effects of a number of organic anions, which stabilize tubulin, on tubulin polymerization, associated GTP hydrolysis, and polymer morphology. While microtubule-associated proteins, as well as glycerol, induced formation of typical microtubules in a reaction coupled to GTP hydrolysis at an initial 1:1 stoichiometry, the organic anions had varying effects. Only 2-(N-morpholino)ethanesulfonate induced formation of structures with the morphology of microtubules. With glutamate, fructose 1,6-bisphosphate, piperazine-N-N'-bis(2-ethanesulfonate), glutarate, and glucose 1-phosphate, the predominant structures formed were sheets of parallel protofilaments rather than microtubules. Creatine phosphate induced the formation of clusters of rings. GTP hydrolysis was closely coupled to polymerization only with glutamate. With creatine phosphate, there was minimal GTP hydrolysis. With all other organic anions, GTP hydrolysis substantially exceeded polymerization at all time points, with the onset of hydrolysis significantly preceding the onset of turbidity development. Nevertheless, the rate of GTP hydrolysis was a sigmoidal function of tubulin concentration under all conditions examined, suggesting that tubulin-tubulin interactions are required for hydrolysis. All anion-induced reactions were temperature dependent and cold reversible, but only the creatine phosphate induced reaction was not inhibited by GDP, CA2+, or colchicine and did not require GTP.  相似文献   

4.
E Hamel  J K Batra  C M Lin 《Biochemistry》1986,25(22):7054-7062
Using highly purified calf brain tubulin bearing [8-14C]guanosine 5'-diphosphate (GDP) in the exchangeable nucleotide site and heat-treated microtubule-associated proteins (both components containing negligible amounts of nucleoside diphosphate kinase and nonspecific phosphatase activities), we have found that a significant proportion of exchangeable-site GDP in microtubules can be incorporated directly during guanosine 5'-triphosphate (GTP) dependent polymerization of tubulin, without an initial exchange of GDP for GTP and subsequent GTP hydrolysis during assembly. The precise amount of GDP incorporated directly into microtubules is highly dependent on specific reaction conditions, being favored by high tubulin concentrations, low GTP and Mg2+ concentrations, and exogenous GDP in the reaction mixture. Minimum effects were observed with changes in reaction pH or temperature, changes in concentration of microtubule-associated proteins, alteration of the sulfonate buffer, or the presence of a calcium chelator in the reaction mixture. Under conditions most favorable for direct GDP incorporation, about one-third of the GDP in microtubules is incorporated directly (without GTP hydrolysis) and two-thirds is incorporated hydrolytically (as a consequence of GTP hydrolysis). Direct incorporation of GDP occurs in a constant proportion throughout elongation, and the amount of direct incorporation probably reflects the rapid equilibration of GDP and GTP at the exchangeable site that occurs before the onset of assembly.  相似文献   

5.
Mg2+ dependence of guanine nucleotide binding to tubulin   总被引:1,自引:0,他引:1  
The relationship between the concentration of Mg2+ and the binding of GDP and GTP to tubulin dimers was investigated by measuring the displacement of the nucleotide bound at the exchangeable site (E-site) by radiolabeled GDP and GTP. A wide range of concentrations of GTP, GDP, and Mg2+ was explored. In the near absence of Mg2+, the affinity of tubulin for GDP was found to be much greater than its affinity for GTP. In the presence of 1.0 mM Mg2+, however, its affinity for GDP was slightly less than for GTP. The results could be quantitatively described in terms of a small number of reversible equilibria. Equilibrium constants, pertaining to measurements at 0 degrees C, in 0.1 M piperazine-N,N'-bis(2-ethanesulfonic acid), 0.2 mM dithioerythritol, 2 mM EGTA, pH 6.9, were obtained by nonlinear least squares fitting of the data. When the association constant of tubulin for GDP uncomplexed with Mg2+ was taken to be 1.6 X 10(7) M-1, that for uncomplexed GTP was found to be no larger than 1.4 x 10(4) M-1, at least 1100-fold smaller. The association constant of tubulin for the GDP.Mg2+ complex was found to be 2.5-2.7 x 10(7) M-1, while that for the GTP.Mg2+ complex is 6.4-9.0 x 10(7) M-1.  相似文献   

