首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study we used thapsigargin (TG), an inhibitor of microsomal calcium ATPase, to evaluate the roles of free cytoplasmic calcium and intracellular stored calcium in secretagogue-stimulated enzyme secretion from rat pancreatic acini. Using microspectrofluorimetry of fura-2-loaded pancreatic acini, we found that TG caused a sustained increase in free cytoplasmic calcium by mobilizing calcium from inositol 1,4,5-trisphosphate-sensitive intracellular stores and by increasing influx of extracellular calcium. TG also caused a small increase in basal amylase secretion, inhibited the stimulation of amylase secretion caused by secretagogues that increase inositol 1,4,5-trisphosphate, and potentiated the stimulation of amylase secretion caused by 12-O-tetradecanoylphorbol-13-acetate or secretagogues that increase cyclic adenosine 3',5'-monophosphate. Bombesin, which like TG increased free cytoplasmic calcium, also potentiated the stimulation of amylase secretion caused by secretagogues that increase cyclic adenosine 3',5'-monophosphate, but did not inhibit the stimulation of amylase secretion caused by secretagogues that increase inositol 1,4,5-trisphosphate. Finally, TG inhibited the sustained phase of cholecystokinin-stimulated amylase secretion and potentiated the time course of vasoactive intestinal peptide-stimulated amylase secretion. The present findings indicate that stimulation of amylase secretion by secretagogues that increase inositol 1,4,5-trisphosphate does not depend on increased free cytoplasmic calcium per se. In contrast, TG-induced potentiation of the stimulation of secretagogues that increase cellular cyclic adenosine 3',5'-monophosphate appears to result from increased free cytoplasmic calcium per se.  相似文献   

2.
Effects of cyclic adenosine 3':5'-monophosphate (cyclic AMP)-dependent protein kinase were studied in sarcoplasmic reticulum prepared from cardiac and slow and fast (white) skeletal muscle. Cyclic AMP-dependent protein kinase failed to catalyze phosphorylation of fast skeletal muscle microsomes as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Cyclic AMP-dependent protein kinase was without effect on calcium uptake by these microsomes. Treatment of cardiac microsomes obtained from dog, cat, rabbit, and guinea pig with cyclic AMP-dependent protein kinase and ATP resulted in phosphorylation of a 22,000-dalton protein component in the amounts of 0.75, 0.25, 0.30, and 0.14 nmol of phosphorus/mg of microsomal protein, respectively. Calcium uptake by cardiac microsomes was stimulated 1.8- to 2.5-fold when microsomes were treated with cyclic AMP-dependent protein kinase. Protein kinases partially purified from bovine heart and rabbit skeletal muscle were both effective in mediating these effects on phosphorylation and calcium transport in dog cardiac sarcoplasmic reticulum. Slow skeletal muscle sarcoplasmic reticulum also contains a protein with a molecular weight of approximately 22,000 that can be phosphorylated by protein kinase. Phosphorylation of this component ranged from 0.005 to 0.016 nmol of phosphorous/mg of microsomal protein in dog biceps femoris. A statistically significant increase in calcium uptake by these membranes was produced by the protein kinase. Increases in protein kinase-catalyzed phosphorylation of a low molecular weight microsomal component and in calcium transport by sarcoplasmic reticulum of cardiac and slow skeletal muscle may be related to the relaxation-promoting effects of epinephrine seen in these types of muscle. Conversely, the absence of a relaxation-promoting effect of epinephrine in fast skeletal muscle may be associated with the lack of effect of cyclic AMP and protein kinase on calcium transport by the sarcoplasmic reticulum of this type of muscle.  相似文献   

