首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The heterologous expression and purification of membrane proteins represent major limitations for their functional and structural analysis. Here we describe a new method of incorporation of transmembrane proteins in planar lipid bilayer starting from 1 pmol of solubilized proteins. The principle relies on the direct incorporation of solubilized proteins into a preformed planar lipid bilayer destabilized by dodecyl-beta-maltoside or dodecyl-beta-thiomaltoside, two detergents widely used in membrane biochemistry. Successful incorporations are reported at 20 degrees C and at 4 degrees C with three bacterial photosynthetic multi-subunit membrane proteins. Height measurements by atomic force microscopy (AFM) of the extramembraneous domains protruding from the bilayer demonstrate that proteins are unidirectionally incorporated within the lipid bilayer through their more hydrophobic domains. Proteins are incorporated at high density into the bilayer and on incubation diffuse and segregate into protein close-packing areas. The high protein density allows high-resolution AFM topographs to be recorded and protein subunits organization delineated. This approach provides an alternative experimental platform to the classical methods of two-dimensional crystallization of membrane proteins for the structural analysis by AFM. Furthermore, the versatility and simplicity of the method are important intrinsic properties for the conception of biosensors and nanobiomaterials involving membrane proteins.  相似文献   

2.
The matrix protein M1 plays a pivotal role in the budding of influenza virus from the plasma membrane (PM) of infected cells. This protein interacts with viral genetic material and envelope proteins while binding to the inner leaflet of the PM. Its oligomerization is therefore closely connected to the assembly of viral components and the formation of new virions. Of interest, the molecular details of M1 interaction with lipids and other viral proteins are far from being understood, and it remains to be determined whether the multimerization of M1 is affected by its binding to the PM and interaction with its components. To clarify the connection between M1 oligomerization and binding to lipid membranes, we applied a combination of several quantitative microscopy approaches. First, we used number and brightness (N&B) microscopy to characterize protein multimerization upon interaction with the PM of living cells. Second, we used controlled biophysical models of the PM (i.e., supported bilayers) to delve into the details of M1-lipid and M1-M1 interactions by employing a combination of raster image correlation spectroscopy (RICS), fluorescence correlation spectroscopy (FCS), and atomic force microscopy (AFM). Our results show that M1 oligomer formation is strongly enhanced by membrane binding and does not necessarily require the presence of other viral proteins. Furthermore, we propose a specific model to explain M1 binding to the lipid bilayer and the formation of multimers.  相似文献   

3.
The matrix protein M1 plays a pivotal role in the budding of influenza virus from the plasma membrane (PM) of infected cells. This protein interacts with viral genetic material and envelope proteins while binding to the inner leaflet of the PM. Its oligomerization is therefore closely connected to the assembly of viral components and the formation of new virions. Of interest, the molecular details of M1 interaction with lipids and other viral proteins are far from being understood, and it remains to be determined whether the multimerization of M1 is affected by its binding to the PM and interaction with its components. To clarify the connection between M1 oligomerization and binding to lipid membranes, we applied a combination of several quantitative microscopy approaches. First, we used number and brightness (N&B) microscopy to characterize protein multimerization upon interaction with the PM of living cells. Second, we used controlled biophysical models of the PM (i.e., supported bilayers) to delve into the details of M1-lipid and M1-M1 interactions by employing a combination of raster image correlation spectroscopy (RICS), fluorescence correlation spectroscopy (FCS), and atomic force microscopy (AFM). Our results show that M1 oligomer formation is strongly enhanced by membrane binding and does not necessarily require the presence of other viral proteins. Furthermore, we propose a specific model to explain M1 binding to the lipid bilayer and the formation of multimers.  相似文献   

4.
In situ atomic force microscopy (AFM) is an exceedingly powerful and useful technique for characterizing the structure and assembly of proteins in real-time, in situ, and especially at model membrane interfaces, such as supported planar lipid bilayers. There remains, however, a fundamental challenge with AFM-based imaging. Conclusions are inferred based on morphological or topographical features. It is conventionally very difficult to use AFM to confirm specific molecular conformation, especially in the case of protein-membrane interactions. In this case, a protein may undergo subtle conformational changes upon insertion in the membrane that may be critical to its function. AFM lacks the ability to directly measure such conformational changes and can, arguably, only resolve features that are topographically distinct. To address these issues, we have developed a platform that integrates in situ AFM with attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy. This combination of tools provides a unique means of tracking, simultaneously, conformational changes, not resolvable by in situ AFM, with topographical details that are not readily identified by conventional spectroscopy. Preliminary studies of thermal transitions in supported lipid bilayers and direct evidence of lipid-induced conformational changes in adsorbed proteins illustrates the potential of this coupled in situ functional imaging strategy.  相似文献   

