首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The movement protein (MP) of Tobacco mosaic virus (TMV) facilitates the cell-to-cell transport of the viral RNA genome through plasmodesmata (Pd). A previous report described the functional reversion of a dysfunctional mutation in MP (Pro81Ser) by two additional amino acid substitution mutations (Thr104Ile and Arg167Lys). To further explore the mechanism underlying this intramolecular complementation event, the mutations were introduced into a virus derivative expressing the MP as a fusion to green fluorescent protein (GFP). Microscopic analysis of infected protoplasts and of infection sites in leaves of MP-transgenic Nicotiana benthamiana indicates that MP(P81S)-GFP and MP(P81S;T104I;R167K)-GFP differ in subcellular distribution. MP(P81S)-GFP lacks specific sites of accumulation in protoplasts and, in epidermal cells, exclusively localizes to Pd. MP(P81S;T104I;R167K)-GFP, in contrast, in addition localizes to inclusion bodies and microtubules and thus exhibits a subcellular localization pattern that is similar, if not identical, to the pattern reported for wild-type MP-GFP. Since accumulation of MP to inclusion bodies is not required for function, these observations confirm a role for microtubules in TMV RNA cell-to-cell transport.  相似文献   

2.
Little is known about the mechanisms of intracellular targeting of viral nucleic acids within infected cells. We used in situ hybridization to visualize the distribution of tobacco mosaic virus (TMV) viral RNA (vRNA) in infected tobacco protoplasts. Immunostaining of the ER lumenal binding protein (BiP) concurrent with in situ hybridization revealed that vRNA colocalized with the ER, including perinuclear ER. At midstages of infection, vRNA accumulated in large irregular bodies associated with cytoplasmic filaments while at late stages, vRNA was dispersed throughout the cytoplasm and was associated with hair-like protrusions from the plasma membrane containing ER. TMV movement protein (MP) and replicase colocalized with vRNA, suggesting that viral replication and translation occur in the same subcellular sites. Immunostaining with tubulin provided evidence of colocalization of vRNA with microtubules, while disruption of the cytoskeleton with pharmacological agents produced severe changes in vRNA localization. Mutants of TMV lacking functional MP accumulated vRNA, but the distribution of vRNA was different from that observed in wild-type infection. MP was not required for association of vRNA with perinuclear ER, but was required for the formation of the large irregular bodies and association of vRNA with the hair-like protrusions.  相似文献   

3.
The cell-to-cell spread of Tobacco mosaic virus infection depends on virus-encoded movement protein (MP), which is believed to form a ribonucleoprotein complex with viral RNA (vRNA) and to participate in the intercellular spread of infectious particles through plasmodesmata. Previous studies in our laboratory have provided evidence that the vRNA movement process is correlated with the ability of the MP to interact with microtubules, although the exact role of this interaction during infection is not known. Here, we have used a variety of in vivo and in vitro assays to determine that the MP functions as a genuine microtubule-associated protein that binds microtubules directly and modulates microtubule stability. We demonstrate that, unlike MP in whole-cell extract, microtubule-associated MP is not ubiquitinated, which strongly argues against the hypothesis that microtubules target the MP for degradation. In addition, we found that MP interferes with kinesin motor activity in vitro, suggesting that microtubule-associated MP may interfere with kinesin-driven transport processes during infection.  相似文献   

4.
The Tobacco mosaic virus (TMV) movement protein (MPTMV) mediates cell-to-cell viral trafficking by altering properties of the plasmodesmata (Pd) in infected cells. During the infection cycle, MPTMV becomes transiently associated with endomembranes, microfilaments, and microtubules (MT). It has been shown that the cell-to-cell spread of TMV is reduced in plants expressing the dysfunctional MP mutant MPNT-1. To expand our understanding of the MP function, we analyzed events occurring during the intracellular and intercellular targeting of MPTMV and MPNT-1 when expressed as a fusion protein to green fluorescent protein (GFP), either by biolistic bombardment in a viral-free system or from a recombinant virus. The accumulation of MPTMV:GFP, when expressed in a viral-free system, is similar to MPTMV:GFP in TMV-infected tissues. Pd localization and cell-to-cell spread are late events, occurring only after accumulation of MP:GFP in aggregate bodies and on MT in the target cell. MPNT-1:GFP localizes to MT but does not target to Pd nor does it move cell to cell. The spread of transiently expressed MPTMV:GFP in leaves of transgenic plants that produce MPNT-1 is reduced, and targeting of the MPTMV:GFP to the cytoskeleton is inhibited. Although MPTMV:GFP targets to the Pd in these plants, it is partially impaired for movement. It has been suggested that MPNT-1 interferes with host-dependent processes that occur during the intracellular targeting program that makes MP movement competent.  相似文献   