3.
To examine the role of changes in calcium transport by subcellular particles in the pathogenesis of contractile failure due to oxygen lack, both mitochondrial and microsomal fractions were obtained from the isolated hypoxic rat hearts and their calcium binding and uptake abilities were determined by the Millipore filtration technique. The contractile force decreased by about 40, 60 and 70% of the control within 5, 10 and 30 min respectively, of perfusing the heart with hypoxic medium containing glucose. In hearts perfused for 10 min with hypoxic medium containing glucose, calcium binding and uptake by the microsomal fraction decreased significantly. However, mitochondrial calcium binding, but not uptake, decreased significantly on perfusing the hearts with hypoxic medium containing glucose for 20 to 30 min when the microsomal calcium transport was markedly depressed. Reduction in contractile force, calcium binding and uptake by the microsomal fraction as well as calcium binding by mitochondria of hearts made hypoxic for 30 min recovered towards normal upon reperfusion with control medium for 15 min. On the other hand, omitting glucose from the hypoxic medium significantly decreased calcium binding by mitochondrial and microsomal fractions within 10 min of perfusion in comparison to the control and accelerated the effects of hypoxia upon contractile force and microsomal calcium uptake. In contrast to the hypoxic hearts, the mitochondrial calcium uptake decreased significantly and the magnitude of depression in the microsomal calcium binding was appreciably greater in hearts made to fail to a comparable degree upon perfusion with substrate-free medium. The observed defects in calcium transporting properties of microsomal and mitochondrial membranes appear secondary to the contactile failure in hypoxic hearts.  相似文献   

4.
All of the 13 possible polychlorinated biphenyl (PCB) isomers and congeners substituted at both para positions, at least two meta positions (but not necessarily on the same ring) and at two ortho positions have been synthesized and tested as rat hepatic microsomal enzyme inducers. The effects of these compounds were evaluated by measuring microsomal benzo-[a]pyrene (B[a]P) hydroxylase, 4-chlorobiphenyl (4-CBP) hydroxylase, 4-dimethylaminoantipyrine (DMAP) N-demethylase and NADPH-cytochrome c reductase activities, the cytochrome b5 content and the relative peak intensities and spectral shifts of the carbon monoxide(CO)- and ethylisocyanide(EIC)-difference spectra of ferrocytochrome P-450. The results were compared to the effects of administering phenobarbitone (PB), 3-methylcholanthrene (MC) and PB plus MC (coadministered). At dose levels of 150 mumol . kg-1, all of the PCB congeners, except 2,3',4,4',5',6-hexachlorobiphenyl, significantly enhanced hepatic microsomal cytochrome P-450 content, B[a] P hydroxylase and/or DMAP N-demethylase activities compared to the control (corn oil-treated) animals. Only 5 of these compounds, namely 2,3,4,4',5,6-hexa-, 2,2',3,3',4,4'-hexa-, 2,2',3',4,4',5-hexa-, 2,3,3',4,4',6-hexa-and 2,2',3,3',4,4',5-heptachlorobiphenyl, enhanced microsomal B[a]P hydroxylase, 4-CBP hydroxylase, NADPH-cytochrome c reductase and DMAP N-demethylase activities in a manner consistent with a mixed pattern of induction. The results suggest that PCB isomers and congeners substituted at both para positions, at least two meta positions, at two ortho positions and containing a 2,3-4-trichloro substitution pattern on one ring are mixed-type inducers; in addition the effects of 2,3,4,4',5,6-hexachlorobiphenyl were also consistent with a mixed pattern of induction.  相似文献   

5.
The intracellular distribution of 5' nucleotidase was investigated in rat liver by biochemical analysis of cell fractions obtained by differential centrifugation. The enzymatic activity was measured by determination of the inorganic phosphorus liberated from 5' nucleotides. The 5' nucleotidase activity was mainly found in the nuclear and microsomal fractions. An attempt to extract the enzyme from these fractions with Mg(++) ion solutions was unsuccessful. It is concluded that 5' nucleotidase is actually present in the nuclear and microsomal fractions of rat liver cells.  相似文献   

6.
The rabbit genomic segments for the soluble cytochrome b5 (b5) and microsomal b5 were amplified and isolated, respectively, by means of the polymerase chain reaction using primers corresponding to various portions of the open reading frame of microsomal b5 cDNA. The DNA sequence analysis revealed that the soluble b5 gene has an extra 24 nucleotide long insert which encodes a C-terminal amino acid and a termination codon which are specific to the soluble b5. Except for the insert, the sequences of the soluble and microsomal b5 genes are identical with each other from the 5' end to the 3' end of the open reading frame of the microsomal b5 cDNA. Comparison of the genomic sequences with the cDNA sequences suggested that the soluble and microsomal genes are intronless within their open reading frames. These data indicate that rabbit soluble and microsomal b5 mRNAs are encoded by two highly conserved but separate genes.  相似文献   

