首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J Jordano  F Montero  E Palacián 《Biochemistry》1984,23(19):4285-4289
We have studied the structural properties of nucleosomal particles deficient in histones H2A and H2B produced by modification of histone amino groups with dimethylmaleic anhydride [Jordano, J., Montero, F., & Palacián, E. (1984) Biochemistry (preceding paper in this issue)]. Digestion with DNase I of residual particles containing only 15% of the original H2A . H2B complement produces only discrete DNA fragments no longer than 70 nucleotides. As compared with the original nucleosomes, thermal denaturation of the residual particles shows a decrease from 140 to about 90 in the number of nucleotide base pairs per particle that melt at the highest temperature transition as well as a drop in the temperature of this transition. Circular dichroism spectra of the residual particles give ellipticity values around 275 nm, much higher than those corresponding to the control nucleosomes, which appears to indicate a loss in the compact DNA tertiary structure. When regeneration of the modified amino groups of the residual particles takes place in the presence of the complementary fraction containing histones H2A and H2B, but not in its absence, nucleosomal particles with the structural properties of the original nucleosomes are reconstituted. Therefore, the structural change observed in the residual particles can be assigned to the lack of histones H2A and H2B and not to the modified amino groups of the histones present in the residual particles. The results are consistent with the stabilization by histones H2A and H2B of a DNA length of 50-70 base pairs per nucleosome.  相似文献   

2.
3.
The composition of nucleosomes at an intermediate stage of male pronucleus formation was determined in sea urchins. Nucleosomes were isolated from zygotes harvested 10 min post-insemination, whole nucleoprotein particles were obtained from nucleus by nuclease digestion, and nucleosomes were subsequently purified by a sucrose gradient fractionation. The nucleosomes derived from male pronucleus were separated from those derived from female pronucleus by immunoadsorption to antibodies against sperm specific histones (anti-SpH) covalently bound to Sepharose 4B (anti-SpH-Sepharose). The immunoadsorbed nucleosomes were eluted, and the histones were analyzed by Western blots. Sperm histones (SpH) or alternatively, the histones from unfertilized eggs (CS histone variants), were identified with antibodies directed against each set of histones. It was found that these nucleosomes are organized by a core formed by sperm histones H2A and H2B combined with two major CS histone variants. Such a hybrid histone core interacts with DNA fragments of approximately 100 bp. It was also found that these atypical nucleosome cores are subsequently organized in a chromatin fiber that exhibits periodic nuclease hypersensitive sites determined by DNA fragments of 500 bp of DNA. It was found that these nucleoprotein particles were organized primarily by the hybrid nucleosomes described above. We postulate that this unique chromatin organization defines an intermediate stage of male chromatin remodeling after fertilization.  相似文献   

4.
The tetrameric (H3/H4)2 146 base pair (bp) DNA and hexameric (H3/H4)2(H2A/H2B)1 146 bp DNA subnucleosomal particles have been prepared by depletion of chicken erythrocyte core particles using 3 or 4 M urea, 250 mM sodium chloride, and a cation-exchange resin. The particles have been characterized by cross-linking and sedimentation equilibrium. The structures of the particles, particularly the tetrameric, have been studied by sedimentation velocity, low-angle neutron scattering, circular dichroism, optical melting, and nuclease digestion with DNase I, micrococcal nuclease, and exonuclease III. It is concluded that since the radius of gyration of the DNA in the tetramer particle and its maximum dimension are very close to those of the core particle, no expansion occurs on removal of all the H2A and H2B. Nuclease digestion results indicate that histones H3/H4 in the tetramer particle protect a total of 70 bp of DNA that are centrally located within the 146 bp. Within the 70 bp DNA length, the two terminal regions of 10 bp are, however, not strongly protected from digestion. The optical melting profile of both particles can be resolved into three components and is consistent with the model of histone protection of DNA proposed from nuclease digestion. The structure proposed for the tetrameric histone complex bound to DNA is that of a compact particle containing 1.75 superhelical turns of DNA, in which the H3 and H4 histone location is the same as found for the core particle in chromatin by histone/DNA cross-linking [Shick, V. V., Belyavsky, A. V., Bavykin, S. G., & Mirzabekov, A. D. (1980) J. Mol. Biol. 139, 491-517]. Optical melting of the hexamer particle shows that each (H2A/H2B)1 dimer of the core particle protects about 22 base pairs of DNA.  相似文献   