5.
The movement protein (MP) of tobacco mosaic virus (TMV) is essential for spread of the viral RNA genome from cell to cell. During infection, the MP associates with microtubules, and it has been proposed that the cytoskeleton transports the viral ribonucleoprotein complex from ER sites of synthesis to plasmodesmata through which infection spreads into adjacent cells. However, microtubule association of MP was observed in cells undergoing late infection rather than in cells undergoing early infection at the leading edge of expanding infection sites where virus RNA cell-to-cell spread occurs. Therefore, alternative roles for microtubules in virus infection have been proposed, including a role in MP degradation. To further investigate the role of microtubules in virus pathogenesis, we tested the efficiency of cell-to-cell spread of infection and microtubule association of the MP in response to changes in temperature. We show that the subcellular distribution of MP is temperature-dependent and that a higher efficiency of intercellular transport of virus RNA at elevated temperatures corresponds to an increased association of MP with microtubules early in infection.  相似文献   

6.
Virus spread through plasmodesmata (Pd) is mediated by virus-encoded movement proteins (MPs) that modify Pd structure and function. The MP of Tobacco mosaic virus ((TMV)MP) is an endoplasmic reticulum (ER) integral membrane protein that binds viral RNA (vRNA), forming a vRNA:MP:ER complex. It has been hypothesized that (TMV)MP causes Pd to dilate, thus potentiating a cytoskeletal mediated sliding of the vRNA:MP:ER complex through Pd; in the absence of MP, by contrast, the ER cannot move through Pd. An alternate model proposes that cell-to-cell spread takes place by diffusion of the MP:vRNA complex in the ER membranes which traverse Pd. To test these models, we measured the effect of (TMV)MP and replicase expression on cell-to-cell spread of several green fluorescent protein-fused probes: a soluble cytoplasmic protein, two ER lumen proteins, and two ER membrane-bound proteins. Our data support the diffusion model in which a complex that includes ER-embedded MP, vRNA, and other components diffuses in the ER membrane within the Pd driven by the concentration gradient between an infected cell and adjacent noninfected cells. The data also suggest that the virus replicase and MP function together in altering Pd conductivity.  相似文献   

7.
The movement protein of tobacco mosaic virus, MP30, mediates viral cell-to-cell transport via plasmodesmata. The complex MP30 intra- and intercellular distribution pattern includes localization to the endoplasmic reticulum, cytoplasmic bodies, microtubules, and plasmodesmata and likely requires interaction with plant endogenous factors. We have identified and analyzed an MP30-interacting protein, MPB2C, from the host plant Nicotiana tabacum. MPB2C constitutes a previously uncharacterized microtubule-associated protein that binds to and colocalizes with MP30 at microtubules. In vivo studies indicate that MPB2C mediates accumulation of MP30 at microtubules and interferes with MP30 cell-to-cell movement. In contrast, intercellular transport of a functionally enhanced MP30 mutant, which does not accumulate and colocalize with MP30 at microtubules, is not impaired by MPB2C. Together, these data support the concept that MPB2C is not required for MP30 cell-to-cell movement but may act as a negative effector of MP30 cell-to-cell transport activity.  相似文献   