6.
S Roychowdhury  F Gaskin 《Biochemistry》1986,25(24):7847-7853
Two conflicting interpretations on the role of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) in microtubule protein and tubulin assembly have been previously reported. One study finds that GTP gamma S promotes assembly while another study reports that GTP gamma S is a potent inhibitor of microtubule assembly. We have examined the potential role of Mg2+ to learn if the conflicting interpretations are due to a metal effect. Turbidity, electron microscopy, and nucleotide binding and hydrolysis were used to analyze the effect of the Mg2+ concentration on GTP gamma S-induced assembly of microtubule protein (tubulin + microtubule-associated proteins) in the presence of buffer +/- 30% glycerol and in buffer with GTP added before or after GTP gamma S. GTP gamma S substantially lowers the Mg2+ concentration required to induce cross-linked or clustered rings of tubulin. These cross-linked rings do not assemble well into microtubules, and GTP only partially restores microtubule assembly. However, taxol will promote GTP gamma S-induced cross-linked rings of microtubule protein to assemble into microtubules. The effect of GTP gamma S on microtubule protein assembly in the presence of Zn2+ with and without added Mg2+ suggests that GTP gamma S also effects the formation of Zn2+-induced sheet aggregates. Purified tubulin was used in assembly experiments with Mg2+, Zn2+, and taxol to better understand GTP gamma S interactions with tubulin. The optimal Mg2+ concentration for assembly of tubulin is lower with GTP gamma S than with GTP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
With microtubule-associated proteins (MAPs) BeSO4 and MgSO4 stimulated tubulin polymerization as compared to a reaction mixture without exogenously added metal ion, while beryllium fluoride had no effect (E. Hamel et al., 1991, Arch. Biochem. Biophys. 286, 57-69). Effects of both cations were most dramatic at GTP concentrations in the same molar range as the tubulin concentration. We have now compared effects of beryllium and magnesium on tubulin-nucleotide interactions in both unpolymerized tubulin and in polymer. Polymer formed with magnesium had properties similar to those of polymer formed without exogenous cation, except for a 20% lower stoichiometry of exogenous GTP incorporated into the latter. In both polymers the incorporated GTP was hydrolyzed to GDP. Stoichiometry of GTP incorporation into polymers formed with beryllium or magnesium was identical, but much of the GTP in the beryllium polymer was not hydrolyzed. The beryllium polymer was more stable than the magnesium polymer. Beryllium also differed from magnesium in only weakly enhancing the binding of GTP in the exchangeable site of unpolymerized tubulin, while neither cation affected GDP exchange at the site. If both cations were present in a reaction mixture, polymer stability was little changed from that of the beryllium polymer, but most of the GTP incorporated into polymer was hydrolyzed. Six additional metal salts (AlCl3, CdCl2, CoCl2, MnCl2, SnCl2, and ZnCl2) also stimulated MAP-dependent tubulin polymerization, but enhanced polymer stability did not correlate with polymer GTP content. We postulate that enhanced polymer stability is a consequence of cation binding directly to tubulin and/or polymer while deficient GTP hydrolysis in the presence of beryllium, as well as aluminum and tin, is a consequence of tight binding of cation to GTP in the exchangeable site.  相似文献   