5.
Relaxation of nucleosomes on an homologous series (pBR) of ca 350-370 bp DNA minicircles originating from plasmid pBR322 was recently used as a tool to study their structure and dynamics. These nucleosomes thermally fluctuated between three distinct DNA conformations within a histone N-terminal tail-modulated equilibrium: one conformation was canonical, with 1.75 turn wrapping and negatively crossed entering and exiting DNAs; another was also "closed", but with these DNAs positively crossed; and the third was "open", with a lower than 1.5 turn wrapping and uncrossed DNAs. In this work, a new minicircle series (5S) of similar size was used, which contained the 5S nucleosome positioning sequence. Results showed that DNA in pBR nucleosomes was untwisted by approximately 0.2 turn relative to 5S nucleosomes, which DNase I footprinting confirmed in revealing a approximately 1 bp untwisting at each of the two dyad-distal sites where H2B N-terminal tails pass between the two gyres. In contrast, both nucleosomes showed untwistings at the dyad-proximal sites, i.e. on the other gyre, which were also observed in the high-resolution crystal structure. 5S nucleosomes also differ with respect to their dynamics: they hardly accessed the positively crossed conformation, but had an easier access to the negatively crossed conformation. Simulation showed that such reverse effects on the conformational free energies could be simply achieved by slightly altering the trajectories of entering and exiting DNAs. We propose that this is accomplished by H2B tail untwisting at the distal sites through action at a distance ( approximately 20 bp) on H3-tail interactions with the small groove at the nucleosome entry-exit. These results may help to gain a first glimpse into the two perhaps most intriguing features of the high-resolution structure: the alignment of the grooves on the two gyres and the passage of H2B and H3 N-terminal tails between them.  相似文献   

6.
The nucleosome comprises two histone dimers of H2A-H2B and one histone tetramer of (H3-H4)2, wrapped around by ~145 bp of DNA. Detailed core structures of nucleosomes have been established by X-ray and cryo-EM, however, histone tails have not been visualized. Here, we have examined the dynamic structures of the H2A and H2B tails in 145-bp and 193-bp nucleosomes using NMR, and have compared them with those of the H2A and H2B tail peptides unbound and bound to DNA. Whereas the H2A C-tail adopts a single but different conformation in both nucleosomes, the N-tails of H2A and H2B adopt two distinct conformations in each nucleosome. To clarify these conformations, we conducted molecular dynamics (MD) simulations, which suggest that the H2A N-tail can locate stably in either the major or minor grooves of nucleosomal DNA. While the H2B N-tail, which sticks out between two DNA gyres in the nucleosome, was considered to adopt two different orientations, one toward the entry/exit side and one on the opposite side. Then, the H2A N-tail minor groove conformation was obtained in the H2B opposite side and the H2B N-tail interacts with DNA similarly in both sides, though more varied conformations are obtained in the entry/exit side. Collectively, the NMR findings and MD simulations suggest that the minor groove conformer of the H2A N-tail is likely to contact DNA more strongly than the major groove conformer, and the H2A N-tail reduces contact with DNA in the major groove when the H2B N-tail is located in the entry/exit side.  相似文献   

7.
Regulation of gene expression requires dynamic changes in chromatin, but the nature of these changes is not well understood. Here, we show that progesterone treatment of cultured cells leads to recruitment of progesterone receptor (PR) and SWI/SNF-related complexes to Mouse Mammary Tumor Virus (MMTV) promoter, accompanied by displacement of histones H2A and H2B from the nucleosome containing the receptor binding sites, but not from adjacent nucleosomes. PR recruits SWI/SNF to MMTV nucleosomes in vitro and facilitates synergistic binding of receptors and nuclear factor 1 to the promoter. In nucleosomes assembled on MMTV or mouse rDNA promoter sequences, SWI/SNF catalyzes ATP-dependent sliding of the histone octamer followed only on the MMTV promoter by displacement of histones H2A and H2B. In MMTV nucleosome arrays, SWI/SNF displaces H2A and H2B from nucleosome B and not from the adjacent nucleosome. Thus, the outcome of nucleosome remodeling by SWI/SNF depends on DNA sequence.  相似文献   

