首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Interaction of rabbit muscle glyceraldehyde-3-phosphate dehydrogenase with negatively charged liposomes was investigated as a function of temperature. This interaction affects the temperature-dependent conformational transition in the enzyme and exerts stabilizing effect on the protein structure. It can be seen from the fluorescence quenching experiments that the accessibility of tryptophanyl residues and isoindol probe fluorophores (covalently bound with the protein amino groups) for a dynamic quencher, acrylamide, is altered upon binding. This accessibility represented by effective quenching constant (Keff) strongly depends on temperature for unmodified enzyme and for the enzyme adsorbed on liposomes, it is nearly constant over a wide range of temperatures.  相似文献   

2.
Glyceraldehyde-3-phosphate dehydrogenase from rabbit muscle can be absorbed on charged lipid bilayers by electrostatic forces. Upon binding to phosphatidylinositol liposomes the enzyme modifies its conformational state as it is shown by resonance energy transfer experiments. In the presence of 2-mercaptoethanol o-phthaldialdehyde reacts with amino groups of the protein and the covalently bound fluorophore is an acceptor of excitation energy transferred from tryptophanyl residues of the protein. The observed decrease of energy transfer efficiency upon binding to phosphatidylinositol liposomes is compared with the influence of the urea on the fluorescence spectra of the labelled protein. Significance of conformational changes of the enzyme upon adsorption on liposomes in the regulating function of cell membranes is discussed.  相似文献   

3.
The tryptophanyl emission decay of the mesophilic beta-galactosidase from Aspergillus oryzae free in buffer and entrapped in agarose gel is investigated as a function of temperature and compared to that of the hyperthermophilic enzyme from Sulfolobus solfataricus. Both enzymes are tetrameric proteins with a large number of tryptophanyl residues, so the fluorescence emission can provide information on the conformational dynamics of the overall protein structure rather than that of the local environment. The tryptophanyl emission decays are best fitted by bimodal Lorentzian distributions. The long-lived component is ascribed to close, deeply buried tryptophanyl residues with reduced mobility; the short-lived one arises from tryptophanyl residues located in more flexible external regions of each subunit, some of which are involved in forming the catalytic site. The center of both lifetime distribution components at each temperature increases when going from the free in solution mesophilic enzyme to the gel-entrapped and hyperthermophilic enzyme, thus indicating that confinement of the mesophilic enzyme in the agarose gel limits the freedom of the polypeptide chain. A more complex dependence is observed for the distribution widths. Computer modeling techniques are used to recognize that the catalytic sites are similar for the mesophilic and hyperthermophilic beta-galactosidases. The effect due to gel entrapment is considered in dynamic simulations by imposing harmonic restraints to solvent-exposed atoms of the protein with the exclusion of those around the active site. The temperature dependence of the tryptophanyl fluorescence emission decay and the dynamic simulation confirm that more rigid structures, as in the case of the immobilized and/or hyperthermophilic enzyme, require higher temperatures to achieve the requisite conformational dynamics for an effective catalytic action and strongly suggest a link between conformational rigidity and enhanced thermal stability.  相似文献   

4.
The interaction between rabbit muscle fructose diphosphate aldolase and phospholipid model membranes (liposomes) was studied by measurement of the tryptophan fluorescence of the enzyme. Interaction with liposomes decreases intrinsic fluorescence intensity of the enzyme and shifts the emission wavelength maximum to higher values. The effects appear to be strongly dependent on the nature of the phospholipid polar group and on ionic strength. Also, a reversible modification of specific activity of aldolase upon interaction with liposomes was found. It is postulated that aldolase binds to liposomes mainly by electrostatic interactions and that the binding causes a change in the conformation of the enzyme.  相似文献   

5.
Acrylamide is a fluorescence quencher frequently applied for analysis of protein fluorophores exposure with the silent assumption that it does not affect the native structure of protein. In this report, it is shown that quenching of tryptophan residues in aldolase is a time-dependent process. The Stern-Volmer constant increases from 1.32 to 2.01 M-1 during the first 100 s of incubation of aldolase with acrylamide. Two tryptophan residues/subunit are accessible to quenching after 100 s of aldolase interaction with acrylamide. Up to about 1.2 M acrylamide concentration enzyme inactivation is reversible. Independent analyses of the changes of enzyme activity, 1ANS fluorescence during its displacement from aldolase active-site, UV-difference spectra and near-UV CD spectra were carried out to monitor the transition of aldolase structure. From these measurements a stepwise transformation of aldolase molecules from native state (N) through intermediates: I1, T, I2, to denatured (D) state is concluded. The maxima of I1, T, I2 and D states populations occur at 0.2, 1.0, 2.0 and above 3.0 M of acrylamide concentration, respectively. Above 3.5 M, acrylamide aldolase molecules become irreversibly inactivated.  相似文献   