8.
Binding of GTP and GDP to tubulin in the presence or absence of Mg2+ was measured following depletion of the exchangeable site--(E-site) nucleotide. The E-site nucleotide was displaced with a large molar excess of the nonhydrolyzable GTP analogue, GMPPCP, followed by the removal of the analogue. Using a micropartition assay, the equilibrium constant measured in 0.1 M 1.4-piperazinediethanesulfonic acid (Pipes), pH 6.9, 1 mM ethylene glycol bis(beta-aminoethyl ether) N,N,N',N'-tetraacetic acid, 1 mM dithiothreitol, and 1 mM MgSO4 at 4 degrees C was 9.1 x 10(6) M-1 for GTP and 4.4 x 10(6) M-1 for GDP. Removal of Mg2+ reduced the binding affinity of GTP by 160-fold while the affinity of GDP remained essentially unchanged. Similar values were obtained if 0.1 M Tris, pH 7.0, was used instead of Pipes. Binding of Mg2+ to tubulin containing GTP, GDP, or no nucleotide at the E-site was also examined by the micropartition method. Tubulin-GTP contained one high affinity Mg2+ site (K alpha = 1.2 x 10(6) M-1) in addition to the one occupied by Mg2+ as tubulin is isolated, while only weak Mg2+ binding to tubulin-GDP and to tubulin with a vacant E-site (K alpha = 10(3) M-1) was observed. It is suggested that Mg2+ binds to the beta and gamma phosphates of GTP, and only to the beta phosphate of GDP, as shown for the H. ras p21 protein.  相似文献   

9.
Tubulin exchanges divalent cations at both guanine nucleotide-binding sites   总被引:2,自引:0,他引:2  
The tubulin heterodimer binds a molecule of GTP at the nonexchangeable nucleotide-binding site (N-site) and either GDP or GTP at the exchangeable nucleotide-binding site (E-site). Mg2+ is known to be tightly linked to the binding of GTP at the E-site (Correia, J. J., Baty, L. T., and Williams, R. C., Jr. (1987) J. Biol. Chem. 262, 17278-17284). Measurements of the exchange of Mn2+ for bound Mg2+ (as monitored by atomic absorption and EPR) demonstrate that tubulin which has GDP at the E-site possesses one high affinity metal-binding site and that tubulin which has GTP at the E-site possesses two such sites. The apparent association constants are 0.7-1.1 x 10(6) M-1 for Mg2+ and approximately 4.1-4.9 x 10(7) M-1 for Mn2+. Divalent cations do bind to GDP at the E-site, but with much lower affinity (2.0-2.3 x 10(3) M-1 for Mg2+ and 3.9-6.6 x 10(3) M-1 for Mn2+). These data suggest that divalent cations are involved in GTP binding to both the N- and E-sites of tubulin. The N-site metal exchanges slowly (kapp = 0.020 min-1), suggesting a mechanism involving protein "breathing" or heterodimer dissociation. The N-site metal exchange rate is independent of the concentration of protein and metal, an observation consistent with the possibility that a dynamic breathing process is the rate-limiting step. The exchange of Mn2+ for Mg2+ has no effect on the secondary structure of tubulin at 4 degrees C or on the ability of tubulin to form microtubules. These results have important consequences for the interpretation of distance measurements within the tubulin dimer using paramagnetic ions. They are also relevant to the detailed mechanism of divalent cation release from microtubules after GTP hydrolysis.  相似文献   