8.
Treatment of nucleosomal particles with dimethylmaleic anhydride, a reagent for protein amino groups, is accompanied by a biphasic release of histones H2A plus H2B; one H2A.H2B dimer is more easily released than the other. This behavior allows the preparation of nucleosomal particles containing only one H2A.H2B dimer, which were complemented with 125I-labeled H2A.H2B. These reconstituted particles, which contain one labeled and one unlabeled H2A.H2B dimer, were treated with the amount of reagent needed to release one of the two H2A.H2B dimers. Radioactivity was equally distributed between residual particles and released proteins, which is consistent with equivalent binding sites in the nucleosomal particle for H2A.H2B dimers, rather than with intrinsically different sites. The asymmetric release of H2A.H2B dimers would be caused by a change in the binding site of one dimer following the release of the other. This behavior might be related to the structural dynamics of nucleosomes.  相似文献   

9.
Nucleosomes containing a human histone variant, H2A.B, in an aqueous solution were analyzed by small-angle neutron scattering utilizing a contrast variation technique. Comparisons with the canonical H2A nucleosome structure revealed that the DNA termini of the H2A.B nucleosome are detached from the histone core surface, and flexibly expanded toward the solvent. In contrast, the histone tails are compacted in H2A.B nucleosomes compared to those in canonical H2A nucleosomes, suggesting that they bind to the surface of the histone core and/or DNA. Therefore, the histone tail dynamics may function to regulate the flexibility of the DNA termini in the nucleosomes.  相似文献   

10.
Nucleosomes containing a human histone variant, H2A.B, in an aqueous solution were analyzed by small-angle neutron scattering utilizing a contrast variation technique. Comparisons with the canonical H2A nucleosome structure revealed that the DNA termini of the H2A.B nucleosome are detached from the histone core surface, and flexibly expanded toward the solvent. In contrast, the histone tails are compacted in H2A.B nucleosomes compared to those in canonical H2A nucleosomes, suggesting that they bind to the surface of the histone core and/or DNA. Therefore, the histone tail dynamics may function to regulate the flexibility of the DNA termini in the nucleosomes.  相似文献   

11.
真核生物染色质的基本结构组成单元是核小体,基因组DNA被压缩在染色质中,核小体的存在通常会抑制转录、复制、修复和重组等发生在DNA模板上的生物学过程。组蛋白变体H2A.Z可以调控染色质结构进而影响基因的转录过程,但其详细的调控机制仍未研究清楚。为了比较含有组蛋白变体H2A.Z的核小体和常规核小体在盐离子作用下的稳定性差异,本文采用Förster共振能量转移的方法检测氯化钠、氯化钾、氯化锰、氯化钙、氯化镁等离子对核小体的解聚影响。实验对Widom 601 DNA序列进行双荧光Cy3和Cy5标记,通过荧光信号值的变化来反映核小体的解聚变化。Förster共振能量转移检测结果显示:在氯化钠、氯化钾、氯化锰、氯化钙和氯化镁作用下,含有组蛋白变体H2A.Z的核小体解聚速度相比于常规核小体要慢,且氯化钙、氯化锰和氯化镁的影响更明显。电泳分析结果表明,在75℃条件下含有组蛋白变体H2A.Z的核小体的解聚速率明显低于常规核小体。采用荧光热漂移检测(fluorescence thermal shift analysis , FTS)进一步分析含有组蛋白变体H2A.Z核小体的稳定性,发现两类核小体的荧光信号均呈现2个明显的增长期,含有组蛋白变体H2A.Z核小体的第1个荧光信号增速期所对应的温度明显高于常规核小体,表明核小体中H2A.Z/H2B二聚体的解聚变性温度要高于常规的H2A/H2B二聚体,含有组蛋白变体H2A.Z核小体的热稳定性高。研究结果均表明,含有组蛋白变体H2A.Z的核小体的结构比常规核小体的结构稳定。  相似文献   

12.
ATP-dependent chromatin remodeling activities function to manipulate chromatin structure during gene regulation. One of the ways in which they do this is by altering the positions of nucleosomes along DNA. Here we provide support for the ability of these complexes to move nucleosomes into positions in which DNA is unraveled from one edge. This is expected to result in the loss of histone-DNA contacts that are important for retention of one H2A/H2B dimer within the nucleosome. Consistent with this we find that several chromatin remodeling complexes are capable of catalyzing the exchange of H2A/H2B dimers between chromatin fragments in an ATP-dependent reaction. This provides eukaryotes with additional means by which they may manipulate chromatin structure.  相似文献   