8.
Microtubules interact strongly with the viral movement protein (MP) of Tobacco mosaic virus (TMV) and are thought to transport the viral genome between plant cells. We describe a functionally enhanced DNA-shuffled movement protein (MP(R3)) that remained bound to the vertices of the cortical endoplasmic reticulum, showing limited affinity for microtubules. A single amino acid change was shown to confer the MP(R3) phenotype. Disruption of the microtubule cytoskeleton in situ with pharmacological agents, or by silencing of the alpha-tubulin gene, had no significant effect on the spread of TMV vectors expressing wild-type MP (MP(WT)) and did not prevent the accumulation of MP(WT) in plasmodesmata. Thus, cell-to-cell trafficking of TMV can occur independently of microtubules. The MP(R3) phenotype was reproduced when infection sites expressing MP(WT) were treated with a specific proteasome inhibitor, indicating that the degradation of MP(R3) is impaired. We suggest that the improved viral transport functions of MP(R3) arise from evasion of a host degradation pathway.  相似文献   

9.
Functional studies of Tobacco mosaic virus (TMV) infection using virus derivatives expressing functional, dysfunctional, and temperature-sensitive movement protein (MP) mutants indicated that the cell-to-cell transport of TMV RNA is functionally correlated with the association of MP with microtubules. However, the role of microtubules in the movement process during early infection remains unclear, since MP accumulates on microtubules rather late in infection and treatment of plants with microtubule-disrupting agents fails to strongly interfere with cell-to-cell movement of TMV RNA. To further test the role of microtubules in TMV cell-to-cell movement, we investigated TMV strain Ni2519, which is temperature-sensitive for movement. We demonstrate that the temperature-sensitive defect in movement is correlated with temperature-sensitive changes in the localization of MP to microtubules. Furthermore, we show that during early phases of recovery from non-permissive conditions, the MP localizes to microtubule-associated particles. Similar particles are found in cells at the leading front of spreading TMV infection sites. Initially mobile, the particles become immobile when MP starts to accumulate along the length of the particle-associated microtubules. Our observations confirm a role for microtubules in the spread of TMV infection and associate this role with microtubule-associated trafficking of MP-containing particles in cells engaged in the cell-to-cell movement of the TMV genome.  相似文献   

10.
NTH201, a novel class II KNOTTED1-like protein gene, was cloned from tobacco (Nicotiana tabacum cv. Xanthi) and its role in Tobacco mosaic virus (TMV) infection was analyzed. Virus-induced gene silencing of NTH201 caused a delay in viral RNA accumulation as well as virus spread in infected tobacco plants. Overexpression of the gene in a transgenic tobacco plant (N. tabacum cv. Xanthi nc) infected by TMV showed larger local lesions than those of the nontransgenic plant. NTH201 exhibited no intercellular trafficking ability but did exhibit colocalization with movement protein (MP) at the plasmodesmata. When NTH201-overexpressing tobacco BY-2 cultured cells were infected with TMV, the accumulation of MP but not of viral genomic and subgenomic RNA clearly was accelerated compared with those in nontransgenic cells at an early infection period. The formation of virus replication complexes (VRC) also was accelerated in these transgenic cells. Conversely, NTH201-silenced cells showed less MP accumulations and fewer VRC formations than did nontransgenic cells. These results suggested that NTH201 might indirectly facilitate MP accumulation and VRC formation in TMV-infected cells, leading to rapid viral cell-to-cell movement in plants at an early infection stage.  相似文献   

11.
Cell-to-cell progression of tobacco mosaic virus (TMV) infection in plants depends on virus-encoded movement protein (MP). Here we show that a conserved sequence motif in tobamovirus MPs shares similarity with a region in tubulins that is proposed to mediate lateral contacts between microtubule protofilaments. Point mutations in this motif confer temperature sensitivity to microtubule association and viral-RNA intercellular-transport functions of the protein, indicating that MP-interacting microtubules are functionally involved in the transport of vRNA to plasmodesmata. Moreover, we show that MP interacts with microtubule-nucleation sites. Together, our results indicate that MP may mimic tubulin assembly surfaces to propel vRNA transport by a dynamic process that is driven by microtubule polymerization.  相似文献   