6.
The tryptophan intrinsic fluorescence of mitochondrial complex III reconstituted in phosphatidylcholine bilayers was examined at different temperatures. Absorption and emission maxima occur at 277 and 332 nm, irrespective of temperature or lipid:protein ratio even if there are indications (from fluorescence quenching) of protein conformational changes as a function of lipid:protein ratio. Low values of Trp fluorescence quantum yield in complex III (0.008-0.010) are probably due to the neighborhood of the heme groups. The temperature-dependent decrease of fluorescence intensity is nonlinear; the corresponding Arrhenius plots show "breaks" or discontinuities that could be interpreted as thermally dependent changes in protein conformation. However, no temperature-dependent changes in fluorescence quenching have been observed that may be related to protein conformational changes. In addition, Arrhenius plots of the fluorescence intensity of simple molecules, such as Trp or 1-anilino-8-naphthalene sulfonate in the presence of aqueous phospholipid dispersions, also show breaks in the same temperature range. Stern-Volmer plots of acrylamide and iodide quenching were also nonlinear, indicating large differences in quenching constants for the various tryptophanyl residues. The quenching results also suggest that, at high lipid:protein ratios, the microviscosity of the protein matrix is higher than that in lipid-poor systems. Comparison of quenching efficiencies of iodide and acrylamide suggest that no significant fraction of the fluorophores occurs in the neighborhood of charged residues.  相似文献   

7.
The esterase from the hyperthermophilic archaeon Archaeoglobus fulgidus is a monomeric protein with a molecular weight of about 35.5 kDa. The enzyme is barely active at room temperature, displaying the maximal enzyme activity at about 80 degrees C. We have investigated the effect of the temperature on the protein structure by Fourier-transform infrared spectroscopy. The data show that between 20 degrees C and 60 degrees C a small but significant decrease of the beta-sheet bands occurred, indicating a partial loss of beta-sheets. This finding may be surprising for a thermophilic protein and suggests the presence of a temperature-sensitive beta-sheet. The increase in temperature from 60 degrees C to 98 degrees C induced a decrease of alpha-helix and beta-sheet bands which, however, are still easily detected at 98 degrees C indicating that at this temperature some secondary structure elements of the protein remain intact. The conformational dynamics of the esterase were investigated by frequency-domain fluorometry and anisotropy decays. The fluorescence studies showed that the intrinsic tryptophanyl fluorescence of the protein was well represented by the three-exponential model, and that the temperature affected the protein conformational dynamics. Remarkably, the tryptophanyl fluorescence emission reveals that the indolic residues remained shielded from the solvent up to 80 degrees C, as shown from the emission spectra and by acrylamide quenching experiments. The relationship between enzyme activity and protein structure is discussed.  相似文献   

8.
Fluorescence of isoindole probe covalently bound to spectrin from pig erythrocytes, and fluorescence of tryptophanyl residues were used to study spectrin interaction with phospholipid bilayers. Evidence would be provided for conformational changes of spectrin occurring upon its binding to lipid bilayers. Fluorescence quenching experiments allowed to determine thermal stability of the protein in bound and unbound state. Spectrin binding to lipids was shown to protect the protein against thermal denaturation.  相似文献   

9.
Lactate dehydrogenase (LDH) is one of the glycolytic enzymes, which have been proved to have the capability to reverse non-specific adsorption on cellular membranous structures in vitro, as well as on the structural proteins of the contractile system of muscle cells. It has been suggested that this binding may play a physiological role, as it alters the enzyme's kinetic properties. Our previous studies on this enzyme showed that its interaction with some anionic phospholipids reveals similar characteristics and similar effect on the activity of the enzyme to those which had been observed for the interaction with membranous structures. Disruption of the lipid bilayers by nonionic detergent (Tween 20) restored the enzyme activity inhibited by the presence of phosphatidylserine (PS) liposomes. In this study, we used the measurement of enzyme tryptophanyl fluorescence spectra to monitor the interaction and possible changes in the enzyme conformation. The investigation provided further evidence of the importance of the bilayer structure in this interaction. Similarly to the effect on the activity of the enzyme, the addition of Tween 20 diminishes the quenching of the LDH tryptophanyl fluorescence, and finally completely restores the fluorescence.  相似文献   