10.
Effects of pH on tubulin-nucleotide interactions   总被引:1,自引:0,他引:1  
Significant GTP-independent, temperature-dependent turbidity development occurs with purified tubulin stored in the absence of unbound nucleotide, and this can be minimized with a higher reaction pH. Since microtubule assembly is optimal at lower pH values, we examined pH effects on tubulin-nucleotide interactions. While the lowest concentration of GTP required for assembly changed little, GDP was more inhibitory at higher pH values. The amounts of exogenous GTP bound to tubulin at all pH values were similar, but the amounts of exogenous GDP bound and endogenous GDP (i.e., GDP originally bound in the exchangeable site) retained by tubulin rose as reaction pH increased. Endogenous GDP was more efficiently displaced by exogenous GTP than GDP at all pH values, but displacement by GTP was 10-15% greater at pH 6 than at pH 7. Dissociation constants for GDP and GTP were about 1.0 microM at pH 6 and 0.02 microM at pH 7. A small increase in the affinity of GDP relative to that of GTP occurs at pH 7 as compared to pH 6, together with a 50-fold absolute increase in the affinity of both nucleotides for tubulin at pH 7. The time courses of microtubule assembly and GTP hydrolysis were compared at pH 6 and pH 7. At pH 6, the two reactions were simultaneous in onset and initially stoichiometric. At pH 7, although the reactions began simultaneously, hydrolysis seemed to lag substantially behind assembly. Unhydrolyzed radiolabeled GTP was not incorporated into microtubules, however, indicating that GTP hydrolysis is actually closely coupled to assembly. The apparent lag in hydrolysis probably results from a methodological artifact rather than incorporation of GTP into the microtubule with delayed hydrolysis.  相似文献   

11.
Glycerol-induced tubulin polymerization supported by non-guanine nucleotides was examined. The electrophoretically homogeneous tubulin was devoid of nucleoside diphosphate kinase activity and 95% saturated with exchangeable GDP and nonexchangeable GTP. All purine ribonucleoside 5'-triphosphates were active but no polymerization occurred with CTP or UTP. All polymerization reactions, as a function of nucleotide concentration, were similar: above a minimum (threshold) concentration, as the amount of nucleotide increased the reaction became progressively more rapid and extensive with a progressively shorter nucleation period. Threshold concentrations of ATP, XTP, ITP and GTP were 0.6 mM, 0.3 mM, 30 microM and 7 microM, respectively. Most ribose- and polyphosphate-modified ATP analogs also supported polymerization at high concentrations, but the activity of these analogs relative to ATP was very similar to the activity of cognate GTP analogs relative to GTP. Polymerization with ATP was associated with an ATPase reaction. ATP hydrolysis was potently inhibited by GDP and GTP and altered by antimitotic drugs in parallel with the effects of these agents on GTP hydrolysis. Substantial amounts of [8-14C]GDP bound in the exchangeable site of tubulin were displaced during polymerization with GTP or ATP, but much higher concentrations of ATP were required for equivalent displacement of the tubulin-bound GDP. Polymerization with GTP or ATP was inhibited in a qualitatively similar manner by GDP, with increasing concentrations of GDP causing a progressive prolongation of the nucleation period and reduction in reaction rate and extent. However, complete inhibition of polymerization required that GDP:GTP much greater than 1, but that GDP:ATP much less than 1. Inhibition appeared to be primarily competitive, since with higher triphosphate concentrations higher GDP concentrations were required for comparable inhibition. We conclude that ATP effects on tubulin polymerization are mediated through a feeble interaction at the exchangeable GTP site.  相似文献   

12.
Interactions of both purified tubulin and microtubule protein (tubulin plus associated proteins) with two commonly used sulfonate buffers were examined. 1,4-Piperazineethanesulfonate (Pipes) and 4-morpholineethanesulfonate (Mes) at high concentrations induce the polymerization of purified tubulin in reactions requiring only buffer, tubulin and GTP. While both reactions were temperature-dependent, cold-reversible and inhibited by GDP, colchicine or Ca2+, there were significant differences between them. Substantially lower tubulin and buffer concentrations were required for Pipes-induced polymerization; and turbidity was much more intense in the Pipes-induced than in the Mes-induced reaction at the same protein concentration. Electron microscopy demonstrated that for the most part typical smooth-walled microtubules were formed in Mes, while aberrant forms were the predominant structures formed in Pipes. When the polymerization of microtubule protein was examined as a function of buffer concentration, biphasic patterns were observed with both Pipes and Mes: polymerization occurred at both low and high, but not intermediate, buffer concentrations. The turbidity observed at high concentrations of Pipes greatly exceeded that at low concentrations. With Mes, equivalent turbidity developed at both high and low buffer concentrations. Although associated proteins copolymerized with tubulin at low buffer concentrations, they were excluded from the polymerized material at high buffer concentrations. Pipes and Mes were compared to sodium phosphate, Tris/HCl and imidazole/HCl buffers at 0.1 M in several polymerization systems using both purified tubulin and microtubule protein. The sulfonate buffers were invariably associated with more vigorous reactions than the other buffers.  相似文献   