7.
Intracellular Distribution of 5' Nucleotidase in Rat Liver   总被引:2,自引:2,他引:0       下载免费PDF全文
The intracellular distribution of 5' nucleotidase was investigated in rat liver by biochemical analysis of cell fractions obtained by differential centrifugation. The enzymatic activity was measured by determination of the inorganic phosphorus liberated from 5' nucleotides. The 5' nucleotidase activity was mainly found in the nuclear and microsomal fractions. An attempt to extract the enzyme from these fractions with Mg++ ion solutions was unsuccessful. It is concluded that 5' nucleotidase is actually present in the nuclear and microsomal fractions of rat liver cells.  相似文献   

8.
The effects of ether, chloroform, and halothane on calcium accumulation and ATPase activity of rat heart microsomes and mitochondria as well as on myofibrillar ATPase activity were investigated. Chloroform and halothane depressed microsomal and mitochondrial calcium uptake and binding in a parallel fashion. Ether decreased microsomal calcium binding and mitochondrial calcium uptake to varying degrees, while mitochondrial calcium binding was slightly enhanced. Whereas ether had no effect, chloroform depressed microsomal and mitochondrial total APTase activities and halothane decreased microsomsl ATPase and slightly stimulated mitochondrial total ATPase activities. Halothane was found to depress myofibrillar Mg2+-ATPase and ether was capable of decreasing myofibrillar Ca2+-ATPase. Chloroform was seen to inhibit both myofibrillar enzymes. These results suggest that the cardiodepressant actions of volatile anesthetic agents may be due to alterations in the calcium accumulating abilities of microsomal and mitochondrial membranes while direct myofibrillar effects may contribute to the depression seen with relatively higher concentrations of anesthetics.  相似文献   

9.
In vitro exposure of hepatocytes or liver microsomes to t-butyl hydroperoxide resulted in a marked decrease of liver microsomal calcium pump activity. Decreased calcium pump activity was dependent upon both concentration and time. Liver microsomes could be protected from this effect by glutathione or dithiothreitol. In addition to decreased calcium pump activity, exposure of liver microsomes to t-butyl hydroperoxide produced a concentration-dependent aggregation of microsomal membrane protein as determined by polyacrylamide gel electrophoresis. Inhibition of microsomal calcium pump activity was observed when intact hepatocytes were incubated, in vitro, with t-butyl hydroperoxide. However, aggregation of microsomal membrane protein was not observed when hepatocytes were incubated with t-butyl hydroperoxide. The effects produced by exposure of liver microsomes to this compound do not appear to be a complete model of actions of the compound on intact cells.  相似文献   

10.
Highly purified synthetic polychlorinated biphenyls substituted in the meta and para positions of both phenyl rings and at one ortho position were administered to male Wistar rats and the effects of these compounds on the microsomal drug-metabolising enzymes were evaluated. The in vivo effects of these compounds were determined by measuring the microsomal benzo[a]pyrene hydroxylase, dimethylaminoantipyrine N-demethylase and NADPH-cytochrome c reductase enzyme activities, the cytochrome b5 content and the relative peak intensities and spectral shifts of the reduced microsomal cytochrome P-450 : CO and ethylisocyanide binding difference spectra. The results were compared to the effects of administering phenobarbitone (PB), 3-methylcholanthrene (MC), 2,2',4,4'-tetrachlorobiphenyl (TCBP-II) (a PB-type inducer), 3,3',4,4'-tetrachlorobiphenyl (TCBP-I) (an MC-type inducer), PB plus MC (coadministered) and TCBP-II + TCBP-I (coadministered) to the test animals. At dosage levels of 30 and 150 mumol . kg-1, pretreatment with 2,3,3',4,4'-pentachlorobiphenyl (PCBP-II), 2,3',4,4',5-pentachlorobiphenyl (PCBP-I), 2,3,3',4,4',5-hexachlorobiphenyl (HCBP-II) and 2,3,3',4,4',5-hexachlorobiphenyl (HCBP-III) gave hepatic microsomes with enzymic and spectral properties consistent with a mixed pattern of induction. These polychlorinated biphenyl (PCB) isomers and congeners have been identified as either major or minor components of the commercial PCB mixtures and must contribute to their activity as MC-type inducers. The only PCB isomer in this series which was not a mixed type inducer was 2,3',4,4',5,5'-hexachlorobiphenyl (HCBP-I) which appeared to be a PB-type inducer. This contrasted to the mixed-type activity observed for 2,3',4,4',5,5'-hexabromobiphenyl which was isolated from a commercial polybrominated biphenyl (PBB) mixture.  相似文献   

