首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nullbasic, a mutant of the HIV-1 Tat protein, has anti-HIV-1 activity through mechanisms that include inhibition of Rev function and redistribution of the HIV-1 Rev protein from the nucleolus to the nucleoplasm and cytoplasm. Here we investigate the mechanism of this effect for the first time, establishing that redistribution of Rev by Nullbasic is not due to direct interaction between the two proteins. Rather, Nullbasic affects subcellular localization of cellular proteins that regulate Rev trafficking. In particular, Nullbasic induced redistribution of exportin 1 (CRM1), nucleophosmin (B23) and nucleolin (C23) from the nucleolus to the nucleus when Rev was coexpressed, but never in its absence. Inhibition of the Rev:CRM1 interaction by leptomycin B or a non-interacting RevM10 mutant completely blocked redistribution of Rev by Nullbasic. Finally, Nullbasic did not inhibit importin β- or transportin 1-mediated nuclear import, suggesting that cytoplasmic accumulation of Rev was due to increased export by CRM1. Overall, our data support the conclusion that CRM1-dependent subcellular redistribution of Rev from the nucleolus by Nullbasic is not through general perturbation of either nuclear import or export. Rather, Nullbasic appears to interact with and disrupt specific components of a Rev trafficking complex required for its nucleocytoplasmic shuttling and, in particular, its nucleolar accumulation.  相似文献   

2.
3.
To define the human immunodeficiency virus type 1 (HIV-1) RNA maturation pathways, we analyzed the intracellular distribution of HIV-1 RNA and the viral regulatory proteins Rev and Tat in transfected COS cells and HIV-1-infected lymphoid C8166 cells by means of ultrastructural in situ hybridization using antisense RNA probes and immunoelectron microscopy. The intranuclear viral RNA occurs in ribonucleoprotein fibrils in the perichromatin and interchromatin regions. The simultaneous demonstration of Rev, Tat, Br-labeled RNA, and cellular proteins SC35 and CRM1 in such fibrils reveals the potential of Rev to associate with nascent HIV pre-mRNA and its splicing complex and transport machinery. In a rev-minus system, the env intron-containing, incompletely spliced viral RNAs are revealed only in the nucleus, indicating that Rev is required to initiate the transport to the cytoplasm. Moreover, env intron sequences frequently occur in the periphery of interchromatin granule clusters, while the probe containing the rev exon sequence does not associate with this nucleoplasmic domain. When cells were treated with the CRM1 inhibitor leptomycin B in the presence of Rev protein, the env intron containing HIV RNAs formed clusters throughout the nucleoplasm and accumulated at the nuclear pores. This suggests that Rev is necessary and probably also sufficient for the accumulation of incompletely spliced HIV RNAs at the nuclear pores while CRM1 is needed for translocation across the nuclear pore complex.  相似文献   

4.
The herpes simplex virus type 1 tegument protein known as VP13/14, or hUL47, localizes to the nucleus and binds RNA. Using fluorescence loss in photobleaching analysis, we show that hUL47 undergoes nucleocytoplasmic shuttling during infection. We identify the hUL47 nuclear export signal (NES) as a C-terminal 10-residue hydrophobic peptide and measure its efficiency relative to that of the classical human immunodeficiency virus type 1 Rev NES. Finally, we show that the hUL47 NES is sensitive to the inhibitor of CRM1-mediated nuclear export leptomycin B. Hence, hUL47 joins a growing list of virus-encoded RNA-binding proteins that use CRM1 to exit the nucleus.  相似文献   

5.
The nonstructural NS2 proteins of autonomous parvoviruses are known to act in a host cell-dependent manner and to play a role in viral DNA replication, efficient translation of viral mRNA, and/or encapsidation. Their exact function during the parvovirus life cycle remains, however, still obscure. We report here the characterization of the interaction with the NS2 proteins from the parvovirus minute virus of mice (MVM) and rat as well as mouse homologues of the human CRM1 protein, a member of the importin-beta family recently identified as an essential nuclear export factor. Using the two-hybrid system, we could detect the interaction between the carboxy-terminal region of rat CRM1 and each of the three isoforms of NS2 (P [or major], Y [or minor], and L [or rare]). NS2 proteins were further shown to interact with the full-length CRM1 by coimmunoprecipitation experiments using extracts from both mouse and rat cell lines. Our data show that CRM1 preferentially binds to the nonphosphorylated isoforms of NS2. Moreover, we observed that the treatment of MVM-infected cells with leptomycin B, a drug that specifically inhibits the CRM1-dependent nuclear export pathway, leads to a drastic accumulation of NS2 proteins in the nucleus. Both NS2 interaction with CRM1 and nuclear accumulation upon leptomycin B treatment strongly suggest that these nonstructural viral proteins are actively exported out of the nuclei of infected cells via a CRM1-mediated nuclear export pathway.  相似文献   