13.
C M Lin  E Hamel 《Biochemistry》1987,26(22):7173-7182
We previously reported that direct incorporation of GDP (i.e., without an initial hydrolysis of GTP) into microtubules occurs throughout an assembly cycle in a constant proportion. The exact proportion varied with reaction conditions, becoming greater under all conditions in which tubulin-GDP increased relative to tubulin-GTP (low Mg2+ and GTP concentrations, high tubulin concentrations, and in the presence of exogenous GDP). These findings led us to explore further interrelationships of tubulin-GDP and tubulin-GTP in microtubule assembly. We have now determined the minimum amount of tubulin-GTP required for the initiation of microtubule assembly and the relative efficiency with which tubulin-GDP participates in microtubule elongation. When GTP, GDP, and tubulin concentrations were varied at a constant Mg2+ concentration (0.2 mM), initiation of assembly required that 35% of the nucleotide-bearing tubulin be in the form of tubulin-GTP, and incorporation of tubulin-GDP into microtubules during elongation was only 60% as efficient as would be predicted on the basis of its proportional concentration in the reaction mixtures. Very different results were obtained when the Mg2+ concentration was varied. Even though Mg2+ enhances the binding of GTP to tubulin (the equilibrium constant for the exchange of GTP for GDP was 0.2 in the absence of exogenous Mg2+, 3 with 0.2 mM Mg2+, 5 with 0.5 mM Mg2+, and 11 with 2 and 4 mM Mg2+), as Mg2+ was increased the proportion of tubulin-GTP required for the initiation of microtubule assembly rose greatly, and the direct incorporation of tubulin-GDP into microtubules during elongation became progressively more efficient. In the absence of exogenous Mg2+, only 20% tubulin-GTP was required for initiation, and tubulin-GDP was directly incorporated into microtubules half as efficiently as would be predicted on the basis of its concentration in the reaction mixture. At the highest Mg2+ concentration examined (4 mM), 80% tubulin-GTP was required for initiation of assembly, and tubulin-GDP was incorporated into microtubules as efficiently as tubulin-GTP.  相似文献   

14.
Prokaryotic cell division protein FtsZ, an assembling GTPase, directs the formation of the septosome between daughter cells. FtsZ is an attractive target for the development of new antibiotics. Assembly dynamics of FtsZ is regulated by the binding, hydrolysis, and exchange of GTP. We have determined the energetics of nucleotide binding to model apoFtsZ from Methanococcus jannaschii and studied the kinetics of 2'/3'-O-(N-methylanthraniloyl) (mant)-nucleotide binding and dissociation from FtsZ polymers, employing calorimetric, fluorescence, and stopped-flow methods. FtsZ binds GTP and GDP with K(b) values ranging from 20 to 300 microm(-1) under various conditions. GTP.Mg(2+) and GDP.Mg(2+) bind with slightly reduced affinity. Bound GTP and the coordinated Mg(2+) ion play a minor structural role in FtsZ monomers, but Mg(2+)-assisted GTP hydrolysis triggers polymer disassembly. Mant-GTP binds and dissociates quickly from FtsZ monomers, with approximately 10-fold lower affinity than GTP. Mant-GTP displacement measured by fluorescence anisotropy provides a method to test the binding of any competing molecules to the FtsZ nucleotide site. Mant-GTP is very slowly hydrolyzed and remains exchangeable in FtsZ polymers, but it becomes kinetically stabilized, with a 30-fold slower k(+) and approximately 500-fold slower k(-) than in monomers. The mant-GTP dissociation rate from FtsZ polymers is comparable with the GTP hydrolysis turnover and with the reported subunit turnover in Escherichia coli FtsZ polymers. Although FtsZ polymers can exchange nucleotide, unlike its eukaryotic structural homologue tubulin, GDP dissociation may be slow enough for polymer disassembly to take place first, resulting in FtsZ polymers cycling with GTP hydrolysis similarly to microtubules.  相似文献   