11.
Hormone sensitive calcium uptake by liver microsomes   总被引:2,自引:0,他引:2  
The effects of glucagon and insulin on hepatic microsomal calcium uptake were investigated. Microsomes isolated from perfused rat liver accumulated calcium in the presence of ATP and oxalate. Addition of glucagon to the perfusate significantly increased calcium uptake by microsomes subsequently isolated. In contrast, addition of insulin to the perfusate resulted in a decreased microsomal calcium uptake and inhibition of the glucagon effect. Because the effects of glucagon and insulin on hepatic microsomal calcium uptake are opposite, as are the metabolic effects of these hormones, it is likely that the observed differences are of physiological importance.  相似文献   

12.
To explore interrelationship between the roles of cAMP and calcium ion in hormone-stimulated lipolysis, cAMP accumulation in rat adipocytes and calcium binding in the endoplasmic reticulum were investigated with special reference to the effects of lipolytic hormones under various conditions. ACTH, isoproterenol, DBcAMP and aminophylline significantly increased ATP-dependent calcium uptake in adipocyte endoplasmic reticulum, but only after they were incubated with intact cells and not when they were added after homogenization. In vivo dexamethasone treatment and A-23187 accelerated, while 2.4-dinitrophenol blunted ACTH-stimulated lipolysis, cAMP accumulation and microsomal calcium uptake in parallel. Adrenalectomy, Mn2+ and adenosine enhanced ACTH-stimulated cAMP accumulation in adipocytes but lowered the calcium uptake and lipolysis. Thus, there was consistent parallelism between hormone-stimulated lipolysis and microsomal calcium uptake throughout the study. These data suggest that changes in the microsomal calcium uptake plays a crucial role in the regulation of hormone-induced lipolysis, irrespective of whether or not the intracellular cAMP concentration is involved in the lipolytic mechanism.  相似文献   

13.
The total membrane fraction of a chick embryo fibroblast (CEF) homogenate accumulates calcium in an energy-dependent manner. This activity can be dissociated into azide-sensitive and azide-insensitive components. The azide-sensitive component of calcium uptake is believed to represent mitochondrial calcium uptake. The azide-insensitive component of calcium uptake is enhanced by the presence of a calcium trapping agent such as oxalate, and cannot utilize, ADP, inorganic phosphate and a Krebs cycle substrate to support uptake. The distribution of the azide-insensitive calcium uptake in subcellular fractions suggests that this uptake occurs in other than mitochondrial membranes. The membranes most likely to contribute to the azide-insensitive component of calcium uptake are the endoplasmic reticulum and plasma membrane. A microsomal preparation from CEF cells is essentially devoid of the azide-sensitive calcium uptake activity. This microsomal activity is similar in characteristics to the sarcoplasmic reticulum of skeletal muscle. However the specific activity of CEF microsomal calcium uptake system is much less than that found in the skeletal muscle system. The transport of calcium by these membranes provide a mechanism for the regulation of cytosol calcium levels and may play a role in the control of movement and growth of cultured cells.  相似文献   

14.
The effect of cyclic AMP on calcium movements in the pancreatic beta-cell was evaluated using an experimental approach based on in situ labelling of intracellular organelles of ob/ob-mouse islets with 45Ca. Whereas the glucose-stimulated 14Ca incorporation by mitochondria and secretory granules was increased under a condition known to reduce cyclic AMP (starvation), raised levels of this nucleotide (addition of 3-isobutyl-1-methylxanthine or N6,O2'-dibutyryl adenosine 3',5'-cyclic monophosphate) reduced the mitochondrial accumulation of 45Ca. Conditions with increased cyclic AMP were associated with a stimulated efflux of 45Ca from the secretory granules but not from the mitochondria. The microsomal fraction differed from both the mitochondrial and secretory granule fractions by accumulating more 45Ca after the addition of 3-isobutyl-1-methylxanthine. The results suggest that cyclic AMP potentiates glucose-stimulaated insulin release by increasing cytoplasmic Ca2+ at the expense of the calcium taken up by the organelles of the pancreatic beta-cells.  相似文献   

