首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Properties of alkali-soluble components from the spore coat of Bacillus megaterium were examined by physicochemical methods. They were composed of acidic polypeptides of various molecular weights with small amounts of phosphorus and sugar. They were allowed to dissociate to unit components by incubation with SDS. The major component was partially purified by gel filtration, and shown to have a mean molecular weight of about 11,000.  相似文献   

2.
Fission of many prokaryotes as well as some eukaryotic organelles depends on the self-assembly of the FtsZ protein into a membrane-associated ring structure early in the division process. Different components of the machinery are then sequentially recruited. Although the assembly order has been established, the molecular interactions and the understanding of the force-generating mechanism of this dividing machinery have remained elusive. It is desirable to develop simple reconstituted systems that attempt to reproduce, at least partially, some of the stages of the process. High-resolution studies of Escherichia coli FtsZ filaments’ structure and dynamics on mica have allowed the identification of relevant interactions between filaments that suggest a mechanism by which the polymers could generate force on the membrane. Reconstituting the membrane-anchoring protein ZipA on E. coli lipid membrane on surfaces is now providing information on how the membrane attachment regulates FtsZ polymer dynamics and indicates the important role played by the lipid composition of the membrane.  相似文献   

3.
There is a marked increase in the half-cystine content of bacterial spores, especially the coat layers at the time of formation of the outer coat. When a cysteine auxotroph of Bacillus cereus T is grown on limiting cysteine, the spores contain the normal content of half-cystine, suggesting an alternate source. Glutathione appears to be such a supply of cysteine since it is hydrolyzed during sporulation and there are increased activities of the hydrolyzing enzymes at the same time. In addition, a cysteine auxotroph with a second alteration, a temperature-sensitive glutathione disulfide reductase, produces lysozyme-sensitive spores at 40 C. These spores appear to be defective in the formation of outer spore coat. During sporulation at 40 C, the double mutant accumulates oxidized glutathione which is a poor substrate for the hydrolytic enzymes. As a result, sporulating cells are deficient in half-cystines which are essential for outer spore coat morphogenesis. This alteration can be overcome by a shift to 30 C or by addition of cystinyl-pencillamine or cysteinyl-glycine to cultures sporulating at 40 C.  相似文献   

4.
The vesicular hypothesis has stimulated fruitful investigations on many secreting systems. In the case of rapid synaptic transmission, however, the hypothesis has been found difficult to reconcile with a number of well established observations. Brief impulses of transmitter molecules (quanta) are emitted from nerve terminals at the arrival of an action potential by a mechanism which is under the control of multiple regulations. It is therefore not surprising that quantal release could be disrupted by experimental manipulation of a variety of cellular processes, such as a) transmitter uptake, synthesis, or transport, b) energy supply, c) calcium entry, sequestration and extrusion, d) exo- or endocytosis, e) expression of vesicular and plasmalemmal proteins, f) modulatory systems and second messengers, g) cytoskeleton integrity, etc. Hence, the approaches by ablation strategy do not provide unequivocal information on the final step of the release process since there are so many ways to stop the release. We propose an alternate approach: the reconstitution strategy. To this end, we developed several preparations for determining the minimal system supporting Ca2+-dependent transmitter release. Release was reconstituted in proteoliposomes, Xenopus oocytes and transfected cell lines. Using these systems, it appears that a presynaptic plasmalemmal proteolipid, that we called mediatophore should be considered as a key molecule for the generation of transmitter quanta in natural synapses.  相似文献   

5.
刘燕  秦玉昌 《生命的化学》2005,25(2):108-110
芽孢衣是赋予芽孢对有机溶剂和溶菌酶的抗性,以及对外界出芽诱导物的感应能力的保护性结构。该主要介绍由枯草芽孢杆菌(bacillus subtilis)所形成的芽孢的芽孢衣中已鉴定的主要蛋白质.及其基因表达调控和应用等方面的研究进展。  相似文献   

6.
Bacillus subtilis Spore Coat   总被引:14,自引:0,他引:14       下载免费PDF全文
In response to starvation, bacilli and clostridia undergo a specialized program of development that results in the production of a highly resistant dormant cell type known as the spore. A proteinacious shell, called the coat, encases the spore and plays a major role in spore survival. The coat is composed of over 25 polypeptide species, organized into several morphologically distinct layers. The mechanisms that guide coat assembly have been largely unknown until recently. We now know that proper formation of the coat relies on the genetic program that guides the synthesis of spore components during development as well as on morphogenetic proteins dedicated to coat assembly. Over 20 structural and morphogenetic genes have been cloned. In this review, we consider the contributions of the known coat and morphogenetic proteins to coat function and assembly. We present a model that describes how morphogenetic proteins direct coat assembly to the specific subcellular site of the nascent spore surface and how they establish the coat layers. We also discuss the importance of posttranslational processing of coat proteins in coat morphogenesis. Finally, we review some of the major outstanding questions in the field.  相似文献   