6.
TAP, the human homologue of the yeast protein Mex67p, has been proposed to serve a role in mRNA export in mammalian cells. We have examined the ability of TAP to mediate export of Rev response element (RRE)-containing human immunodeficiency virus (HIV) RNA, a well-characterized export substrate in mammalian cells. To do this, the TAP gene was fused in frame to either RevM10 or RevDelta78-79. These proteins are nonfunctional Rev mutant proteins that can bind to HIV RNA containing the RRE in vivo but are unable to mediate the export of this RNA to the cytoplasm. However, the fusion of TAP to either of these mutant proteins gave rise to chimeric proteins that were able to complement Rev function. Significantly, cotransfection with a vector expressing NXT1 (p15), an NTF2-related cellular factor that binds to TAP, led to dramatic enhancement of the ability of the chimeric proteins to mediate RNA export. Mutant-protein analysis demonstrated that the domain necessary for nuclear export mapped to the C-terminal region of TAP and required the domain that interacts with NXT1, as well as the region that has been shown to interact with nucleoporins. RevM10-TAP function was leptomycin B insensitive. In contrast, the function of this protein was inhibited by DeltaCAN, a protein consisting of part of the FG repeat domain of CAN/Nup214. These results show that TAP can complement Rev nuclear export signal function and redirect the export of intron-containing RNA to a CRM1-independent pathway. These experiments support the role of TAP as an RNA export factor in mammalian cells. In addition, they indicate that NXT1 serves as a crucial cellular cofactor in this process.  相似文献   

7.
8.
9.
The nucleocytoplasmic transport receptor CRM1 mediates the export of macromolecules from the nucleus to the cytoplasm by forming a ternary complex with a cargo molecule and RanGTP. The in vivo mechanism of CRM1 export complex formation and its mobility throughout the nucleus have not been fully elucidated. More information is required to fully understand complex formation and the dynamics of CRM1-cargo-RanGTP complexes in space and time. We demonstrate true molecular interaction of CRM1 with its Rev cargo in living cells by using fluorescence resonance energy transfer (FRET). Interestingly, we found that the inhibitory effect of leptomycin B on this CRM1-cargo interaction is Ran dependent. Using fluorescence recovery after photobleaching (FRAP), we show that CRM1 moves at rates similar to that of free green fluorescent protein in the nucleoplasm. A slower mobility was detected on the nuclear membrane, consistent with known CRM1 interactions with nuclear pores. Based on these data, we propose an in vivo model in which CRM1 roams through the nucleus in search of high-affinity binding sites. CRM1 is able to bind Rev cargo in the nucleolus, and upon RanGTP binding a functional export complex is produced that is exported to the cytoplasm.  相似文献   

10.
11.
Nuclear export sequences (NESs) have been identified in many cellular proteins, but it remains unclear how different NESs compare in activity. We describe a sensitive new in vivo export assay which we have used to assess the relative export activity of different types of NES. The most common type of export sequence resembles that first identified in the HIV-1 Rev protein and typically comprises a core of large hydrophobic amino acids that specify recognition by the CRM1 export receptor. We compared 10 previously identified Rev-type NESs in our assay, and whereas all were functional, the relative export activities of these signals varied considerably. We further identified 3 new Rev-type NESs from a computer database search, and each export signal was assigned a score of 1 to 9 and ranked in order of activity (e.g., PKI > c-ABL > Ran-BP1 > FMRP > PML > IkappaB-alpha > hdm2). The weakest NESs were found in the p53 tumor suppressor and the p53-regulated proteins p21 and hdm2, which are all normally localized to the nucleus. All of the Rev-type NESs were inactivated by mutation of key hydrophobic residues and by treatment with the CRM1-specific export inhibitor, leptomycin B. In contrast, a different type of export signal, the KNS shuttling element derived from hnRNP K, exhibited a modest export activity that was insensitive to leptomycin B treatment. KNS thus appears to mediate export via a CRM1-independent pathway. Mutagenesis of the KNS sequence identified, for the first time, specific serines and acidic residues necessary for its export activity, thereby distinguishing KNS from other types of nuclear transport signal. We have shown that different nuclear export signals can vary profoundly in activity and therefore conclude that the nuclear export rate of a specific shuttling protein largely depends on both the strength and the accessibility of its NES.  相似文献   