15.
B细胞抗原受体(BCR)信号传导起始于持续的钙离子向细胞内流动,这种钙离子的内流对于B细胞的生长、分化、活化是必需的。CD20是B细胞膜上特有的4次跨膜蛋白,参与了BCR活化的钙离子流入。最近的研究提供了直接的证据,证明CD20形成的同源寡聚体是四聚体。CD20单抗诱导的钙信号也得到研究,研究表明只有Ⅰ型CD20单抗能引起钙离子内流。CD20还通过钙池调控钙离子进入(SOCE)参与了细胞信号传导。我们就CD20形成同源寡聚体、与BCR的相互作用、参与调节B淋巴细胞钙离子的流动等进行简要综述。  相似文献   

16.
Cardiac microsomes were incubated with [gamma-32P]ATP and a cardiac adenosine 3':5'-monophosphate (cyclic AMP)-dependent protein kinase in the presence of ethylene glycol bis(bets-aminoethyl ether)-N,N'-tetraacetic acid. After solubilization in sodium dodecyl sulfate and fractionation by polyacrylamide gel electrophoresis, a single microsomal protein component of approximately 22,000 daltons was found to bind most of the 32P label. The 32P labeling of this component increased several fold when NaF was included in the incubation medium. No other component of cardiac microsomes, including sarcoplasmic reticulum ATPase protein, contained significant amounts of 32P label. This 22,000-dalton phosphoprotein formed by cyclic AMP-dependent protein kinase had stability characteristics of a phosphoester rather than an acyl phosphate. Washing of microsomes with buffered KCl did not decrease the amount of 32P labeling to the 22,000-dalton protein, suggesting that this protein is associated with the membranes of sarcoplasmic reticulum rather than being a contaminant from other soluble proteins. The 22,000-dalton protein was susceptible to trypsin. Brief digestion with trypsin in the presence of 1 M sucrose did not significantly affect microsomal calcium transport activity, but prevented both subsequent phosphorylation of the 22,000-dalton protein and stimulation of calcium uptake by cyclic AMP-dependent protein kinase, suggesting that this protein is a modulator of the calcium pump. These results are consistent with previous findings (Kirchberger, M.A., Tada, M., and Katz, A.M. (1974) J. Biol. Chem. 249, 6166-6173; Tada, M., Kirchberger, M.A., Repke, D.I., and Katz, A.M. (1974) J. Biol. Chem. 249, 6174-6180) that cyclic AMP-dependent protein kinase-catalyzed phosphorylation is associated with stimulation of calcium transport in the cardiac sarcoplasmic reticulum, and further indicate that this phosphorylation occurs at a component of low mass (22,000 daltons) of the cardiac sarcoplasmic reticulum which, while separable from the calcium transport ATPase protein (100,000 daltons) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, has the ability to regulate calcium transport by the cardiac sarcoplasmic reticulum.  相似文献   

17.
Many cell membrane systems, including microsomal vesicles of corn, are able to regulate calcium levels both in vivo and in vitro, often in an ATP-dependent, calmodulin-stimulated fashion. The purpose of this study was to determine calcium distribution in meristematic cells of intact tissue and microsomal vesicles from corn roots using direct pyroantimonate-osmium fixation. In root cells, precipitates were localized in mitochondria, plastids, the nucleus, endoplasmic reticulum, Golgi apparatus, and along the plasma membrane. Plasma membrane-enriched microsomal vesicles isolated from corn roots incubated in media to permit calcium transport before pyroantimonate-osmium fixation show internal precipitates associated with the membrane and in the lumen of the vesicles. De-staining of the sections with 1 mM EDTA or EGTA removed precipitate from the sections, confirming the presence of calcium in the antimonate precipitates. These data support biochemical data that this same membrane preparation exhibited ATP-dependent calcium sequestration that was stimulated by calmodulin, as measured by retention of 45Ca. This provides evidence that these membranes are responsible for ATP-requiring, calmodulin-stimulated calcium transport in the intact cell.  相似文献   