10.
The aldolase A binding to the lecithin liposomes (Kd = 2.4 +/- 0.1 X 10(-3) M) has been shown by the fluorescence and tryptophan phosphorescence at the room temperature. The interaction is accompanied by an increase in the phospholipid bilayer microviscosity, and some conformational changes in the hydrophobic part of the enzyme, pronouncing themselves in Trp-147 environment rigidity, decrease. The observation of membrane viscosity vs. incubation time revealed practically instant enzyme-membrane interaction and no gradual incorporation. The accessibility of the NAD-binding domain of aldolase for NADH in the liposome presence remains unaltered.  相似文献   

11.
The denaturation of pantetheinase (pantetheine hydrolase, EC 3.5.1.-) was followed in guanidinium chloride using tyrosyl and tryptophanyl residues as probes in connection with change in enzymatic activity. Movements of tryptophanyl and tyrosyl residues during denaturation were studied by second-derivative and fluorescence spectroscopy and the number of these amino acids present in the protein was calculated from spectroscopic data. Pantetheinase shows a very high resistance to denaturation, being completely unfolded at guanidinium chloride concentration higher than 6.5 M. Monitoring enzymatic activity shows that inactivation of the enzyme occurred before noticeable conformational changes were detected and it is suggested that the conformation of the active site is flexible and easily perturbable compared to the protein as a whole. This inactivation is reversible, as shown by renaturation experiments. Second-derivative and fluorescence spectra showed also that tyrosyl and tryptophanyl residues are largely exposed in the native protein, confirming its hydrophobic behavior.  相似文献   

12.
The GH4C1 strain of hormone-producing rat pituitary cells has specific receptors for the tripeptide thyrotropin-releasing hormone (TRH). Membranes prepared from GH4C1 cells show intrinsic tryptophan fluorescence which was quenched by low concentrations (10--100 nM) of TRH and Ntau-methyl TRH but not by biologically inactive analogs of TRH. Membranes from GH4C1 cells were subjected to thermal denaturation. A conformational transition was noted above 40 degrees C and an irreversible denaturation was observed at 52 degrees C. TRH-induced quenching of intrinsic fluorescence was lost completely in membranes previously incubated for 10 min at 30 degrees C while loss of [3H]-TRH binding was only about 20% at this temperature. Collisional quenching by iodide revealed that about 38% of the tryptophanyl residues in GH4C1 membranes were exposed to solvent. Quenching by TRH occurred with a shift in wavelength maximum from 336 to 342 nm suggesting that few of the tryptophanyl residues quenched by the tripeptide are totally exposed. Membranes prepared from cells preincubated with 20 nM TRH for 48 h, in which TRH receptors were decreased to 30% of control values, showed no quenching of tryptophan fluorescence in response to freshly added TRH. We conclude that the TRH-receptor interaction in GH4C1 cells is associated with a change in membrane conformation that can be measured by differential spectrofluorometry of intrinsic tryptophan fluorescence.  相似文献   

13.
The quenching of tryptophanyl fluorescence of native and denatured D-amino acid oxidase from hog kidney was measured. About 60% of the tryptophanyl fluorescence of the native apoenzyme was quenched by iodide at pH 8.3, and 25 degrees C. All of the tryptophanyl fluorescence of the apoenzyme in 6 M guanidine hydrochloride was quenched. The tryptophanyl fluorescence quenching of the holoenzyme by 1-methyl nicotinamide chloride was low in comparison with that of the apoenzyme. These results of the quenching experiments are discussed based on the intermolecular collision quenching mechanism. By measuring the fluorescence intensities of the tryptophanyl residues and FAD of the holoenzyme solution, and the fluorescence polarization of the holoenzyme solution containing halide anions such as iodide, bromide, chloride, or fluoride, we found that FAD dissociates from the holoenzyme in the presence of iodide, bromide, or chloride, and the ability to dissociate FAD from the holoenzyme decreases in order iodide, bromide, and chloride. However, fluoride seems to enhance the association reaction of FAD with the apoenzyme. These results were consistent with the visible absorption spectra and derivative spectra of free FAD and the holoenzyme in the presence and absence of halide anions.  相似文献   