5.
We have bonded glass microbeads (425-600 microm diameter) to the inner walls of polypropylene microcentrifuge tubes. In addition to increasing the surface area of the tubes manyfold, the beads provide surface Si groups which can be reacted with a silane compound such as aminopropyltriethoxysilane, yielding a free amino group. The amino group is reacted with another cross-linking reagent, for example, the homobifunctional compound dimethyl suberimidate, which can form a covalent bond with amine groups of proteins. After binding protein A or G to the dimethyl suberimidate, the beads were used to immunoprecipitate proteins from cell extracts; we show that the protein A/G-coated glass beads yield similar amounts of immunoprecipitated proteins as a standard method using protein A- or G-agarose beads, but with fewer contaminating proteins. In addition, we show that when immunoprecipitating Ras from cell extracts and measuring the amounts of Ras-bound GTP and GDP, the new method yielded higher guanine nucleotide levels than protein G-agarose beads, suggesting that it caused less denaturation of Ras. Because the glass beads are bonded to the walls of the tubes, the immunoprecipitates can be washed rapidly and efficiently, and we show that 20-30 tubes can be washed in 1/10 the time required to wash immunoprecipitates on protein A- or G-agarose beads.  相似文献   

6.
A considerable interest exists currently in designing innovative strategies to produce two-dimensional crystals of membrane proteins that are amenable to structural analysis by electron crystallography. We have developed a protocol for crystallizing membrane protein that is derived from the classical lipid-layer two-dimensional crystallization at the air/water interface used so far for soluble proteins. Lipid derivatized with a Ni(2+)-chelating head group provided a general approach to crystallizing histidine-tagged transmembrane proteins. The processes of protein binding and two-dimensional crystallization were analyzed by electron microscopy, using two prototypic membrane proteins: FhuA, a high-affinity receptor from the outer membrane of Escherichia coli, and the F(0)F(1)-ATP synthase from thermophilic Bacillus PS3. Conditions were found to avoid solubilization of the lipid layer by the detergent present with the purified membrane proteins and thus to allow binding of micellar proteins to the functionalized lipid head groups. After detergent removal using polystyrene beads, membrane sheets of several hundreds of square micrometers were reconstituted at the interface. High protein density in these membrane sheets allowed further formation of planar two-dimensional crystals. We believe that this strategy represents a new promising alternative to conventional dialysis methods for membrane protein 2D crystallization, with the additional advantage of necessitating little purified protein.  相似文献   

7.
Observing membrane protein diffusion at subnanometer resolution   总被引:4,自引:0,他引:4  
Single sodium-driven rotors from a bacterial ATP synthase were embedded into a lipid membrane and observed in buffer solution at subnanometer resolution using atomic force microscopy (AFM). Time-lapse AFM topographs show the movement of single proteins within the membrane. Subsequent analysis of their individual trajectories, in consideration of the environment surrounding the moving protein, allow principal modes of the protein motion to be distinguished. Within one trajectory, individual proteins can undergo movements assigned to free as well as to obstacled diffusion. The diffusion constants of these two modes of motion are considerably different. Without the structural information about the membrane environment restricting the moving proteins, it would not be possible to reveal insight into these mechanisms. The high-resolution AFM topographs suggest that, in future studies, such data revealed under various physiological conditions will provide novel insights into molecular mechanisms that drive membrane protein assembly and supply excellent boundary conditions to model protein-protein arrangements.  相似文献   

8.
We have used in situ tapping mode atomic force microscopy (AFM) to study the structural morphology of two fragments of the influenza hemagglutinin protein bound to supported bilayers. The two proteins that we studied are the bromelain-cleaved hemagglutinin (BHA), corresponding to the full ectodomain of the hemagglutinin protein, and FHA2, the 127 amino acid N-terminal fragment of the HA2 subunit of the hemagglutinin protein. While BHA is water soluble at neutral pH and is known to bind to membranes via specific interactions with a viral receptor, FHA2 can only be solubilized in water with an appropriate detergent. Furthermore, FHA2 is known to readily bind to membranes at neutral pH in the absence of a receptor. Our in situ AFM studies demonstrated that, when bound to supported bilayers at neutral pH, both these proteins are self-assembled as single trimeric molecules. In situ acidification resulted in further lateral association of the FHA2 without a large perturbation of the bilayer. In contrast, BHA remained largely unaffected by acidification, except in areas of exposed mica where it is aggregated. Remarkably, these results are consistent with previous observations that FHA2 promotes membrane fusion while BHA only induces liposome leakage at low pH. The results presented here are the first example of in situ imaging of the ectodomain of a viral envelope protein allowing characterization of the real-time self-assembly of a membrane fusion protein.  相似文献   