7.
ABSTRACT The relative capacity of Na+, K+ and Cl- to stimulate germination of spores of the microsporidian Nosema algerae, a pathogen of mosquitoes, was examined by ion substitution experiments. Sodium at 0.1 M was ineffective to produce the high percentage of germination that typically occurs with 0.1 M NaCl (the normal stimulation solution) if Cl- was substituted with the usually impermeant anions SO42-, HPO42-, or the organic acids oxalate, cacodylate, EGTA, MES and HEPES. However, substantial concentration- and pH-dependent germination was seen with Na2SO4 in the 0.2-0.8 M Na+ range. Similar results were obtained with solutions of K+ accompanied by impermeant anions. In contrast, the chloride salts of usually impermeant cations, like choline and triethanolamine, failed to germinate spores even at 0.8 M unless Na+ or K+ was independently added. The presence of 0.5 M choline chloride in the medium reduced the levels of Na2SO4 required to produce germination down to equivalence with those of Na+ in the normal stimulation solution. Monensin, a Na+ ionophore, facilitated the germination induced by a medium-level stimulus (0.04 M NaCl) in sonicated samples. These findings indicate that N. algerae spores germinate in response to the alkali metal cations, while CI- plays a passive role by diffusing to maintain internal electroneutrality during cation influx. A possible mechanism of cation action in spore germination is suggested on the basis of these results and observations on other systems of intracellular motility.  相似文献   

8.
Spores of Bacillus subtilis possess a thick protein coat that consists of an electron-dense outer coat layer and a lamellalike inner coat layer. The spore coat has been shown to confer resistance to lysozyme and other sporicidal substances. In this study, spore coat-defective mutants of B. subtilis (containing the gerE36 and/or cotE::cat mutation) were used to study the relative contributions of spore coat layers to spore resistance to hydrogen peroxide (H2O2) and various artificial and solar UV treatments. Spores of strains carrying mutations in gerE and/or cotE were very sensitive to lysozyme and to 5% H2O2, as were chemically decoated spores of the wild-type parental strain. Spores of all coat-defective strains were as resistant to 254-nm UV-C radiation as wild-type spores were. Spores possessing the gerE36 mutation were significantly more sensitive to artificial UV-B and solar UV radiation than wild-type spores were. In contrast, spores of strains possessing the cotE::cat mutation were significantly more resistant to all of the UV treatments used than wild-type spores were. Spores of strains carrying both the gerE36 and cotE::cat mutations behaved like gerE36 mutant spores. Our results indicate that the spore coat, particularly the inner coat layer, plays a role in spore resistance to environmentally relevant UV wavelengths.  相似文献   

9.
In plants and green algae, light is captured by the light-harvesting complexes (LHCs), a family of integral membrane proteins that coordinate chlorophylls and carotenoids. In vivo, these proteins are folded with pigments to form complexes which are inserted in the thylakoid membrane of the chloroplast. The high similarity in the chemical and physical properties of the members of the family, together with the fact that they can easily lose pigments during isolation, makes their purification in a native state challenging. An alternative approach to obtain homogeneous preparations of LHCs was developed by Plumley and Schmidt in 19871, who showed that it was possible to reconstitute these complexes in vitro starting from purified pigments and unfolded apoproteins, resulting in complexes with properties very similar to that of native complexes. This opened the way to the use of bacterial expressed recombinant proteins for in vitro reconstitution. The reconstitution method is powerful for various reasons: (1) pure preparations of individual complexes can be obtained, (2) pigment composition can be controlled to assess their contribution to structure and function, (3) recombinant proteins can be mutated to study the functional role of the individual residues (e.g., pigment binding sites) or protein domain (e.g., protein-protein interaction, folding). This method has been optimized in several laboratories and applied to most of the light-harvesting complexes. The protocol described here details the method of reconstituting light-harvesting complexes in vitro currently used in our laboratory,and examples describing applications of the method are provided.  相似文献   

10.
We have developed a biochemical approach for identifying the components of cortical actin assembly sites in polarized yeast cells, based on a permeabilized cell assay that we established for actin assembly in vitro. Previous analysis indicated that an activity associated with the cell cortex promotes actin polymerization in the bud. After inactivation by a chemical treatment, this activity can be reconstituted back to the permeabilized cells from a cytoplasmic extract. Fractionation of the extract revealed that the reconstitution depends on two sequentially acting protein factors. Bee1, a cortical actin cytoskeletal protein with sequence homology to Wiskott-Aldrich syndrome protein, is required for the first step of the reconstitution. This finding, together with the severe defects in actin organization associated with the bee1 null mutation, indicates that Bee1 protein plays a direct role in controlling actin polymerization at the cell cortex. The factor that acts in the second step of the reconstitution has been identified by conventional chromatography. It is composed of a novel protein, Pca1. Sequence analysis suggests that Pca1 has the potential to interact with SH3 domain-containing proteins and phospholipids.  相似文献   