18.
Energy-dependent calcium uptake activity of microsomes isolated from the rat aorta has been characterized. The microsomes consist of smooth membrane vesicles which in the presence of MG-ATP as an energy source continuously sequester calcium over a 60-min period. This calcium uptake is greatly stimulated by oxalate anion which serves as a calcium trapping agent. Unlike the calcium uptake of mitochondria this uptake is not inhibited by sodium azide. Sucrose density gradient analysis of the microsomal calcium uptake suggests that the system is associated with the sarcoplasmic reticulum. In presence of 5 mM Mg-ATP and 20 muM calcium approximately 38 nmol of calcium per mg of microsomal protein are taken up in 20 min. In the absence of ATP, less than 2 nmol of calcium per mg of protein are taken up in the first 2 min with no further uptake of calcium in subsequent time periods. When calcium uptake activity is plotted against calcium or ATP concentration of the medium, half maximal activity is calculated for 24.3 muM calcium and for 1.6 mM ATP. The calcium uptake characteristics of the rat aorta microsomes are compatible with a postulated role in the relaxation of the vascular smooth muscle and the provision of an intracellular calcium store for muscle contraction. Aorta microsomes from SHR rats (a genetic strain that is spontaneously hypertensive) have a significantly reduced uptake when compared with the corresponding nonhypertensive control strain. The level of calcium and ATP for half maximal activity of the rat aorta microsomal calcium uptake system is approximately the same in the SHR and the control strain. The rate of release of calcium from rat aorta microsomes is apparently identical in SHR strain and control. The calcium uptake activity of kidney and liver microsomes isolated from the SHR strain and control. The calcium uptake activity of kidney and liver microsomes isolated from the SHR rat appears to be identical to that found in the control strain.  相似文献   

19.
The effect of fasting on calcium content and Ca2+-ATPase activity in the brain tissues of 5 weeks and 50 weeks old rats was investigated. Brain calcium content and Ca2+-ATPase activity in the microsomal and mitochondrial fractions of the brain homogenate from young and elderly rats were significantly increased by overnight–fasting. These increases were appreciably restored by a single oral administration of glucose solution (400 mg/100 g body weight) to fasted rats. In comparison with young and elderly rats, brain calcium content and microsomal Ca2+-ATPase activity were significantly elevated by increasing ages. The effect of ageing was not seen in the brain mitochondrial Ca2+-ATPase activity. When calcium (50 mg/100 g) was orally administered to young and elderly rats, brain calcium content was significantly elevated. The calcium administration–induced increase in brain calcium content was greater in elderly r crease in Ca2+-ATPase activity in the microsomal and mitochondrial fractions of brain homogenates from young rats. In aged rats, the microsomal Ca2+-ATPase activity was not further enhanced by calcium administration, although the mitochondrial enzyme activity was significantly raised. The present study demonstrates that the fasting–induced increase in brain calcium content is involved in Ca2+-ATPase activity raised in the brain microsomes and mitochondria of rats with different ages, supporting a energy–dependent mechanism in brain calcium accumulation.  相似文献   

20.
The addition of G-6-Pi to the incubation system for MgATP-dependent calcium transport in liver microsomes results in a marked stimulation of Ca2+ uptake. At physiological pH values (7.2-7.4), the G-6-Pi stimulated calcium uptake is maximal and equals that obtained with oxalate at pH 6.8. In the system for the G-6-Pi-stimulated calcium uptake, G-6-Pi is actively hydrolyzed by the glucose 6-phosphatase activity of liver microsomes. Such an activity is not influenced by the concomitant calcium uptake. After the incubation of the system for the MgATP-dependent microsomal calcium transport in the presence of G-6-Pi, Pi and calcium are found in equal concentrations, on a molar base, in the recovered microsomal fraction. These results are interpreted in the light of a possible cooperative activity between the energy-dependent calcium pump of liver microsomes and the glucose 6-phosphatase multicomponent system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号