9.
Plasma membrane proteins are supposed to form clusters that allow ‘functional cross-talk’ between individual molecules within nanometre distance. However, such hypothetical protein clusters have not yet been shown directly in native plasma membranes. Therefore, we developed a technique to get access to the inner face of the plasma membrane of cultured transformed kidney (MDCK) cells. The authors applied atomic force microscopy (AFM) to visualize clusters of native proteins protruding from the cytoplasmic membrane surface. We used the K+channel blocker iberiotoxin (IBTX), a positively charged toxin molecule, that binds with high affinity to plasma membrane potassium channels and to atomically flat mica. Thus, apical plasma membranes could be ‘glued’ with IBTX to the mica surface with the cytosolic side of the membrane accessible to the scanning AFM tip. The topography of these native inside-out membrane patches was imaged with AFM in electrolyte solution mimicking the cytosol. The plasma membrane could be clearly identified as a lipid bilayer with the characteristic height of 4.9±0.02nm. Multiple proteins protruded from the lipid bilayer into the cytosolic space with molecule heights between 1 and 20nm. Large protrusions were most likely protein clusters. Addition of the proteolytic enzyme pronase to the bath solution led to the disappearance of the proteins within minutes. The metabolic substrate ATP induced a shape-change of the protein clusters and smaller subunits became visible. ADP or the non-hydrolysable ATP analogue, ATP-γ-S, could not exert similar effects. It is concluded that plasma membrane proteins (and/or membrane associated proteins) form ‘functional clusters’ in their native environment. The ‘physiological’ arrangement of the protein molecules within a cluster requires ATP.  相似文献   

10.
Membrane trafficking of the cystic fibrosis transmembrane conductance regulator (CFTR) is supposed to be an important mechanism controlled by the intracellular messenger cAMP. This has been shown with fluorescence techniques, electron microscopy and membrane capacitance measurements. In order to visualize protein insertion we applied atomic force microscopy (AFM) to inside-out oriented plasma membrane patches of CFTR-expressing Xenopus laevis oocytes before and after cAMP-stimulation. In a first step, oocytes injected with CFTR-cRNA were voltage-clamped, verifying successful CFTR expression. Water-injected oocytes served as controls. Then, plasma membrane patches were excised, placed (inside out) on glass and scanned by AFM. Before cAMP-stimulation plasma membranes of both water-injected and CFTR-expressing oocytes contained about 200 proteins per μm2. Molecular protein masses were estimated from molecular volumes measured by AFM. Before cAMP-stimulation, protein distribution showed a peak value of 11 nm protein height corresponding to 475 kDa. During cAMP-stimulation with 1 mm isobutylmethylxanthine (IBMX) plasma membrane protein density increased in water-injected oocytes to 700 proteins per μm2 while the peak value shifted to 7 nm protein height corresponding to 95 kDa. In contrast, CFTR-expressing oocytes showed after cAMP-stimulation about 400 proteins per μm2 while protein distribution exhibited two peak values, one peak at 10 nm protein height corresponding to 275 kDa and another one at 14 nm corresponding to 750 kDa. They could represent heteromeric protein clusters associated with CFTR. In conclusion, we visualized plasma membrane protein insertion upon cAMP-stimulation and quantified protein distribution with AFM at molecular level. We propose that CFTR causes clustering of plasma membrane proteins. Received: 11 September 2000/Revised: 13 December 2000  相似文献   

11.
Biological membranes compartmentalize and define physical borders of cells. They are crowded with membrane proteins that fulfill diverse crucial functions. About one-third of all genes in organisms code for, and the majority of drugs target, membrane proteins. To combine structure and function analysis of membrane proteins, we designed a two-chamber atomic force microscopy (AFM) setup that allows investigation of membranes spanned over nanowells, therefore separating two aqueous chambers. We imaged nonsupported surface layers (S layers) of Corynebacterium glutamicum at sufficient resolution to delineate a 15 A-wide protein pore. We probed the elastic and yield moduli of nonsupported membranes, giving access to the lateral interaction energy between proteins. We combined AFM and fluorescence microscopy to demonstrate the functionality of proteins in the setup by documenting proton pumping by Halobacterium salinarium purple membranes.  相似文献   