12.
The movement protein (MP) of the tobacco mosaic virus (TMV) provides the intercellular transport of the viral RNA through plasmodesmata. The MP fulfills its function while interacting with host cell factors over the whole path of its intracellular movement from the subcellular site of its synthesis to the plasmodesmata of cellular walls. The MP conformation during its intracellular movement and fulfillment of the transport function still remains unknown. In this study, we describe the preparation of murine monoclonal antibodies (MAs) to TMV MP and mapping of the MP epitopes. Stable hybridoma lines that produce MAs to the partially denatured recombinant MP (MPr) were obtained. MAs were tested by immunoblotting and ELISA with the use of deletion variants of MPr. The epitopes of TMV MPr that recognize specific MAs were determined.  相似文献   

13.
Virus-encoded movement protein (MP) mediates cell-to-cell spread of tobacco mosaic virus (TMV) through plant intercellular connections, the plasmodesmata. The molecular pathway by which TMV MP interacts with the host cell is largely unknown. To understand this process better, a cell wall-associated protein that specifically binds the viral MP was purified from tobacco leaf cell walls and identified as pectin methylesterase (PME). In addition to TMV MP, PME is recognized by MPs of turnip vein clearing virus (TVCV) and cauliflower mosaic virus (CaMV). The use of amino acid deletion mutants of TMV MP showed that its domain was necessary and sufficient for association with PME. Deletion of the PME-binding region resulted in inactivation of TMV cell-to-cell movement.  相似文献   

14.
Recent studies of the tobacco mosaic virus (TMV) P30 movement protein (MP) fused with green fluorescent protein (GFP) during TMV infection described the involvement of elements of the cytoskeleton and components of the endoplasmic reticulum (ER) in the intracellular trafficking of MP:GFP from the sites of synthesis in the cytoplasm to plasmodesmata. To examine in real-time the pattern of synthesis, accumulation and degradation of MP:GFP, we developed a method to immobilize protoplasts in agarose such that they are maintained alive for extended periods of time. The pattern of MP:GFP accumulation in single living protoplasts visualized by confocal laser scanning microscopy (CLSM) was parallel to that previously described in a population of protoplasts harvested at different times post-infection. Additionally, a network of weakly fluorescent filaments, which are apparently different from microtubules, was observed to surround the nucleus and these filaments were associated with fluorescent bodies (previously identified as ER-derived structures). Later in infection, the fluorescent bodies increased in size and coalesced to form larger structures that accumulated near the periphery of the cells while highly fluorescent non-cortical filaments were observed distributed in the cytoplasm. The putative involvement of these filaments in targeting the fluorescent bodies to the periphery of the cell is discussed. Studies of single, embedded protoplasts make it possible to observe changes in amount and subcellular localization of viral and other proteins.  相似文献   

15.
16.
The movement protein (MP) of the tobacco mosaic virus (TMV) provides the intercellular transport of the viral RNA through plasmodesmata. MP fulfils its function while interacting with host cell factors on the whole way of its intracellular movement from the subcellular site of its synthesis to the plasmodesmata of cellular walls. The MP conformation during its intracellular movement and fulfilling the transport function still remains unknown. In this study, we describe the preparation of murine monoclonal antibodies (MAs) to TMV MP and mapping of the MP epitopes. Stable hybridoma lines that produce MAs to the partially denatured recombinant MP (MPr) were obtained. MAs were tested by the immunoblotting and ELISA with the use of deletion variations of MPr. The epitopes of TMV MPr that recognize specific MAs were determined.  相似文献   

17.
The movement protein (MP) of Tobacco mosaic virus interacts with microtubules during infection. Although this interaction is correlated with the function of MP in the cell-to-cell transport of viral RNA, a direct role of microtubules in the movement process was recently challenged by studies involving the treatment of plants with inhibitors of microtubule polymerization. Here, we report evidence suggesting that such treatments may not efficiently disrupt all microtubules. Thus, results obtained from studies using microtubule inhibitors may have to remain open to interpretation with regard to the involvement of microtubules in viral RNA trafficking.  相似文献   