15.
Mg2+ interacts with the alpha subunits of guanine nucleotide-binding regulatory proteins (G proteins) in the presence of guanosine-5'-[gamma-thio]triphosphate (GTP-gamma S) to form a highly fluorescent complex from which nucleotide dissociates very slowly. The apparent Kd for interaction of G alpha X GTP gamma S with Mg2+ is approximately 5 nM, similar to the Km for G protein GTPase activity X G beta gamma increases the rate of dissociation of GTP gamma S from G alpha X GTP gamma S or G alpha X GTP gamma S X Mg2+ at low concentrations of Mg2+. When the concentration of Mg2+ exceeds 1 mM, G beta gamma dissociates from G beta gamma X G alpha X GTP gamma S X Mg2+. Compared with the dramatic effect of Mg2+ on binding of GTP gamma S to G alpha, the metal has relatively little effect on the binding of GDP. However, G beta gamma increases the affinity of G alpha for GDP by more than 100-fold. High concentrations of Mg2+ promote the dissociation of GDP from G beta gamma X G alpha X GDP, apparently without causing subunit dissociation. The steady-state rate of GTP hydrolysis is strictly correlated with the rate of dissociation of GDP from G alpha under all conditions examined. Thus, there are at least two sites for interaction of Mg2+ with G protein-nucleotide complexes. Furthermore, binding of G beta gamma and GTP gamma S to G alpha is negatively cooperative, while the binding interaction between G beta gamma and GDP is strongly positive.  相似文献   

16.
Carlier et al. (1988, Biochemistry 27, 3555-3559; 1989, Biochemistry 28, 1783-1791) described enhancement of tubulin polymerization and stabilization of glycerol-induced microtubules by BeF3- (by addition of both BeSO4 and NaF to reaction mixtures). We were able to confirm the stabilization of glycerol-induced polymer reported by these workers, provided Mg2+ was also present in the reaction. When we examined polymerization dependent on microtubule-associated proteins (MAPs), however, we obtained very different results. BeF3- had no significant effect on this reaction, or the polymer formed, under any condition examined. Lower concentrations of BeSO4 alone, in contrast to a negligible effect in glycerol, enhanced polymerization with MAPs provided the concentrations of both Mg2+ and GTP were low; and Be2+ stabilized the polymer, if the GTP concentration was low, at both low and high Mg2+ concentrations. Higher concentrations of BeSO4 precipitated tubulin, an effect which was not affected by Mg2+, partially prevented but not reversed by MAPs, and prevented or reversed by either NaF or nucleotides at adequate concentrations. These results suggest that Be2+ binds at site(s) distinct from Mg2+ site(s), and that partial occupancy of these site(s) at lower Be2+ concentrations enhances tubulin polymerization and polymer stability, while extensive occupancy at higher Be2+ concentrations results in tubulin precipitation. Effects of Be2+ and BeF3- on polymerization dependent on dimethyl sulfoxide or glutamate were also evaluated. The dimethyl sulfoxide system displayed properties similar to those of the glycerol system, while the glutamate system was similar to the MAPs system.  相似文献   