12.
13.
14.
The Rev protein is essential for the replication of lentiviruses. Rev is a shuttling protein that transports unspliced and partially spliced lentiviral RNAs from the nucleus to the cytoplasm via the nucleopore. To transport these RNAs, the human immunodeficiency virus type 1 (HIV-1) Rev uses the karyopherin β family importin β and CRM1 proteins that interact with the Rev nuclear localization signal (NLS) and nuclear exportation signal (NES), respectively. Recently, we reported the presence of new types of bipartite NLS and nucleolar localization signal (NoLS) in the bovine immunodeficiency virus (BIV) Rev protein. Here we report the characterization of the nuclear import and export pathways of BIV Rev. By using an in vitro nuclear import assay, we showed that BIV Rev is transported into the nucleus by a cytosolic and energy-dependent importin α/β classical pathway. Results from glutathione S-transferase (GST) pulldown assays that showed the binding of BIV Rev with importins α3 and α5 were in agreement with those from the nuclear import assay. We also identified a leptomycin B-sensitive NES in BIV Rev, which indicates that the protein is exported via CRM1 like HIV-1 Rev. Mutagenesis experiments showed that the BIV Rev NES maps between amino acids 109 to 121 of the protein. Remarkably, the BIV Rev NES was found to be of the cyclic AMP (cAMP)-dependent protein kinase inhibitor (PKI) type instead of the HIV-1 Rev type. In summary, our data showed that the nuclear import mechanism of BIV Rev is novel among Rev proteins characterized so far in lentiviruses.  相似文献   

15.
Requirement of DDX3 DEAD box RNA helicase for HIV-1 Rev-RRE export function   总被引:12,自引:0,他引:12  
Yedavalli VS  Neuveut C  Chi YH  Kleiman L  Jeang KT 《Cell》2004,119(3):381-392
  相似文献   

16.
Leptomycin B (LMB) is aStreptomycesmetabolite that inhibits nuclear export of the human immunodeficiency virus type 1 regulatory protein Rev at low nanomolar concentrations. Recently, LMB was shown to inhibit the function of CRM1, a receptor for the nuclear export signal (NES). Here we show evidence that LMB binds directly to CRM1 and that CRM1 is essential for NES-dependent nuclear export of proteins in both yeast and mammalian cells. Binding experiments with a biotinylated derivative of LMB and a HeLa cell extract led to identifying CRM1 as a major protein that bound to the LMB derivative. Microinjection of a purified anti-human CRM1 antibody into the mammalian nucleus specifically inhibited nuclear export of NES-containing proteins, as did LMB. Consistent with this, CRM1 was found to interact with NES, when assayed with immobilized NES and HeLa cell extracts. This association was disrupted by adding LMB or purified anti-human CRM1 antibody. The inhibition of CRM1 by LMB was also observed in fission yeast. The fission yeastcrm1mutant was defective in the nuclear export of NES-fused proteins, but not in the import of nuclear localization signal (NLS)-fused proteins. Interestingly, a protein containing both NES and NLS, which is expected to shuttle between nucleus and cytoplasm, was highly accumulated in the nucleus of thecrm1mutant cells or of cells treated with LMB. These results strongly suggest that CRM1 is the target of LMB and is an essential factor for nuclear export of proteins in eukaryotes.  相似文献   

17.
Lentiviral genomic RNAs are encapsidated by the viral Gag protein during virion assembly. The intracellular location of the initial Gag-RNA interaction is unknown. We previously observed feline immunodeficiency virus (FIV) Gag accumulating at the nuclear envelope during live-cell imaging, which suggested that trafficking of human immunodeficiency virus type 1 (HIV-1) and FIV Gag may differ. Here we analyzed the nucleocytoplasmic transport properties of both Gag proteins. We discovered that inhibition of the CRM1 nuclear export pathway with leptomycin B causes FIV Gag but not HIV-1 Gag to accumulate in the nucleus. Virtually all FIV Gag rapidly became intranuclear when the CRM1 export pathway was blocked, implying that most if not all FIV Gag normally undergoes nuclear cycling. In FIV-infected feline cells, some intranuclear Gag was detected in the steady state without leptomycin B treatment. When expressed individually, the FIV matrix (MA), capsid (CA), and nucleocapsid-p2 (NC-p2) domains were not capable of mediating leptomycin B-sensitive nuclear export of a fluorescent protein. In contrast, CA-NC-p2 did mediate nuclear export, with MA being dispensable. We conclude that HIV-1 and FIV Gag differ strikingly in a key intracellular trafficking property. FIV Gag is a nuclear shuttling protein that utilizes the CRM1 nuclear export pathway, while HIV-1 Gag is excluded from the nucleus. These findings expand the spectrum of lentiviral Gag behaviors and raise the possibility that FIV genome encapsidation may initiate in the nucleus.  相似文献   