18.
Movement protein binding 2C (MPB2C) is a plant endogenous microtubule-associated protein previously identified as an interaction partner of tobacco (Nicotiana tabacum) mosaic virus movement protein (TMV-MP). In this work, the role of MPB2C in cell-to-cell transport of TMV-MP, viral spread of TMV, and subcellular localization of TMV-MP was examined. To this end, plants with reduced MPB2C levels were generated by a gene-silencing strategy. Local and systemic spread of TMV and cell-to-cell movement of TMV-MP were unimpaired in MPB2C-silenced plants as compared to nonsilenced plants, indicating that MPB2C is not required for intercellular transport of TMV-MP itself or spread of TMV. However, a clear change in subcellular distribution of TMV-MP characterized by a nearly complete loss of microtubular localization was observed in MPB2C-silenced plants. This result shows that the MPB2C is a central player in determining the complex subcellular localization of TMV-MP, in particular its microtubular accumulation, a phenomenon that has been frequently observed and whose role is still under discussion. Clearly, MPB2C mediated accumulation of TMV-MP at microtubules is not required for intercellular spread but may be a means to withdraw the TMV-MP from the cell-to-cell transport pathway.  相似文献   

19.
Lee JY  Taoka K  Yoo BC  Ben-Nissan G  Kim DJ  Lucas WJ 《The Plant cell》2005,17(10):2817-2831
Cell-to-cell communication in plants involves the trafficking of macromolecules through specialized intercellular organelles, termed plasmodesmata. This exchange of proteins and RNA is likely regulated, and a role for protein phosphorylation has been implicated, but specific components remain to be identified. Here, we describe the molecular characterization of a plasmodesmal-associated protein kinase (PAPK). A 34-kD protein, isolated from a plasmodesmal preparation, exhibits calcium-independent kinase activity and displays substrate specificity in that it recognizes a subset of viral and endogenous non-cell-autonomous proteins. This PAPK specifically phosphorylates the C-terminal residues of tobacco mosaic virus movement protein (TMV MP); this posttranslational modification has been shown to affect MP function. Molecular analysis of purified protein established that tobacco (Nicotiana tabacum) PAPK is a member of the casein kinase I family. Subcellular localization studies identified a possible Arabidopsis thaliana PAPK homolog, PAPK1. TMV MP and PAPK1 are colocalized within cross-walls in a pattern consistent with targeting to plasmodesmata. Moreover, Arabidopsis PAPK1 also phosphorylates TMV MP in vitro at its C terminus. These results strongly suggest that Arabidopsis PAPK1 is a close homolog of tobacco PAPK. Thus, PAPK1 represents a novel plant protein kinase that is targeted to plasmodesmata and may play a regulatory role in macromolecular trafficking between plant cells.  相似文献   

20.
The movement protein (MP) of Tobacco mosaic virus mediates the cell-to-cell transport of viral RNA through plasmodesmata, cytoplasmic cell wall channels for direct cell-to-cell communication between adjacent cells. Previous in vivo studies demonstrated that the RNA transport function of the protein correlates with its association with microtubules, although the exact role of microtubules in the movement process remains unknown. Since the binding of MP to microtubules is conserved in transfected mammalian cells, we took advantage of available mammalian cell biology reagents and tools to further address the interaction in flat-growing and transparent COS-7 cells. We demonstrate that neither actin, nor endoplasmic reticulum (ER), nor dynein motor complexes are involved in the apparent alignment of MP with microtubules. Together with results of in vitro coprecipitation experiments, these findings indicate that MP binds microtubules directly. Unlike microtubules associated with neuronal MAP2c, MP-associated microtubules are resistant to disruption by microtubule-disrupting agents or cold, suggesting that MP is a specialized microtubule binding protein that forms unusually stable complexes with microtubules. MP-associated microtubules accumulate ER membranes, which is consistent with a proposed role for MP in the recruitment of membranes in infected plant cells and may suggest that microtubules are involved in this process. The ability of MP to interfere with centrosomal gamma-tubulin is independent of microtubule association with MP, does not involve the removal of other tested centrosomal markers, and correlates with inhibition of centrosomal microtubule nucleation activity. These observations suggest that the function of MP in viral movement may involve interaction with the microtubule-nucleating machinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号