14.
In this paper, the binding of flavonoids (quercetin and rutin) to hemoglobin (Hb) have been investigated by fluorescence, absorption spectroscopy and circular dichroism (CD) spectroscopy. The binding parameters and binding mode between flavonoids and Hb are determined and the results of CD and synchronous fluorescence spectra indicate a conformational change of Hb with addition of flavonoids. The effects of lecithin liposomes on the binding parameter of quercetin and rutin to Hb are also studied. When incorporated into liposome, flavonoids can reduce the fluorescence of tryptophanyl residues of Hb to a lesser extent. The difference of the structure characteristics between quercetin and rutin has a significant effect on their binding affinity for Hb.  相似文献   

15.
Enzymes from thermophilic organisms are stable and active at temperatures which rapidly denature mesophilic proteins. However, there is not yet a complete understanding of the structural basis of their thermostability and thermoactivity since for each protein there seems to exist special networks of interactions that make it stable under the desired conditions. Here we have investigated the activity and conformational dynamics above 100 degrees C of the beta-glycosidase isolated from the hyperthermophilic archaeon Sulfolobus solfataricus. This has been made possible using a special stainless steel optical pressure cell which allowed us to perform enzyme assays and fluorescence measurements up to 160 degrees C without boiling the sample. The beta-glycosidase from S. solfataricus showed maximal activity at 125 degrees C. The time-resolved fluorescence studies showed that the intrinsic tryptophanyl fluorescence emission of the protein was represented by a bimodal distribution with Lorential shape and that temperature strongly affected the protein conformational dynamics. Remarkably, the tryptophan emission reveals that the indolic residues remain shielded from the solvent even at 125 degrees C, as shown by shielding from quenching and restricted tryptophan solubility. The relationship between enzyme activity and protein structural dynamics is discussed.  相似文献   

16.
Human thymus adenosine deaminase was isolated by using a monoclonal antibody affinity column. The highly purified enzyme produced by this rapid, efficient procedure had a molecular weight of 44,000. Quenching of the intrinsic protein fluorescence by small molecules was used to probe the accessibility of tryptophan residues in the enzyme and enzyme-inhibitor complexes. The fluorescence emission spectrum of human adenosine deaminase at 295-nm excitation had a maximum at about 335 nm and a quantum yield of 0.03. Addition of polar fluorescence quenchers, iodide and acrylamide, shifted the peak to the blue, and the hydrophobic quencher trichloroethanol shifted the peak to the red, indicating that the emission spectrum is heterogeneous. The fluorescence quenching parameters obtained for these quenchers reveal that the tryptophan environments in the protein are relatively hydrophobic. Binding of both ground-state and transition-state analogue inhibitors caused decreases in the fluorescence intensity of the enzyme, suggesting that one or more tryptophans may be near the active site. The kinetics of the fluorescence decrease were consistent with a slow conformational alteration in the transition-state inhibitor complexes. Fluorescence quenching experiments using polar and nonpolar quenchers were also carried out for the enzyme-inhibitor complexes. The quenching parameters for all enzyme-inhibitor complexes differed from those for the uncomplexed enzyme, suggesting that inhibitor binding causes changes in the conformation of adenosine deaminase. For comparison, parallel quenching studies were performed for calf adenosine deaminase in the absence and presence of inhibitors. While significant structural differences between adenosine deaminase from the two sources were evident, our data indicate that both enzymes undergo conformational changes on binding ground-state and transition-state inhibitors.  相似文献   