12.
Coupling atomic force microscopy (AFM) with high-resolution fluorescence microscopy is an attractive means of identifying membrane domains by both physical topography and fluorescence. We have used this approach to study the ability of a suite of fluorescent molecules to probe domain structures in supported planar bilayers. These included BODIPY-labeled ganglioside, sphingomyelin, and three new cholesterol derivatives, as well as NBD-labeled phosphatidylcholine, sphingomyelin, and cholesterol. Interestingly, many fluorescent lipid probes, including derivatives of known raft-associated lipids, preferentially partitioned into topographical features consistent with nonraft domains. This suggests that the covalent attachment of a small fluorophore to a lipid molecule can abolish its ability to associate with rafts. In addition, the localization of one of the BODIPY-cholesterol derivatives was dependent on the lipid composition of the bilayer. These data suggest that conclusions about the identification of membrane domains in supported planar bilayers on the basis of fluorescent lipid probes alone must be interpreted with caution. The combination of AFM with fluorescence microscopy represents a more rigorous means of identifying lipid domains in supported bilayers.  相似文献   

13.
Atomic force microscopy (AFM) is the type of scanning probe microscopy that is probably best adapted for imaging biological samples in physiological conditions with submolecular lateral and vertical resolution. In addition, AFM is a method of choice to study the mechanical unfolding of proteins or for cellular force spectroscopy. In spite of 28 years of successful use in biological sciences, AFM is far from enjoying the same popularity as electron and fluorescence microscopy. The advent of high-speed atomic force microscopy (HS-AFM), about 10 years ago, has provided unprecedented insights into the dynamics of membrane proteins and molecular machines from the single-molecule to the cellular level. HS-AFM imaging at nanometer-resolution and sub-second frame rate may open novel research fields depicting dynamic events at the single bio-molecule level. As such, HS-AFM is complementary to other structural and cellular biology techniques, and hopefully will gain acceptance from researchers from various fields. In this review we describe some of the most recent reports of dynamic bio-molecular imaging by HS-AFM, as well as the advent of high-speed force spectroscopy (HS-FS) for single protein unfolding.  相似文献   

14.
Characterizing membrane proteins with single-molecule techniques provides structural and functional insights that cannot be obtained with conventional approaches. Recent studies show that atomic force microscopy (AFM) in the context of a 'lab on a tip' enables the measurement of multiple parameters of membrane proteins. This multifunctional tool can be applied to probe the oligomeric states and conformational changes of membrane protein assemblies in their native environment. The ability to determine diverse properties at high spatial resolution facilitates the mapping of structural flexibilities, electrostatic potentials and electric currents. By using the AFM tip as tweezer, it is possible to characterize unfolding and refolding pathways of single proteins and the location of their molecular interactions. These interactions dictate the stability of the protein and might be modulated by ligands that alter the protein's functional state.  相似文献   

15.
The cell membrane plays a key role in compartmentalization, nutrient transportation and signal transduction, while the pattern of protein distribution at both cytoplasmic and ectoplasmic sides of the cell membrane remains elusive. Using a combination of single-molecule techniques, including atomic force microscopy (AFM), single molecule force spectroscopy (SMFS) and stochastic optical reconstruction microscopy (STORM), to study the structure of nucleated cell membranes, we found that (1) proteins at the ectoplasmic side of the cell membrane form a dense protein layer (4 nm) on top of a lipid bilayer; (2) proteins aggregate to form islands evenly dispersed at the cytoplasmic side of the cell membrane with a height of about 10–12 nm; (3) cholesterol-enriched domains exist within the cell membrane; (4) carbohydrates stay in microdomains at the ectoplasmic side; and (5) exposed amino groups are asymmetrically distributed on both sides. Based on these observations, we proposed a Protein Layer-Lipid-Protein Island (PLLPI) model, to provide a better understanding of cell membrane structure, membrane trafficking and viral fusion mechanisms.  相似文献   

16.
Yan F  Chen L  Tang Q  Wang R 《Bioconjugate chemistry》2004,15(5):1030-1036
A heterobifunctional photocleavable cross-linker based on an o-nitrobenzyl ester moiety was synthesized. The cross-linker has N-hydroxysuccinimidyl and disulfide groups attached at each end and thus can anchor a protein to a gold-coated substrate surface. Steady-state spectroscopic studies suggest that the cross-linker undergoes a clean C-O fragmentation upon irradiation with a quantum yield of 0.1. Consequently, immobilized proteins (such as avidin or antibodies) on a substrate surface can be released efficiently (>95%) under UV irradiation (lambda > 300 nm) without degrading the protein functionality. We also demonstrated protein delivery via bioconjugation of protein molecules to a gold-coated atomic-force microscope (AFM) tip. When the proteins are photoreleased from the AFM tip, they are delivered to the substrate surface as protein clusters of uniform size. This has been confirmed using both AFM and fluorescence microscopy. The application of bioconjugation in this study opens a new avenue for tunable surface modification and controllable protein delivery in studies of biological systems on the nanometer scale.  相似文献   