13.
Nucleosomal core particles lacking one H2A.H2B dimer, (H2A.H2B)1 (H3.H4)2/DNA (146 bp), have been prepared by treatment of nucleosomal cores with dimethylmaleic anhydride, a reversible reagent for protein amino groups. The preparative procedure is simple, produces quantitative conversion of nucleosomal cores into dimer-deficient cores without formation of other subnucleosomal particles, and can be applied to the preparation of different H2A.H2B-deficient mono and oligonucleosomal particles. The structural properties of the dimer-deficient cores and complete nucleosomal cores reconstituted from the deficient particles and H2A.H2B dimers have been studied by DNase I digestion, thermal denaturation and circular dichroism.  相似文献   

14.
The conformation of recombinant Nucleosome Core Particles (NCPs) lacking H2A and H2B histone tails (gH2AgH2B) are studied. The migration of these particles in acrylamide native gels is slowed down compared to intact reconstituted NCPs. gH2AgH2B NCPs are also much more sensitive to nuclease digestion than intact NCPs. Small angle X-ray scattering (SAXS) experiments point out that the absence of H2A and H2B tails produces small but significant conformational changes of the octamers conformation (without wrapped DNA), whereas gH2AgH2B NCP conformations are significantly altered. A separation of about 25–30 bp from the core could account for the experimental curves, but other types of DNA superhelix deformation cannot be excluded. The distorted gH2AgH2B octamer may not allow the correct winding of DNA around the core. The absence of the H2A and H2B tails would further prevent the secondary sliding of the DNA around the core and therefore impedes the stabilisation of the particle. Cryo-electron microscopy on the same particles also shows a detachment of DNA portions from the particle core. The effect is even stronger because the vitrification of the samples worsens the instability of gH2AgH2B NCPs.  相似文献   

15.
16.
The assembly of hybrid core particles onto long chicken DNA with histone H2B in the chicken histone octamer replaced with either wheat histone H2B(2) or sea urchin sperm histone H2B(1) or H2B(2) is described. All these histone H2B variants have N-terminal extensions of between 18 and 20 amino acids, although only those from sea urchin sperm have S(T)PXX motifs present. Whereas chicken histone octamers protected 167 base pairs (bp) (representing two full turns) of DNA against micrococcal nuclease digestion (Lindsey, G. G., Orgeig, S., Thompson, P., Davies, N., and Maeder, D. L. (1991) J. Mol. Biol. 218, 805-813), all the hybrid histone octamers protected an additional 17-bp DNA against nuclease digestion. This protection was more marked in the case of hybrid octamers containing sea urchin sperm histone H2B variants and similar to that described previously (Lindsey, G. G., Orgeig, S., Thompson, P., Davies, N., and Maeder, D. L. (1991) J. Mol. Biol. 218, 805-813) for hybrid histone octamers containing wheat histone H2A variants all of which also have S(T)PXX motifs present. Continued micrococcal nuclease digestion reduced the length of DNA associated with the core particle via 172-, 162-, and 152-bp intermediates until the 146-bp core particle was obtained. These DNA lengths were approximately 5 bp or half a helical turn longer than those reported previously for stripped chicken chromatin and for core particles containing histone octamers reconstituted using "normal" length histone H2B variants. This protection pattern was also found in stripped sea urchin sperm chromatin, demonstrating that the assembly/digestion methodology reflects the in vivo situation. The interaction between the N-terminal histone H2B extension and DNA of the "linker" region was confirmed by demonstrating that stripped sea urchin sperm chromatin precipitated between 120 and 500 mM NaCl in a manner analogous to unstripped chromatin whereas stripped chicken chromatin did not. Tryptic digestion to remove all the histone tails abolished this precipitation as well as the protection of DNA outside of the 167-bp core particle against nuclease digestion.  相似文献   