18.
Glucocorticoid receptors (GRs) are shuttling proteins, yet they preferentially accumulate within either the cytoplasmic or nuclear compartment when overall rates of nuclear import or export, respectively, are limiting. Hormone binding releases receptors from stable heteromeric complexes that restrict their interactions with soluble nuclear import factors and contribute to their cytoplasmic retention. Although hormone dissociation leads to the rapid release of GRs from chromatin, unliganded nuclear receptors are delayed in their export. We have used a chimeric GR that contains a heterologous, leucine-rich nuclear export signal sequence (NES) to assess the consequences of accelerated receptor nuclear export. Leucine-rich NESs utilize the exportin 1/CRM1-dependent nuclear export pathway, which can be blocked by leptomycin B (LMB). The fact that rapid nuclear export of the NES-GR chimera, but not the protracted export of wild-type GR, is sensitive to LMB, suggests that GR does not require the exportin 1/CRM1 pathway to exit the nucleus. Despite its more rapid export, the NES-GR chimera appears indistinguishable from wild-type GR in its transactivation activity in transiently transfected cells. However, accelerated nuclear export of the NES-GR chimera is associated with an increased rate of hormone-dependent down-regulation. The increase in NES-GR down-regulation is overcome by LMB treatment, thereby confirming the connection between receptor nuclear export and down-regulation. Given the presence of a nuclear recycling pathway for GR, the protracted rate of receptor nuclear export may increase the efficiency of biological responses to secondary hormone challenges by limiting receptor down-regulation and hormone desensitization.  相似文献   

19.
Galectin-3, a factor involved in the splicing of pre-mRNA, shuttles between the nucleus and the cytoplasm. Previous studies have shown that incubation of fibroblasts with leptomycin B resulted in the accumulation of galectin-3 in the nucleus, suggesting that the export of galectin-3 from the nucleus may be mediated by the CRM1 receptor. A candidate nuclear export signal fitting the consensus sequence recognized by CRM1 can be found between residues 240 and 255 of the murine galectin-3 sequence. This sequence was engineered into the pRev(1.4) reporter system, in which candidate sequences can be tested for nuclear export activity in terms of counteracting the nuclear localization signal present in the Rev(1.4) protein. Rev(1.4)-galectin-3(240-255) exhibited nuclear export activity that was sensitive to inhibition by leptomycin B. Site-directed mutagenesis of Leu247 and Ile249 in the galectin-3 nuclear export signal decreased nuclear export activity, consistent with the notion that these two positions correspond to the critical residues identified in the nuclear export signal of the cAMP-dependent protein kinase inhibitor. The nuclear export signal activity was also analyzed in the context of a full-length galectin-3 fusion protein; galectin-3(1-263; L247A) showed more nuclear localization than wild-type, implicating Leu247 as critical to the function of the nuclear export signal. These results indicate that residues 240-255 of the galectin-3 polypeptide contain a leucine-rich nuclear export signal that overlaps with the region (residues 252-258) identified as important for nuclear localization.  相似文献   

20.
Incoming adenovirus type 2 (Ad2) and Ad5 shuttle bidirectionally along microtubules, biased to the microtubule-organizing center by the dynein/dynactin motor complex. It is unknown how the particles reach the nuclear pore complex, where capsids disassemble and viral DNA enters the nucleus. Here, we identified a novel link between nuclear export and microtubule-mediated transport. Two distinct inhibitors of the nuclear export factor CRM1, leptomycin B (LMB) and ratjadone A (RJA) or CRM1-siRNAs blocked adenovirus infection, arrested cytoplasmic transport of viral particles at the microtubule-organizing center or in the cytoplasm and prevented capsid disassembly and nuclear import of the viral genome. In mitotic cells where CRM1 is in the cytoplasm, adenovirus particles were not associated with microtubules but upon LMB treatment, they enriched at the spindle poles implying that CRM1 inhibited microtubule association of adenovirus. We propose that CRM1, a nuclear factor exported by CRM1 or a protein complex containing CRM1 is part of a sensor mechanism triggering the unloading of the incoming adenovirus particles from microtubules proximal to the nucleus of interphase cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号