11.
12.
Germ-line cells are responsible for transmitting genetic and epigenetic information across generations, and ensuring the creation of new individuals from one generation to the next. Gametogenesis process requires several rigorous steps, including primordial germ cell (PGC) specification, proliferation, migration to the gonadal ridges and differentiation into mature gametes such as sperms and oocytes. But this process is not clearly explored because a small number of PGCs are deeply embedded in the developing embryo. In the attempt to establish an in vitro model for understanding gametogenesis process well, several groups have made considerable progress in differen- tiating embryonic stem cells (ESCs) and adult stem cells (ASCs) into germ-like cells over the past ten years. These stem cell-derived germ cells appear to he capable of undergoing meiosis and generating both male and female gametes. But most of gametes turn out to be not fully functional due to their abnormal meiosis process compared to endogenous germ cells. Therefore, a robust system of differentiating stem cells into germ cells would enable us to investigate the genetic, epigenetic and environmental factors associated with germ cell development. Here, we review the stem cell-derived germ cell development, and discuss the potential and challenges in the differentiation of functional germ cells from stem cells.  相似文献   

13.
Reevaluation of Bacitracin as a Spore Coat Component   总被引:1,自引:0,他引:1  
Analysis of hydrolysates of highly purified spore coats revealed only small quantities of ornithine, a component of bacitracin. We conclude that the peptide, bacitracin, is not a significant component of spore coats.  相似文献   

14.
15.
The cytoplasmic, NAD-reducing hydrogenase (SH) of Alcaligenes eutrophus H16 is a heterotetrameric enzyme which contains several cofactors and undergoes a complex maturation during biogenesis. HoxH is the Ni-carrying subunit, and together with HoxY it forms the hydrogenase dimer. HoxF and HoxU represent the flavin-containing diaphorase moiety, which is closely related to NADH:ubiquinone oxidoreductase and mediates NADH oxidation. A variety of mutations were introduced into the four SH structural genes to obtain mutant enzymes composed of monomeric and dimeric forms. A deletion removing most of hoxF, hoxU, and hoxY led to the expression of a HoxH monomer derivative which was proteolytically processed at the C terminus like the wild-type polypeptide. While the hydrogenase dimer, produced by a strain deleted of hoxF and hoxU, displayed H2-dependent dye-reducing activity, the monomeric form did not mediate the activation of H2, although nickel was incorporated into HoxH. Deletion of hoxH and hoxY led to the production of HoxFU dimers which displayed NADH:oxidoreductase activity. Mixing the hydrogenase and the diaphorase moieties in vitro reconstituted the structure and catalytic function of the SH holoenzyme.  相似文献   

16.
Bacillus spores are encased in a multilayer, proteinaceous self-assembled coat structure that assists in protecting the bacterial genome from stresses and consists of at least 70 proteins. The elucidation of Bacillus spore coat assembly, architecture, and function is critical to determining mechanisms of spore pathogenesis, environmental resistance, immune response, and physicochemical properties. Recently, genetic, biochemical and microscopy methods have provided new insight into spore coat architecture, assembly, structure and function. However, detailed spore coat architecture and assembly, comprehensive understanding of the proteomic composition of coat layers, and specific roles of coat proteins in coat assembly and their precise localization within the coat remain in question. In this study, atomic force microscopy was used to probe the coat structure of Bacillus subtilis wild type and cotA, cotB, safA, cotH, cotO, cotE, gerE, and cotE gerE spores. This approach provided high-resolution visualization of the various spore coat structures, new insight into the function of specific coat proteins, and enabled the development of a detailed model of spore coat architecture. This model is consistent with a recently reported four-layer coat assembly and further adds several coat layers not reported previously. The coat is organized starting from the outside into an outermost amorphous (crust) layer, a rodlet layer, a honeycomb layer, a fibrous layer, a layer of “nanodot” particles, a multilayer assembly, and finally the undercoat/basement layer. We propose that the assembly of the previously unreported fibrous layer, which we link to the darkly stained outer coat seen by electron microscopy, and the nanodot layer are cotH- and cotE- dependent and cotE-specific respectively. We further propose that the inner coat multilayer structure is crystalline with its apparent two-dimensional (2D) nuclei being the first example of a non-mineral 2D nucleation crystallization pattern in a biological organism.  相似文献   