17.
A novel nucleohistone particle is generated in high yield when a complex of DNA with the four core histones formed under conditions that are close to physiological (0.15 M NaCl, pH 8) is treated with micrococcal nuclease. The particle was found to contain 102 base pairs of DNA in association with six molecules of histones in the ratio 2H2A:2H2B:1H3:1H4 after relatively brief nuclease treatment. Prolonged nuclease digestion resulted in a reduction in the DNA length to a sharply defined 92-base pair fragment that was resistant to further degradation. Apparently normal nucleosome core particles containing two molecules each of the four core histones in association with 145 base pairs of DNA and a particle containing one molecule each of histones H2A and H2B in association with approximately 40 base pairs of DNA were also generated during nuclease treatment of the histone-DNA complexes formed under physiological ionic strength conditions. Kinetic studies have shown that the hexamer particle is not a subnucleosomal fragment produced by the degradation of nucleosome core particles. Furthermore, the hexamer particle was not found among the products of nuclease digestion when histones and DNA were previously assembled in 0.6 M NaCl. The high sedimentation coefficient of the hexameric complex (8 S) suggests that the DNA component of the particle has a folded conformation.  相似文献   

18.
Nucleosomes are dynamic entities with wide‐ranging compositional variations. Human histone variants H2A.B and H2A.Z.2.2 play critical roles in multiple biological processes by forming unstable nucleosomes and open chromatin structures, but how H2A.B and H2A.Z.2.2 confer these dynamic features to nucleosomes remains unclear. Here, we report cryo‐EM structures of nucleosome core particles containing human H2A.B (H2A.B‐NCP) at atomic resolution, identifying large‐scale structural rearrangements in the histone octamer in H2A.B‐NCP. H2A.B‐NCP compacts approximately 103 bp of DNA wrapping around the core histones in approximately 1.2 left‐handed superhelical turns, in sharp contrast to canonical nucleosome encompassing approximately 1.7 turns of DNA. Micrococcal nuclease digestion assay reveals that nineteen H2A.B‐specific residues, including a ROF (“regulating‐octamer‐folding”) sequence of six consecutive residues, are responsible for loosening of H2A.B‐NCPs. Unlike H2A.B‐NCP, the H2A.Z.2.2‐containing nucleosome (Z.2.2‐NCP) adopts a less‐extended structure and compacts around 125 bp of DNA. Further investigation uncovers a crucial role for the H2A.Z.2.2‐specific ROF in both H2A.Z.2.2‐NCP opening and SWR1‐dependent histone replacement. Taken together, these first high‐resolution structure of unstable nucleosomes induced by histone H2A variants elucidate specific functions of H2A.B and H2A.Z.2.2 in enhancing chromatin dynamics.  相似文献   

19.
The histone variant H2A.Bbd appeared to be associated with active chromatin, but how it functions is unknown. We have dissected the properties of nucleosome containing H2A.Bbd. Atomic force microscopy (AFM) and electron cryo-microscopy (cryo-EM) showed that the H2A.Bbd histone octamer organizes only approximately 130 bp of DNA, suggesting that 10 bp of each end of nucleosomal DNA are released from the octamer. In agreement with this, the entry/exit angle of the nucleosomal DNA ends formed an angle close to 180 degrees and the physico-chemical analysis pointed to a lower stability of the variant particle. Reconstitution of nucleosomes with swapped-tail mutants demonstrated that the N-terminus of H2A.Bbd has no impact on the nucleosome properties. AFM, cryo-EM and chromatin remodeling experiments showed that the overall structure and stability of the particle, but not its property to interfere with the SWI/SNF induced remodeling, were determined to a considerable extent by the H2A.Bbd docking domain. These data show that the whole H2A.Bbd histone fold domain is responsible for the unusual properties of the H2A.Bbd nucleosome.  相似文献   

20.
The distribution of newly synthesized core histones H2A, H2B, H3 and H4 relative to the DNA strand synthesized in the same generation has been examined in replicating Chinese Hamster ovary cells. Cells are grown for one generation in [14C]-lysine and thymidine, and then for one generation in [3H]-lysine and 5-bromodeoxyuridine (BrUdRib) and a further generation in unlabeled lysine and thymidine. This protocol produces equal amounts of unifilarly substituted and unsubstituted DNA. Monomer nucleosomes isolated from chromatin containing these two types of DNA can be distinguished by crosslinking with formaldehyde and banding to equilibrium in CsCl density gradients. The results indicate that the core histones are equally distributed between the two types of DNA. These findings are discussed in terms of current models for chromatin replication; they do not support any long term association of newly replicated histones with either the leading or lagging side of the replication fork.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号