17.
Hollow fiber membrane offers the advantage to integrate catalytic conversion, product separation and catalyst recovery into a single separation process compared to conventional systems. Polypropylene (PP) hollow fiber membrane is a chemically inert and stable membrane with high potential for enzyme immobilization. The surface properties of polypropylene have been modified by radiation induced graft polymerization. Samples were prepared by grafting of glycidylmethacrylate (GMA) using gamma radiation, at different monomer concentrations and irradiation dose. The resulting epoxy was converted into a diethylamino group as an anion-exchange medium to bind the lipase molecules. Surface properties of the grafted and amine treated samples were characterized using atomic force microscopy (AFM), scanning electron microscopy (SEM) and contact angle measurements. AFM revealed higher surface roughness for grafted samples than that of virgin polymer. SEM micrographs illustrated that the porous network was retained at high degree of grafting. Contact angle measurements showed excellent wetting properties with water for the grafted and amine treated membranes. Thermal properties were studied using differential scanning calorimeter (DSC) and thermogravimetic analysis (TGA). It was observed that grafting occurred mainly in the amorphous region of the membranes. Activity and operational stability of ABL lipase, isolated from Arthobacter sp. were assayed after immobilizing it to the modified PP hollow fiber. Immobilized lipase retained 20U/g activity after ten hydrolysis cycles and 68% residual activity after 12 weeks of storage.  相似文献   

18.
Small molecules that bind proteins can be used as ligands for protein purification and for investigating protein-protein and protein-drug interactions. Unfortunately, many methods used to identify new ligands to desired proteins suffer from common shortcomings, including the requirement that the target protein be purified and/or the requirement that the ligands be selected under conditions different from those under which it will be used. We have developed a new method called the Bead blot that can (i) select ligands to unpurified proteins, including trace proteins, present in complex materials (e.g., unfractionated plasma); (ii) select ligands to multiple proteins under a variety of conditions in a single experiment; and (iii) be used with libraries of different types of ligands. In the Bead blot, a library of ligands, synthesized on chromatography resin beads, is incubated with a starting material containing a target protein for which a ligand is sought. The proteins in the material bind to their complementary ligands according to specific affinity interactions. Then the protein-loaded beads are immobilized in a porous matrix, and the proteins are directionally eluted from the beads and captured on a membrane superimposed on the beads. The location of the target protein on the membrane is determined, and because the position of the protein(s) on the membrane reflects the position of the bead(s) in the matrix, the bead that originally bound the protein is identified, with subsequent elucidation of the ligand sequence. Ligands to several targets can be identified in one experiment. Here we demonstrate the broad utility of this method by the selection of ligands that purify plasma protein complexes or that remove pathogens from whole blood with very high affinity constants. We also select ligands to a protein based on competitive elution.  相似文献   

19.
Müller DJ  Engel A 《Nature protocols》2007,2(9):2191-2197
Membrane proteins comprise 30% of the proteome of higher organisms. They mediate energy conversion, signal transduction, solute transport and secretion. Their native environment is a bilayer in a physiological buffer solution, hence their structure and function are preferably assessed in this environment. The surface structure of single membrane proteins can be determined in buffer solutions by atomic force microscopy (AFM) at a lateral resolution of less than 1 nm and a vertical resolution of 0.1-0.2 nm. Moreover, single proteins can be directly addressed, stuck to the AFM stylus and subsequently unfolded, revealing the molecular interactions of the protein studied. The examples discussed here illustrate the power of AFM in the structural analysis of membrane proteins in a native environment.  相似文献   

20.
A novel experimental technique, based on atomic force microscopy (AFM), is proposed to visualize the lateral organization of membrane systems in the nanometer range. The technique involves the use of a ligand-receptor pair, biotin-avidin, which introduces a height variation on a solid-supported lipid bilayer membrane. This leads to a height amplification of the lateral membrane organization that is large enough to be clearly imaged by scanning AFM. The power of the technique is demonstrated for a binary dipalmitoylphosphocholine-diarachidoylphosphocholine lipid mixture which is shown to exhibit a distinct lateral lipid domain formation. The new and simple ligand-receptor-based AFM approach opens up new ways to investigate lipid membrane microstructure in the nanometer range as well as the lateral distribution of ligand-lipid and receptor-protein complexes in supported membrane systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号