17.
A frequency domain fluorescence study of yeast phosphoglycerate kinase has been performed to observe the effect of substrates on the structure and dynamics of the enzyme. At 20 degrees C and pH 7.2, a biexponential decay is observed for tryptophanyl emission. The short fluorescence lifetime (0.4 ns) component is associated with a spectrum having a 329-nm maximum and a 18.4-kJ/mol activation energy, Ea, for thermal quenching. The long-lifetime (3.5 ns) component has a 338-nm maximum and an Ea of only 7.9 kJ/mol. Tentatively we assign the short and long-lifetime components to Trp-333 and Trp-308. Binding of the substrates ATP and 3-phosphoglycerate leads to a significant increase in the fluorescence lifetime, the red shift of the emission spectrum and in the decrease in the Ea for both components. Acrylamide-quenching studies indicate that the two tryptophan residues have about the same degree of kinetic exposure to the quencher and that the binding of the substrates causes a very slight change in the quenching pattern. These fluorescence studies indicate that the binding of the substrates to phosphoglycerate kinase may influence the conformational dynamics around the two tryptophan residues located on one of the protein's domains.  相似文献   

18.
A molecular dynamics simulation approach has been utilized to understand the unusual fluorescence emission decay observed for beta-glycosidase from the hyperthermophilic bacterium Solfolobus sulfotaricus (Sbeta gly), a tetrameric enzyme containing 17 tryptophanyl residues for each subunit. The tryptophanyl emission decay of Sbeta gly results from a bimodal distribution of fluorescence lifetimes with a short-lived component centered at 2.5 ns and a long-lived one at 7.4 ns (Bismuto E, Nucci R, Rossi M, Irace G, 1999, Proteins 27:71-79). From the examination of the trajectories of the side chains capable of causing intramolecular quenching for each tryptophan microenvironment and using a modified Stern-Volmer model for the emission quenching processes, we calculated the fluorescence lifetime for each tryptophanyl residue of Sbeta gly at two different temperatures, i.e., 300 and 365 K. The highest temperature was chosen because in this condition Sbeta gly evidences a maximum in its catalytic activity and is stable for a very long time. The calculated lifetime distributions overlap those experimentally determined. Moreover, the majority of trytptophanyl residues having longer lifetimes correspond to those originally identified by inspection of the crystallographic structure. The tryptophanyl lifetimes appear to be a complex function of several variables, such as microenvironment viscosity, solvent accessibility, the chemical structure of quencher side chains, and side-chain dynamics. The lifetime calculation by MD simulation can be used to validate a predicted structure by comparing the theoretical data with the experimental fluorescence decay results.  相似文献   

19.
Molecules of muscle aldolase A exposed to acrylamide change their conformation via I1, T, I2, D intermediates [1] and undergo a slow irreversible chemical modification of thiol groups. There is no direct correlation between activity loss and thiol groups modification. In the native enzyme two classes of Trp residues of 1. 8 ns and 4.9 ns fluorescence lifetime have been found. Acrylamide (0. 2-0.5 M) increases lifetime of longer-lived component, yet the transfer of aldolase molecules even from higher (1.0 M) perturbant concentration to a buffer, allows regain original Trp fluorescence lifetime. I1, detected at about 0.2 M acrylamide, represents low populated tetramers of preserved enzyme activity. T, of maximum population at about 0.7-1.0 M acrylamide, consists of meta-stable tetramers of partial enzymatic activity. These molecules are able to exchange their subunits with aldolase C in opposition to the native molecules. At transition point for I2 appearance (1.8 M acrylamide), aldolase becomes highly unstable: part of molecules dissociate into subunits which in the absence of perturbant are able to reassociate into active tetramers, the remaining part undergoes irreversible denaturation and aggregation. Some expansion of aldolase tetramers takes place prior to dissociation. D, observed above 3.0 M acrylamide, consists of irreversibly denatured enzyme molecules.  相似文献   

20.
The time dependence of the fluorescence of tryptophanyl and flavin residues in lipoamide dehydrogenase has been investigated with single-photon decay spectroscopy. When the two FAD molecules in the enzyme were directly excited the decay could only be analyzed in a sum of two exponentials with equal amplitudes. This phenomenon was observed at 4 degrees C (tau-1 = 0.8 ns, tau-2 = 4.7 ns) and at 20 degrees C (tau-1 = 0.8 ns, tau-2 = 3.4 ns) irrespective of the emission and excitation wavelengths. This result reveals a difference in the nature of the two FAD centers. By excitation at 290 nm the fluorescence decay curves of tryptophan and FAD were obtained. The decays are analyzed in terms of energy transfer from tryptophanyl to flavin residues. The results, which are in good agreement with those obtained previously with static fluorescence methods, show that one of the two tryptophanyl residues within the subunit transfers its excitation energy to the flavin located at a distance of 1.5 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号