17.
Retrograde transport from the Golgi to the ER is an essential process. Resident ER proteins that escape the ER and proteins that cycle between the Golgi and the ER must be retrieved. The interdependence of anterograde and retrograde vesicle trafficking makes the dissection of both processes difficult in vivo. We have developed an in vitro system that measures the retrieval of a soluble reporter protein, the precursor of the yeast pheromone α-factor fused to a retrieval signal (HDEL) at its COOH terminus (Dean, N., and H.R.B Pelham. 1990. J. Cell Biol. 111:369–377). Retrieval depends on the HDEL sequence; the α-factor precursor, naturally lacking this sequence, is not retrieved. A full cycle of anterograde and retrograde transport requires a simple set of purified cytosolic proteins, including Sec18p, the Lma1p complex, Uso1p, coatomer, and Arf1p. Among the membrane-bound v-SNAP receptor (v-SNARE) proteins, Bos1p is required only for forward transport, Sec22p only for retrograde trafficking, and Bet1p is implicated in both avenues of transport. Putative retrograde carriers (COPI vesicles) generated from Golgi-enriched membranes contain v-SNAREs as well as Emp47p as cargo.  相似文献   

18.
A scheme for the detoxification of superoxide in Pyrococcus furiosus has been previously proposed in which superoxide reductase (SOR) reduces (rather than dismutates) superoxide to hydrogen peroxide by using electrons from reduced rubredoxin (Rd). Rd is reduced with electrons from NAD(P)H by the enzyme NAD(P)H:rubredoxin oxidoreductase (NROR). The goal of the present work was to reconstitute this pathway in vitro using recombinant enzymes. While recombinant forms of SOR and Rd are available, the gene encoding P. furiosus NROR (PF1197) was found to be exceedingly toxic to Escherichia coli, and an active recombinant form (rNROR) was obtained via a fusion protein expression system, which produced an inactive form of NROR until cleavage. This allowed the complete pathway from NAD(P)H to the reduction of SOR via NROR and Rd to be reconstituted in vitro using recombinant proteins. rNROR is a 39.9-kDa protein whose sequence contains both flavin adenine dinucleotide (FAD)- and NAD(P)H-binding motifs, and it shares significant similarity with known and putative Rd-dependent oxidoreductases from several anaerobic bacteria, both mesophilic and hyperthermophilic. FAD was shown to be essential for activity in reconstitution assays and could not be replaced by flavin mononucleotide (FMN). The bound FAD has a midpoint potential of −173 mV at 23°C (−193 mV at 80°C). Like native NROR, the recombinant enzyme catalyzed the NADPH-dependent reduction of rubredoxin both at high (80°C) and low (23°C) temperatures, consistent with its proposed role in the superoxide reduction pathway. This is the first demonstration of in vitro superoxide reduction to hydrogen peroxide using NAD(P)H as the electron donor in an SOR-mediated pathway.  相似文献   

19.
A simplification of the Schaeffer-Fulton spore stain for bacteria is presented. It is shown that omission of the heating step during staining with malachite green resulted in spore stains as good as when the heat was applied. The simplified procedure involves (1) heat fixation of the smear by 20 passages through the flame, (2) staining with saturated aqueous malachite green for 10 minutes, (3) rinsing, and (4) counterstaining with 0.25% aqueous safranin for 15 seconds. The omission of the heating step in staining has obvious advantages, particularly in the classroom.  相似文献   

20.
Around a third of oral bacteria cannot be grown using conventional bacteriological culture media. Community profiling targeting 16S rRNA and shotgun metagenomics methods have proved valuable in revealing the complexity of the oral bacterial community. Studies investigating the role of oral bacteria in health and disease require phenotypic characterizations that are possible only with live cultures. The aim of this study was to develop novel culture media and use an in vitro biofilm model to culture previously uncultured oral bacteria. Subgingival plaque samples collected from subjects with periodontitis were cultured on complex mucin-containing agar plates supplemented with proteose peptone (PPA), beef extract (BEA), or Gelysate (GA) as well as on fastidious anaerobe agar plus 5% horse blood (FAA). In vitro biofilms inoculated with the subgingival plaque samples and proteose peptone broth (PPB) as the growth medium were established using the Calgary biofilm device. Specific PCR primers were designed and validated for the previously uncultivated oral taxa Bacteroidetes bacteria HOT 365 and HOT 281, Lachnospiraceae bacteria HOT 100 and HOT 500, and Clostridiales bacterium HOT 093. All agar media were able to support the growth of 10 reference strains of oral bacteria. One previously uncultivated phylotype, Actinomyces sp. HOT 525, was cultivated on FAA. Of 93 previously uncultivated phylotypes found in the inocula, 26 were detected in in vitro-cultivated biofilms. Lachnospiraceae bacterium HOT 500 was successfully cultured from biofilm material harvested from PPA plates in coculture with Parvimonas micra or Veillonella dispar/parvula after colony hybridization-directed enrichment. The establishment of in vitro biofilms from oral inocula enables the cultivation of previously uncultured oral bacteria and provides source material for isolation in coculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号