17.
In this paper we expand upon a previously reported observation of the effects of GDP on microtubule assembly. A ratio of GDP to GTP of ten (1 mm-GDP and 0.1 mm-GTP) is generally sufficient to completely block microtubule assembly, but only limited depolymerization is induced if GDP is added after assembly has reached a plateau in the presence of GTP. When added during polymerization, GDP arrests further elongation, and greater steady-state levels of assembly are obtained the later the time of addition of GDP. To explain this behavior we examined the rates of assembly and disassembly and the apparent critical concentration (C0) of tubulin in the presence of GDP. GDP-tubulin polymerizes very slowly as compared to GTP-tubulin, while depolymerization rates, as determined by dilution, are nearly identical in GTP and GDP. The C0 value calculated from the assembly and disassembly rates in GTP is within experimental error of the C0 value at steady-state determined directly. In the presence of GDP, however, the C0 value calculated from rate measurements is at least 60 times greater than that determined by equilibrium analysis. Our results indicate that the net assembly rate in GDP is not a valid measure of the reaction occurring at steady-state. A limited amount of depolymerization may occur upon addition of GDP to microtubules, and this appears to be due to a decrease in the fraction of protein able to participate in the polymerization reaction. The amount of tubulin “inactivated” by GDP is increased by the removal of microtubule-associated proteins. GDP-tubulin will stabilize existing microtubules, even when its polymerization cannot be demonstrated. These results are inconsistent with present models of microtubule assembly, and a new model involving co-operative interaction of microtubule-associated protein-tubulin oligomers at microtubule ends is proposed.  相似文献   

18.
A fluorescent derivative of paclitaxel, 3'-N-m-aminobenzamido-3'-N-debenzamidopaclitaxel (N-AB-PT), has been prepared in order to probe paclitaxel-microtubule interactions. Fluorescence spectroscopy was used to quantitatively assess the association of N-AB-PT with microtubules. N-AB-PT was found equipotent with paclitaxel in promoting microtubule polymerization. Paclitaxel and N-AB-PT underwent rapid exchange with each other on microtubules assembled from GTP-, GDP-, and GMPCPP-tubulin. The equilibrium binding parameters for N-AB-PT to microtubules assembled from GTP-tubulin were derived through fluorescence titration. N-AB-PT bound to two types of sites on microtubules (K(d1) = 61 +/- 7.0 nM and K(d2) = 3.3 +/- 0.54 microM). The stoichiometry of each site was less than one ligand per tubulin dimer in the microtubule (n(1) = 0.81 +/- 0.03 and n(2) = 0.44 +/- 0.02). The binding experiments were repeated after exchanging the GTP for GDP or for GMPCPP. It was found that N-AB-PT bound to a single site on microtubules assembled from GDP-tubulin with a dissociation constant of 2.5 +/- 0.29 microM, and that N-AB-PT bound to a single site on microtubules assembled from GMPCPP-tubulin with a dissociation constant of 15 +/- 4.0 nM. It therefore appears that microtubules contain two types of binding sites for paclitaxel and that the binding site affinity for paclitaxel depends on the nucleotide content of tubulin. It has been established that paclitaxel binding does not inhibit GTP hydrolysis and microtubules assembled from GTP-tubulin in the presence of paclitaxel contain almost exclusively GDP at the E-site. We propose that although all the subunits of the microtubule at steady state are the same "GDP-tubulin-paclitaxel", they are formed through two paths: paclitaxel binding to a tubulin subunit before its E-site GTP hydrolysis is of high affinity, and paclitaxel binding to a tubulin subunit containing hydrolyzed GDP at its E-site is of low affinity.  相似文献   

19.
E Hamel  C M Lin 《Biochemistry》1990,29(11):2720-2729
Recently it was proposed [O'Brien, E. T., & Erickson, H. P. (1989) Biochemistry 28, 1413-1422] that tubulin polymerization supported by guanosine 5'-(beta,gamma-imidotriphosphate) [p(NH)ppG], guanosine 5'-(beta,gamma-methylenetriphosphate) [p(CH2)ppG], and ATP might be due to residual GTP in reaction mixtures and that these nucleotides would probably support only one cycle of assembly. Since we had observed polymerization with these three compounds, we decided to study these reactions in greater detail in two systems. The first contained purified tubulin and a high concentration of glycerol, the second tubulin and microtubule-associated proteins (MAPs). In both systems, reactions supported by nucleotides other than GTP were most vigorous at lower pH values. In the glycerol system, repeated cycles of polymerization were observed with ATP and p(CH2)ppG, but not with p(NH)ppG. With p(NH)ppG, a single cycle of polymerization was observed, and this was caused by contaminating GTP. In the MAPs system, repeated cycles of polymerization were observed with both nonhydrolyzable GTP analogues, even without contaminating GTP, but ATP was not active at all in this system. Binding to tubulin of p(NH)ppG, p(CH2)ppG, and, to a lesser extent, ATP was demonstrated indirectly, since high concentrations of the three nucleotides displaced radiolabeled GDP originally bound in the exchangeable site, with p(NH)ppG the most active of the three compounds in this displacement assay. The failure of GTP-free p(NH)ppG to support tubulin polymerization in our glycerol system even though it displaced GDP from the exchangeable site was further investigated by examining the effects of p(NH)ppG on polymerization and polymer-bound nucleotide with low concentrations of GTP. The two nucleotides appeared to act synergistically in supporting polymerization, so that a reaction occurred with a subthreshold GTP concentration if p(NH)ppG was also in the reaction mixture. Analysis of radiolabeled exchangeable-site nucleotide in polymers formed in reaction mixtures containing both GTP and p(NH)ppG demonstrated that p(NH)ppG which entered polymer did so primarily at the expense of GDP originally bound in the exchangeable site rather than at the expense of GTP. It appears that in the glycerol reaction condition, tubulin-p(NH)ppG cannot initiate tubulin polymerization but that it can participate in polymer elongation. ATP and p(CH2)ppG also entered the exchangeable site during polymerization without GTP in glycerol, as demonstrated by displacement of radiolabeled GDP from polymer when these alternate nucleotides were used.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
The effects of Mg2+ and guanine nucleotides on glucagon binding to its receptor were studied using [125I-Tyr10]monoiodoglucagon. Contrary to findings with beta-adrenergic receptors, high affinity binding of the stimulatory hormone was not dependent on Mg2+ and low affinity binding could be obtained on nucleotide addition regardless of presence of Mg2+. GDP, guanyl-5'-yl thiophosphate (GDP beta S), GTP, and guanyl-5'-yl imidodiphosphate (GMP-P(NH)P) were all able to induce low affinity hormone binding. Since the Ns component of adenylyl cyclase, with which the receptor interacts, is inactive in stimulating the catalytic component C of adenylyl cyclase in the absence of Mg2+, both before and after GDP addition, it is suggested that Ns has at least two domains that change conformation independently of each other: a r domain, that interacts with the receptor and confers to it high affinity binding, and a c domain, that interacts with the catalyst C and stimulates it. It is suggested further that Ns is r+c- when stabilizing the receptor in its conformation with high affinity for hormone, and r-c- when under the influence of GDP which results in the receptor adopting the conformation that exhibits low affinity for the hormone. Comparison of potencies of the four nucleotides to induce low affinity binding showed that GDP and GDP beta S were equipotent and 10 times more potent than GTP and 100 times more potent than GMP-P(NH)P. Under the conditions used it was impossible to substantiate that the effects of GTP or GMP-P(NH)P were not due to formation of GDP from GTP or presence of GDP-like material in GMP-P(NH)P. It is suggested that, contrary to widely held opinions, GDP and GDP-like compounds, and not GTP or its analogs, are responsible for the lowering of the affinity of adenylyl cyclase stimulating receptors for their hormones or agonists. Furthermore, the experiments suggest that the c+ conformation of the c domain of Ns co-exists with the r+ and not the r- conformation of its r domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号